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A high-frequency AFMR branch is found in the hexagonal antiferromagnet CsMnF3 and the size of the 
gap for this branch is determined. At high temperatures the temperature dependence of the gap is 
described by the Brillouin function. The temperature dependence of the AFMR line width is also in
vestigated. The AFMR spectrum for CsMnF3 is calculated on the basis of an expression for the 
thermodynamic potential satisfying the crystal symmetry. 

LEE, Portis, and Wittlll have studied the magnetic 
properties of CsMnF3 and have found that below TN 
= 53.6°K this substance is an antiferromagnet with 
anisotropy of the "easy plane" type. They observed 
antiferromagnetic resonance (AFMR) at v = 9.4 GHz, 
representing the low-frequency branch of the AFMR 
spectrum. Several workersc2-4 J have carefully investi
gated the hyperfine interaction in CsMnF3 and have per
formed experiments on nuclear and nuclear-antiferro
magnetic double resonance. 

We know that in antiferromagnets of the "easy plane" 
type the exchange branches (v co HE) should be accom
panied by both a low-frequency (v co H) and a high
frequency (v co ~2HAHE) branch. The high-frequency 
AFMR branch has previously been observed only in 
a-Fe203 and MnC03, which contains-state magnetic 
ions. Here the spin-orbit interaction is small and the 
anisotropy energy is determined mainly by the dipole 
interaction. Since CsMnF3 also possesses s-state mag
netic ions, we can expect that its anisotropy energy will 
also be so small that its high-frequency resonance 
branch will be found in the 100-200-GHz region. The 
present work was undertaken to detect and investigate 
the high-frequency AFMR branch in CsMnF3. 

CALCULATION OF THE AFMR SPECTRUM 

C sMnF 3 is a hexagonal crystal with symmetry that 
is described by the D~h space group. c5 J Its unit cell 
(Fig. 1) contains six Mn•• ions occupying the following 
crystallographic sites: Mni-(0, 0, 0) and (0, 0, %); 
Mnii-(7;, %, u), (7;, %, %- u), (%, %, % + u), and 
(%, %, -u). 

We first determine the possible magnetic structures 
in CsMnF3, following Dzyaloshinskil.caJ We denote the 
magnetic moments of Mn I ions by s1 and s2, respec
tively, and the magnetic moments of Mn II ions by a 1, a 2, 
a3 , and 0'4 ; we introduce the following combinations: 

It= s1 -··- s2, 

12 = ---a1 + az + a3 ---a,, 
14 = --a1 + a,- a" + a,, 

m1 = s, +sz, 
I, = --a, - az +a:~+ a,, 
m, = a, + az + c>:J + a,. (1) 

The components of the vectors la and rna are the 

bases of irreducible representations of the n:h group, 
which is here derived from the D~h group by assuming 
that all translations are identical elements. By com
paring the characters of these representations with 
those of the D6h point groupc 7J we obtained the accom-

FIG. I. Half of a CsMnF 3 unit cell. 

panying table, which gives the representations of the 
transformations for each of the lai and mai components 
(using the notation ofc7J ). 

Following the thermodynamic theory of second-order 
phase transitions, c8 ' 6l we can now write a general ex
pression for the thermodynamic potential <I> based on the 
crystal symmetry but limited to second-order terms. 
It must be remembered that second-order invariants 
can be composed only of quantities transforming accord
ing to a single representation. We have 

<D = 1/zA 11,2 + 1/zLhlz' + Cl 1lz + 1/z-'hh' + 1/211,1,' 
+ 1/zB 1'm 12 + 1/ 2B,'m 22 + Dm 1m2 + 1/ 2a 111, 2 + 1/ 2a2/z,2 

+ c/1,12, + 1/ 2a3/ 3,2 + 1/ 2a414, 2 + 1/zh 1m,,2 

+ 1/zbzmz,' + dm,m,, -- mH. (2) 

The magnetic structures that can be formed in a 
crystal as a result of a second-order phase transition 
from the paramagnetic state are determined by the ir
reducible representations of the crystallographic 
class. c8 ' 6 J We introduce the following notation for the 
different types of magnetic moment ordering in CsMnF3: 
F 1-ferromagnetic ordering of the Mn I magnetic mo
ments, F2-the same for Mn II; A1-antiferromagnetic 
ordering of the Mn I magnetic moments; Aa the same 
for Mn II with spin alternation corresponding to l a >" 0. 
The indices II and l indicate the spin directions relative 
to the z axis. Any magnetic structure can be represen
ted as a combination of the F' s and A's. The last column 
of the table gives the magnetic structures that can exist 
in crystals with D:h symmetry,. The table shows that 
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Vector Represent•· I Type of 
magnetic 

components tions structure 

TUtz; ln:?z A,s CF•+F•ln 
mtz, tnt11: m~x, ln:!IJ E,8 (1\ +Fo).L 
l1:; ltz B,s (A,+A•)u 
ltx, ltv; l:!.:c, l'i!V E,g (A,+A•).L 

weak ferromagnetism is theoretically impossible in 
CsMnF3 • Also, the Mni and Mnll magnetic moments 
can be ordered simultaneously only when the directional 
alternation of the Mnll magnetic moments corresponds 
to l2 "" 0. 

The available experimental data [11 provide a basis 
for the hypothesis that below TN= 53.6°K the magnetic 
moments of both Mn groups are ordered. Otherwise the 
disordered system would be responsible for a steep 
rise of the susceptibility with decreasing temperature; 
this effect is not observed experimentally. We can 
therefore assume that magnetic structure of the A1 + ~ 
type is realized in CsMnF3 • The identical susceptibili
ties along and perpendicular to the z axis, together with 
the observation of the low-frequency AFMR branch, 
indicate that the spins lie in the basal plane of the crys
tal. Therefore we shall assume henceforth that l 3 = l4 
= 0 and l1z = l 2z = 0. It is indicated by data in[sJ that in 
good CsMnF3 single crystals in-plane anisotropy does 
not exist, and that the vectors I1 and I2 are perpendicular 
to the applied field H. We shall assume that the magnetic 
field is applied along the x and z axes, that 11 and 12 are 
parallel to they axis, and that l 2 = 2l1 = 4M0 in accord
ance with the number of magnetic ions in the sublattices 
(the magnetization of each sublattice is denoted by Mo)-

Writing the Landau- Lifshitz equations for each sub
lattice, we arrive at the following equations of motion 
for the magnetic moments: 

1 di,. [ arD ] [ acD ] ---= lex-- + ma-y dt am,. ala. , 

1 dma [ BeD ] [ BeD ] ----= lex- + m,.-- . v dt ai,, am .. (3) 

The Landau- Lifshitz equations presuppose that the 
magnetic moments of the sublattices have constant 
moduli: 

la2 + ma2 = const, (4) 

so that the thermodynamic potential (2) can be written as 
(!J = 1/2B1m12 + 1/282m22 + Cl1h + Dm1m2 + 1/ 2a111l 

+ 1/2a.2/2,2 + cl,,l2, + 1/2b1m1z2 + 1/2b2m2,2 + dm,,m2,- m 1H- m2H. (5) 

Assuming dla/dt = dma/dt = 0 and (mala)= 0, from 
(3) and (5) we obtain equations for the dependences of 
m1 and m2 on the field applied in a plane perpendicular 
to z: 

82- 1/.C-D B 1 -2C-D m,= L\ 12 H, m2= 812 II; (6) 

L\,2 = 8,B2 + C2 - D2- ('/281 + 2B.)C. 

The total magnetization is therefore 

(7) 

When the field is along the z axis we have 
(B.- 1/2C-D)+ b2- d rn,=- II, 

L\l 
(81 -2C-D)+ b1-d 

ID2= H· 
Ill (8)' 

I Vector Representa· 
Type of 
magnetic 

components tions structure 

1., BJu A,u 
lax, lav E'i.u A..L 
t,. A1u A,u 
lax, 1411 E1u A • .L 

where 

8 22 = (8182 + C'- D2- (1/281 + 2B2)C] + b, (82- 1/2C + 1/2b2) 
+ b2(8,- 2C + 1/2bi) - 2Dd- d2. 

It is now convenient to introduce the effective field 

Then 
3Mo 

rn.L= liE H, 
3Mo mu=-H(i+e), 
H.: 

(10) 

(11) 

where E is of the order of the ratio between relativistic 
terms and exchange terms, i.e., E << 1. From (3) we 
obtain, to terms of the order HA/HE, the following ex
pressions for the AMFR frequencies when H II z: 

v1 /y = 0, (12) 

where HA = %(a1 + 4a2 + 4c)M0• When H .L z the first 
branch changes greatly and we obtain 

(16) 

The magnetic field dependence disappears in the remain
ing branches. 

In[41 the AFMR spectrum was calculated using the 
molecular field model and taking only nearest- neighbor 
interactions into account. This procedure leads to the 
following relations between the coefficients of the 
thermodynamic potential: 

(17) 

where in the expression for the energy ~ 1 is the coeffi
cient of the saa {3 terms and ~2 is the coefficient of the 
a t:f1 {3 terms. Then (13)- (15) are transformed as follows: 

( 
V2 ) 2 AIA2 - = 6--Mo//A + J/2, 
y A.,+A.2 

(v3/ y)2 = 1/41., (I., + 21.2) Mo2 + h(ll'), 

(vd y)' '7~ 1/41., p., + 2/.2)J1/o2 + /2(/12). 

(13a) 

(14a) 

(15a) 

In his final equations Welsh [41 assumed ~ 1 = ~ 2 ; then 
our expressions for the gaps in the spectrum coincide 
with his results. However a different field dependence is 
obtained for the second branch (Welsh gives %H2). 

We must also discuss the anisotropy energy further. 
The expression (2) for the thermodynamic potential con
tains all the anisotropy energy terms that are permitted 
by the CsMnFs crystal symmetry. Equations (13) and 
(9) show that the magnitude of the gap for the second 
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branch of the spectrum depends on a combination of the 
constants a1, az, and c, while the anisotropy of the mag
netic susceptibility is determined by a combination of 
the constants b1, bz, and d. Terms such as S1zS2z, 
a az a {3z, and s az a {3z have been omitted from the ex
pression for the energy in[l'4 l. Therefore the results 
given there involve only a single anisotropy field in both 
the susceptibility anisotropy and the expression for the 
gap. 

Since we are primarily interested in the high
frequency AFMR branch we have not considered the 
influence of the nuclear system on AFMR; this aspect 
has been studied in detail by Welsh. [4 J 

EXPERIMENTAL PROCEDURE AND SAMPLES 

AFMR in CsMnF3 was investigated with the magnetic 
spectrometer described in[sJ. The resonance absorption 
line was recorded through two- coordinate automatic 
registration of the variation of the microwave signal 
reflected from the crystal as a function of the magnetic 
field H. 

The measurements were obtained for the 2°-65°K 
range. Above 4.2°K we used a vacuu~ cryostatuoJ with 
a carbon adsorption pump. Temperatures were meas
ured with a carbon thermometer calibrated at 2.1, 4.2, 
14.0, 20.39, 27.25, 62.8, and 77.5°K. The measurement 
accuracy and the stability of the temperatures were 
maintained within 0.3°K. 

The CsMnF3 single crystals were grown in a helium 
atmosphere by S. v. Petrov, using the Stockbarger 
method and the apparatus described in[ 11J. After the 
CsMnF3 single crystals were x-ray oriented they were 
cut in the form of parallelepipeds. Our basic measure
ments were performed on a 1.6 x 0.8 x 0.2-mm sample 
having large faces that coincided with the basal plane to 
within 5°. The samples were mounted with BF-6 cement 
on the copper end cap of the waveguide. 

EXPERIMENTAL RESULTS 

1. The High-frequency Resonance Branch at T = 4.2°K 

With the basal plane of the sample perpendicular to 
the magnetic field, we observed an absorption line 
corresponding to the high-frequency branch of the 
AFMR spectrum. At T = 4.2°K we carefully investiga
ted the dependence of the high-frequency branch on the 
magnetic field. Figure 2 shows that our results agree 
well with (13) when we insert the values 

HAE=41.1 ± O.G kOe, Yo= 2.8 kOe/GHz (g= 2.0). 

Our value of y agrees withu, 4 J and is the result usually 
obtained for compounds with Mn++ ions. No other spec
tral branches were observed up to ~ 190 GHz. 

2. Temperature Dependence of the Gap in the High
Frequency AFMR branch 

The temperature dependence of the resonance field 
was studied at several fixed frequencies. With increas
ing temperature the absorption line shifted towards 
higher magnetic fields. The paramagnetic transition 
temperature TN was defined as the point at which the 
resonance field ceased to vary with heating of the sam-

ple. Our measurements yielded TN= 53.6 ± 0.3°K, in 
agreement with UJ . 

It should be noted that in our experiments the transi
tion point was determined at ~ 40 kOe and can therefore, 
as shown in[Izl, differ from TN in zero field by the 
amount 

liTN=TN~XJ.. (_.!!_) 2
• 

XJ.. lh 

A calculation shows that in the case of CsMnF3 this 
shift of TN does not exceed 0.2°K and is thus smaller 
than our experimental error. 

Assuming that the field dependence of the resonance 
frequency (13) holds true for all temperatures, we cal
culated HA_E(T) from the experimental data. The value 
of HAE extrapolated to 0°K was 41.1 ± 0.6 kOe, which 
corresponds to the frequency vo = 115 ± 2 GHz. Figure 
3 shows the temperature dependence of the squared 
relative value of the gap. The experimental spread of 
HAE was determined by the resonance line width 
(~ 0.1 .6.H) and by the inaccuracies of the temperature 
measurements. 

3. Temperature Dependence of the Line Width 

Since the field dependence of the AFMR frequency is 
nonlinear, the experimental values of the half-width .6.H 
were converted to equivalent line widths by means of 
the expression 

y2Jl 
liv=--Ml. 

v 

Figure 4 shows the temperature dependence of A.v. We 
observe that A.v increases rapidly as the transition tem
perature is approached, but then dips sharply at a tem
perature 2° below TN, after which it remains constant. 
The result .6.v2 ~ 0.8 GHz obtained for the high-frequency 
branch at helium temperatures is close to the value of 
.6.v1 (~ 0.3 GHz) that was obtained for the low-frequency 
branch in the same crystal measured at 94 GHz. 

0.8 

0,5 

.liP/J 

0.2 

100~ 

QL---~~~p---~ 0~--~0,2~---0~.4----~0,~5----~0,8~--~1.0~ 
H2 .kOe2 r/rN 

FIG. 2 FIG. 3 

FIG. 2. Dependence of the resonance frequency of the high-fre
quency branch on the applied magnetic field. 

FIG. 3. Temperature dependence of the square of the relative gap 
magnitude and a comparison with the square of the reduced Brillouin 
function B; 12 (T/TN) (continuous line). 
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FIG. 4. Temperature depen
ence of the line width for the 
high-frequency branch. 

DISCUSSION OF RESULTS 

utilizing the statistical measurements in lll together 
with our value for HAE at T- 0°K, we calculated the 
anisotropy field with the aid of (13) and (11}: 

RA = HA1!..'12HE= 2.48±0.07 kOe. 

A value of the anisotropy field was derived inl 1J; where 
HA was determined experimentally from the magnetic 
susceptibility anisotropy measured parallel and perpen
dicular to the z axis. However, as already mentioned, 
this anisotropy field does not appear in the equation for 
the gap in AFMR. There is therefore no basis for com
parinft these values. The single-ion anisotropy field 
H)tYS and the contributio~ to the anisotropy field from 
the dipolar interaction (~P) were also calculated inl1J: 

Jf{f.ryst.) = 1.17 kOe, Jl)_dip.)= 6,80 kOe. 

We here obtain a value of HA that considerably exceeds 
our experimental value, possibly because of the extreme 
simplifications used in lll . 

In Fig. 3 the experimental dependence of HAE is 
compared with the square of the Brillouin function for 
s = 5/2 (the continuous curve). At high temperatures 
the experimental points are well fitted by the curve. We 
therefore conclude that at high temperatures the aniso
tropy energy K1 = xJHk is proportional to the square 
of the magnetization of the sublattices. This result indi
cates that the anisotropy energy receives its main con
tribution from the dipolar energy. At low temperatures 
our experiments are insufficiently accurate for any 
comparison with current spin-wave theories. 

A very interesting result, for which we can propose 
no reasonable explanation, consists in the fact that the 
peak of the line-width temperature dependence is not 
located at the transition temperature. 
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suggestions and discussions, S. v. Petrov for growing 
the CsMnF3 crystals, G. E. Karstens and A. G. 
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crystals, and K. I. Rassokhin for experimental assis
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