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It is shown that the conductivity of a two-phase thin film at equal concentrations of the phases and 
random distribution of them is equal to the geometric mean of the conductivity of the phases. If one 
of the phases conducts while the other does not conduct an electric current, the system under con
sideration experiences a metal-dielectric transition on change of the composition. It is shown that 
this transition occurs at equal concentrations of the phases, ccr = 7'2. The conductivity of a two 
dimensional polycrystal is determined. These and a number of analogous problems can be solved 
exactly thanks to a certain symmetry, characteristic of two-dimensional systems. 

1. INTRODUCTION 

WE shall consider a conducting medium consisting of 
parts of two types of arbitrary shape and dimensions. 
The dimensions of the system are assumed to be much 
larger than the characteristic dimensions of the parts. 
If such a medium is placed in an electric field currents 
flow through it and the pattern of the currents will be 
rather complicated, if the "phase" regions are irregu
lar. 11 It is of interest to find the average properties of 
such a medium. The solution of this problem is trivial 
for a medium with one-dimensional inhomogeneities 
(a layered medium}. There is little interest in this 
case, however, inasmuch as there are practically no 
irregularities in the current. The analogous three
dimensional case has been solved approximately in the 
case when the inhomogeneities are small (see, e.g.,Pl). 
It will be shown that the corresponding two-dimensional 
problem admits an exact solution in the case of a 1 : 1 
mixture, if both "phases" are in geometrically equiva
lent conditions (on average}. The problem under con
sideration is of interest principally as an exactly solu
ble model. Substantially similar problems arise in the 
calculation of the conductivity of inhomogeneous films, 
of the surface conductivity for an unevenly covered 
surface, where the system is inherently two-dimen
sional, and also in a plasma placed in a magnetic field, 
where the two-dimensionality can arise as a result of 
preferential development of instability in the plane 
perpendicular to the magnetic field (see, e.g.,[2l). In 
the latter case, however, the conductivity itself can be 
anisotropic and this requires special treatment. 

That it is possible to find an exact solution is due to 
the fact that the system of equations in the conditions 
described undergoes a symmetry transformation which 
does not change the macroscopic properties of the 
medium. We note that the problem being considered is 
mathematically equivalent to a number of other physi
cal problems. As an example, we can cite the calculation 
of various dissipative properties (thermal conductivity, 
viscosity, etc.) and dynamic properties (dielectric con
stant, sound velocity, etc.) in randomly non-uniform 
media. 

llFor brevity an aggregate of parts of one type, separated from the 
other parts by an interface, will be called a phase. It is not necessary for 
these phases to be in a state of thermodynamic equilibrium (but they 
may be). 
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2. THE SYMMETRY RELATIONS. CONDUCTIVITY OF 
A TWO-PHASE SYSTEM 

We turn to the formulation and solution of the prob
lem. The system of equations consists of Ohm' law 

j = ae (1) 

and the equations of a constant current 

rote = 0, div j = 0. (2) 

The conductivity a is assumed to be given by a random 
function of the coordinates (x, y), taking two values; 
the regions (I, II) with the values a = a 1 , 2 are statis
tically equivalent (in particular, they have equal areas). 

We are interested in the relation between the current 
averaged over the system, J = v-1 I j dV and the aver
age field E = v-1 I e dV. By virtue of the linearity of 
Eqs. (1) and (2} this relation will also be linear and, by 
virtue of the isotropy of the system as a whole, scalar. 
Thus, 

J = OeffE, (3) 

where aeff is the relevant effective conductivity of the 
medium. If the medium is uniform on average, aeff is 
an automatically averaged macroscopic quantity, the 
dispersion of which decreases with increase in volume. 
In place of j and e we shall introduce the new un
knowns: 

n is the unit vector normal to the xy-plane. 
Putting (4) into (1) and (2} we obtain a system of 

equations for the primed variables: 

j' = a'e', a'= <1r<12 I a, 

rote' = 0, div j' = 0. 

The system of equations (5) and (6) differs from 

(4)* 

(5) 

(6} 

(1) and (2) by the new conductivity (a'). The quantity 
a' takes the same values a 1 and a2, in the regions II 
and I respectively. Since, by hypothesis, regions I and 
ll are statistically equivalent, the system (5), (6) gen
erates the averaged Ohm's law 

J' = aerrE' (7) 

with the same aeff as in (3). By means of (4) we find 

*[ne] = [nX e]. 
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(8) 

Putting (8) into (7) and comparing with (3), we obtain 

aeff = (aiaz)'l•, (9) 

Thus the logarithm of the conductivity is found to be 
additive on mixing. 

It is not difficult to show that expression (9) for the 
effective conductivity is also true for periodic struc
tures, e.g., for a chessboard with all the white (and 
all the black) squares having equal conductivities. 

3. CURRENT AND FIELD DISTRIBUTION CHARAC
TERISTICS 

In the model under consideration it is also possible 
to calculate other macroscopic characteristics of the 
distribution of currents and fields over the "phases" 
and also within an individual phase. We shall calculate 
the average A =((a- ade}. Expanding the brackets 
and averaging term by term, we obtain A= J - a 1e. On 
the other hand, the expression being averaged is non
zero only in the second phase. Taking this into account, 
we find A= %(a2 - a 1)E2, where 

Ez= Vz-1 J edV 
(V,) 

is the average field in the second phase. Equating the 
two expressions for A and using (9), we find 

Ez= 2 'fa;_ E 
fa!+ f<12 

and, analogously, 
2'f(l'z 

E1= E. 
Y<11 + 'faz 

The corresponding expressions for the currents are 
also easily found. 

h 2 = 2 'f-;;,; J. 
ia1 + f<Jz 

To find the distribution over the phases of the en
ergy being dissipated, we calculate the quantity 

(10) 

Using (4), we find a = a~aH e2) /( j 2} = a~a~/ a, whence 
a = a1 a 2. The relation (10) can be rewritten in the 
form 

Hence 

(11) 

The latter equality was obtained by using the rela
tion 

({je)> = (JE), 

which is true if surface effects are neglected. Thus, 
the energy is dissipated equally in the phases, regard
less of the conductivities. 

It turns out that this equality applies not only to the 
average dissipation but also to the distribution function 
of the dissipated energies. Actually, we shall calculate 
the quantity 

an = (:j2n) 1 (e2n) = (j12n) 1 (e'2n). 

By means of (4) we shall show that om= (a 1a 2)n. Thus 

whence 

(aiaz)n((e2n)l + (e2n)z) = (j2n)l + (j2n)z 
= a12n(e2n)1 + a22n(e2n)2, 

aln(eZn)l = azn(e2n)2 Or ((je)n)l = ((je)n)z. (12) 

Using (12), it is easy to prove the equality 

(6((je)- q))1 = (ll((je)- q))z. 

Thus, the Joule heat distributions are the same in both 
phases. 

Finally, using (11) we can calculate the mean square 
fluctuations characterizing the nonuniformity of the 
currents and fields in the system. We have 

(e2) = ~ ((e2) 1 + (e2)2)= + ( V :~ + V ::} E2, 

4. SMOOTH DEPENDENCE OF THE CONDUCTIVITY 
ON THE COORDINATES 

The symmetry we have mentioned also enables us to 
obtain a solution under less rigid assumptions about 
the form of the function a(x, y). For convenience we 
shall introduce the quantity x ( x, y) = ln a - ( ln a ) and 
consider an ensemble of systems such that the multi
point conductivity distribution function is an even func
tion of the variables X· As an example of such a distri
bution, other than that considered above, we could take 
a Gaussian distribution for the quantities X· The sub
stitution 

j' = exp{(ln a)} [ne], e' = exp {-(In a)} [nj] 

transforms Ohm's law 

into 
j = exp ((In a)+ x;)e 

j' = exp ((Ina)- x;)e' 

and does not change Eqs. (2). 
Replacing x by - x and using the fact that the dis

tribution functions are even in x, we again find that 
the primed system is macroscopically equivalent to 
the initial one. Hence, repeating the arguments of Sec. 
2, we find 

a eli = exp (Ina)= ((a) I (1 I a))''•. 

For a Gaussian distribution (13) will take the form 

O'·eff =(a) exp (-!J.2 12), 

(13) 

where .6. = ( x2) 112 is the root mean square fluctuation 
of the logarithm of the conductivity. 

5. IMPEDANCE OF AN ELECTRICAL CIRCUIT 

A problem analogous to that considered in Sec. 2 
can be formulated for a plane electrical circuit. Sup
pose we have a circuit in the form of a square lattice, 
the "links" of which have resistances taking the values 
r 1 and r2 with equal probability. It is convenient to 
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apply the symmetry transformation to the junction 
potentials and to the interjunction current functions in 
the given case, thus generating a transition to another 
circuit, macroscopically equivalent to the first; this 
leads to an expression for the effective resistance of 
the circuit r eff = ( r 1r2)112. The same relation is valid 
for complex resistances in a circuit of quasistationary 
current. 

It is interesting to note that if we take the capaci
tance and inductance as the two different resistances in 
such a circuit (Z1 =1/iwC, Z2 = iwL/c2), we obtain the 
real quantity Zeff = c-1...f'L1C for the equivalent resist
ance of circuit. Thus, a circuit comprising imaginary 
resistances which do not lead to energy dissipation has 
a real equivalent resistance, i.e., absorbs energy. This 
apparent contradiction is resolved if we take into ac
count that in a random system, unlike a periodic one, 
there are localized oscillations, i.e., parts of the cir
cuit, which can be resonant at any frequency. The en
ergy of the source is expended on resonance excitation 
of localized oscillations; the presence in the system of 
even the slightest absorption will lead to true (finite) 
dissipation. 

6. THE METAL-DIELECTRIC TRANSITION 

If the concentrations of the phases are not equal, the 
method given does not give a complete solution of the 
problem. However, it is possible to obtain a relation 
connecting the conductivities of the "complementary 
systems" (with concentrations c and 1-c of the high
conductivity phase (the first phase, say)). In fact, for 
c ~ }'2, the primed system differs from the initial one 
by the interchange a 1 ~ a 2 or, which is the same 
thing, c:;:: 1-c. Then in place of (9) we obtain 

Oeff (c)oerr.(1- c)= Ot02. 

The greatest theoretical interest attaches to the in
vestigation of a system in which one of the phases does 
not conduct (a2 = 0). In this case the system experi
ences a metal-dielectric transition as the composition 
changes. In fact, for c1"" 1, CJeff"" CJ1, while for c1 
« 1, CJeff = 0. There is obviously a critical concentra
tion of the nonconducting phase, above which CJeff = 0. 

The results obtained above allow us to calculate the 
critical concentration ccr· The question of the nature 
of the singularity in Ceff( c) at c = ccr remains open 
for the present. To find the critical concentration we 
proceed as follows. We shall consider a system con
sisting of parts of three types, with conductivities a 1, 

CJ 2 and a 3 = (a 1 CJ 2 )112; a eff will be equal to (a 1 a 2 )112 if 
the regions I and IT are statistically equivalent, and 
region ill is arbitrary. We pass now to the limit a 1 
-co, CJ 2 - 0, CJ 1 CJ -co. The limiting system becomes 
a two-phase system with a conducting:..phase (regions I 
and ill) concentration c >> ?'2, and CTeff =co, Passing 
to the limit with CJ 1 -co, a2- 0 and CJ1CJ2- 0, we ob
tain that for c < }'2 , Cleff = 0. Thus for the system con
sidered (a 1 =co, CJ 2 = 0) 

{ 
oo, 

O:eff = O 
' 

(14) 

and ccr = %. We shall show that the same value of 
ccr is obtained for arbitrary <11. In fact, for CJ2 = 0 we 
have the relation CJeff = CJ1f(c), with f(ccr + 0) = 0. 
Passing here to the limit cr 1 - co and comparing with 
(14), we find that f(c) is finite for c < }'2 and f{c) = 0 
for c > %. Hence ccr = ?'2.2> 

7. CONDUCTIVITY OF A TWO-DIMENSIONAL 
POLYCRYSTAL 

In the case of a poly crystal the local Ohm's law can 
be written in the form 

(15) 

Here a is the conductivity tensor of the monocrystal, 
which is independent of the coordinates. One of its 
principal axes is assumed to be directed along the 
z-axis; this guarante~s the two-dimensionality of the 
currents and fields. P qJ is the rotation matrix for a 
rotation through an angle qJ in the xy plane 

~ ( coscp 
P~= . 

-smcp 
sin cp) 
cos q; 

The angle qJ, which defines the orientation of the given 
crystallite, is a random function of the coordinates. 
The transformation 

j = (det;')'t,J':,, 2e', e = (det;)-'I•P, ,j' 

leads to the relation 

j' = (det o) P _,, P~ 0-t ft_~ P .. 1,e'. (16) 

By making use of the commutativity of rotations in a 
plane and the easily verifiable identity 

a= (det o) p -r. ,.:i:._t J.> .. "' 

we rewrite (16) in the form 

(17) 

Comparing (15) and (17) and again repeating the argu
ments of Sec. 2, we find 

Oeff = (del a)"•. 

Thus, the conductivity of a two-dimensional polycrystal 
is equal to the geometric mean of the principal values 
of the conductivity tensor. 

2lThis result, for the discrete (lattice) model, was obtained by 
another method in [ 3] • 
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