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A general expression is obtained which describes relaxation of the density matrix of excited atoms 
during collision with noble gas atoms. It is assumed that reorientation of the nuclear moment does 
not occur during the collision. The relative values of the decay constants for the orientation, align­
ment, and octupole moment of the electron shell for a state with angular momentum -i- (Y1 : y 2 : y 3 

= 0.92:1.14: 1.01) are determined by numerical solution of the collision problem and under the as­
sumption of Vander Waals interaction between the atoms. The Van der Waals constants are estimated 
in order to determine the absolute values of the decay constants. The relaxation matrix in the system 
of hfs sublevels is expressed in terms of y 1 , y 2 , and y 3 • 

INTRODUCTION 

TRANSITIONS between sublevels of the excited (P) 
state of alkali metals in collisions with noble-gas 
atoms have been under intense investigations in recent 
years. Information concerning these collisions are ob­
tained by experiments on the Hanle effect, on the inter­
section of levels, etc. (see [1- 21 ). In addition, collision 
mixing in the excited state leads to a characteristic de­
pendence of the optical-pumping signal on the pressure 
of the buffer gas, and particularly to a reversal of the 
sign of the signal with increasing pressure. [4- 71 

The determination of the cross sections from the 
experimental data requires, however, a detailed theory 
of collision relaxation in the excited state. The point 
is that the excited state of an alkali atom has a large 
number of degenerate or almost degenerate (hfs) sub­
levels. The reduction of the experimental data calls 
for the knowledge of the relations between the cross 
sections for transitions between all these sublevels. 
In addition, in experiments of the type of the Hanle 
effect an important role is played by the relaxation 
of different non-diagonal elements of the density ma­
trix (coherence relaxation). 

In a number of papers devoted to the determination 
of the collision cross sections from the experimental 
data, they used various types of arbitrary assumptions 
regarding the relative values of the cross sections. It 
was proposed that all the cross sections are the same 
or that different selection rules hold for the corre­
sponding transitions. [s, a-IoJ 

We develop in this paper a theory of collision relax­
ation of both the diagonal elements of the density ma­
trix (populations) and of the non-diagonal elements 
(coherence). 

The main assumption is that collision gives rise to 
a change of only the state of the electron shell, and the 
state of the nucleus does not have time to change. Such 
an approximation is justified, since the characteristic 
duration of the collision is shorter than the reciprocal 
hyperfine splitting of the levels of the atoms. 

Collisional relaxation in the electron shell is fully 
described only by a small number of constants-the 
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relaxation times of the momenta of the density ma­
trix. [ll-17l For a state with an electron shell with 
momentum equal to -i-, there are three such constants. 

To calculate these three constants we use a proce­
dure developed in [131 , which includes a numerical so­
lution of the equations for the probability amplitudes. 
A Vander Waals interaction was assumed between the 
alkali and the noble atoms. 

Allowance for the hyperfine structure does not re­
quire the introduction of additional constants, and can 
be easily effected by changing over to the F, m F rep­
resentation in the equations for the density matrix, [l4, 181 

using the rule of vector addition of the angular momenta. 
As the result, we obtain an explicity form of the re­

laxation matrix describing the mixing inside the state 
2 
p3/2' 

For the first excited state of cesium or rubidium, 
it is possible to neglect transitions from the state 2P 3 ; 2 

to the state 2P 112 , since the duration of the collision is 
larger than the reciprocal of the fine splitting of the 
term. 

The results of the calculation are compared with ex­
perimental data. 

1. RELAXATION IN ELECTRON SHELL 

Let us consider the excited state of an alkali atom, 
characterized by an electron angular momentum J. 
Following the method of [131 , the rate of change of the 
electronic part of the density matrix of this state, due 
to the collisions with the atoms of the noble gas, can 
be written in the form 

( ~/mm' ~ =- nJ !'J.fmm•P dpu3 du<D(u)dQ, 
at '}collision· 

dQ =sin 8d8dQldljJ. 
(1) 

Here n is the concentration of the noble-gas atoms, 11 
and cp are the polar angles of the relative-velocity vec­
tor v, p is the impact parameter, 1j! is the azimuthal 
angle of the vector p in a plane perpendicular to v, 
if>(v) is the distribution of the relative velocities, nor­
malized to unity (Maxwellian distribution with reduced 
mass). The symbols m and m' characterize the projec­
tions of the angular momentum of the electron shell on 
a certain selected quantization axis. 
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In formula (1), Mmm' is the change of the density 
matrix of the alkali atom after one collision 

(2) 

where fmm' is the density matrix prior to the collision 
and f~m' is the density matrix after the collision. Ob­
viously, the matrix f~m' is expressed linearly in terms 
of fmm'· It is convenient in practive to consider colli­
sions in a coordinate system that is rigidly connected 
with the vectors p and v. 

The change over to the laboratory frame is effected 
in standard fashion with the aid of finite-rotation ma­
trices. Calculations similar to those performed in [laJ 

allow us to transform (1) into 

(3) 

Here f~ are the coefficients of expansion of the den­
sity matrix in the irreducible tensor operators. The 
quantity f~ is proportional to the quantum-mechanical 
average component q of the moment of order K of the 
electron shell of the atom. For example, the quantity 
f~ is proportional to the population of the state under 
consideration, fq (q = 0, ± 1) are proportional to the 
mean values of the circular projections of the dipole 
(magnetic) moment, etc. Equations (3) thus describe 
the change of the mean values of the moments of dif­
ferent orders under the influence of the collisions. The 
quantities YK are the reciprocal relaxation times of 
these moments. 

Thus, y 0 is the constant of the decay of the total pop­
ulation of the excited state (in our case, obviously, Yo 
= 0); y 1 is the decay constant for the orientation of the 
excited state (for the dipole magnetic moment), y 2 is 
the decay constant for the alignment (for the quadrupole 
electric moment), y 3 is the decay constant for the octu­
pole magnetic moment of the atom, etc. It is important 
that all the moments decay independently of each other 
and all the components of a moment of given order K 

have identical decay constants. This is a consequence 
of the isotropy of the collisional relaxation. 

The explicit form of YK is given by the formula 
J J . 

'\'x=(2l+1)(-1)"+21 .E (-i)iL J ~ }g;, (4) 
j 

g; = 8rt2n J <D(u) u' du pdp{ li;, o- .1: I M;n 12}, (5) 

2' + 1 '(, J J . 
.lf.i,=(-,1 -) ~ (-1)''( 1)P,,. (6) 

2J + 1 ~ r -s n 
r, s 

The coefficient Prs is the amplitude of the probability 
that the atom after the collision has an angular momen­
tum projection r, under the condition that prior to the 
condition its angular momentum projection was s (in 
the coordinate system rigidly connected with the vec­
tors p and v). In order to find these coefficients, it is 
necessary to choose the concrete form of the interac­
tion of the colliding atoms and to solve the time-depen­
dent Schrodinger equation 

(7) 
11!: 

under the initial conditions 
(8) 

Formula (6) contains the values of Pmm'(t) at t = + 00 • 

2. SOLUTION OF THE COLLISION PROBLEM 

For the interaction of the alkali atom in the excited 
state with the noble-gas atom, the first nonzero term 
in the expansion of V in the reciprocal powers of the 
distance between the atoms gives the Van der Waals in­
teraction (dipole-dipole interaction in second order of 
perturbation theory): 

Vmm,=- ~ (m,O,IUia,n)(n,,aiUIO,m,). (9 ) 
~ En +Fa -E, -Eo 
na 

The symbol n pertains here to the states of the alkali 
atoms, and a to the states of the noble-gas atom, while 
the symbol zero corresponds to the ground state of the 
noble-gas atom. E is the energy of the corresponding 
states, with Em in fact independent of the symbol m. 

The dipole-dipole interaction U is given by 

<ip ,, (dR) (pR) 
U = Ji3- "-·· R'' , (10) 

where R is the distance between the atoms and d and p 
are the dipole-moment operators of the alkali and noble 
atoms, respectively. 

If we direct the quantization axis along the line 
joining the atoms, then the matrix Vmm 1 is diagonal­
ized and its diagonal elements have the meaning of the 
contribution of the interaction between the atoms to the 
quasimolecule energy. The electrostatic interaction 
does not lift the degeneracy completely. The levels 
with angular momentum projections ±-! become de­
generate, as well as levels with projections ± i. 

The corresponding values of the interaction energy 
are denoted by (- c3 ; 2/R6 ) and (- c 1; 2/R6). 

With the aid of formulas (9) and (10) we obtain the 
following expression for the Van der Waals constants 
c 3; 2 and C 1;2: 

c,., = ~ I (m, 0 I ( <!!'..=- 3do;o) I a, n) 1_:; (ll) 
~ F-n+Ea-hm-Eo 

d0 and p 0 are the projections of the operators of the di­
pole moments on the quantization axis. 

We direct the quantization axis along the line joining 
the atoms. This line rotates during the collision pro­
cess. Since equations (7) have been written out for a 
coordinate system that is rigidly connected with the 
vectors p and v, it is necessary to change over to this 
immobile coordinate system. 

The matrix elements Vmm 1 in any coordinate sys­
tem can be expressed in terms of the constants c 3; 2 

and c1; 2 , since Vmm1 is transformed under rotations 
in accordance with the direct product of the represen­
tations D<Jl* x D<Jl (we recall that in this case J = -!) 

(12) 

The finite-rotation matrices D, the explicit form of 

p 
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which is given in [191 , depend on the rotation angles. 
We let the origin coincide with the alkali-metal 

atom. The x axis is directed along the velocity of the 
incoming noble-gas atom (the trajectory of the noble­
gas atom is assumed to be a straight line 1>). The y 
axis is directed along the vector p. In the chosen co­
ordinate system (see the figure), the matrix elements 
Vmm 1 , in accordance with formula (12), take the form 

1 1 
V•,,,•,,=-4Jl6(c•,,+3cy,), V•0,y,=- 4R" (3c•t.+cy,), 

V•t -" = y3 e2i6(c't - cu) 
2t lZ 4Jl6 2 12 • 

(13) 

The remaining matrix elements satisfy the relations 

Vmm, = + v:.m,-m,= V~,m, Vm,m±t=O. (14) 

The matrix elements determined by formulas (13) 
and (14) must be substituted in (7). We make in these 
equations the substitution 

Pmm•(t)= Umm'(t)exp [.!__ s' C't. + cy, at]. 
li --oo 2R6 

(15) 

In addition, we introduce as a variable the angle 8 (see 
the figure): 

t=J:.tgB, R=-P-. 
v cose 

Then Eq. (7) take the form 

i d: U't. = -z cos4 8 ( ;ifU'f, + e2i6u;_,1,), 

i!:_u 'I = -z cos• 8 (-~u y, +e-2i6u•t) · ae-· )'3-' '' 

i :a U-'f, = -z cos4 8 ( ~ U-'h + e-2i6U•f,) , 

i d: u•;, = -z cos4 e (-A u'h +,e2i6u_•t.) ; 

(16) 

(17) 

(18) 

(19) 

In Eqs. (17) and (18), the second symbols of the func­
tions u have been omitted, since they indicate only the 
initial conditions under which it is necessary to solve 
the system of equations 

Umm' ( -n /2) = 6mm'· (20) 

We see that the system (7), in terms of the chosen 
coordinates, breaks up into two independent systems, 

1>Neglect of the change of the atom velocity in a depolarizing colli­
sion can be justified by the following argument. The distance R between 
the atoms, at which a transition takes place between the sublevels of the 
excited state, is given in order of magnitude by the equation h/V(R) = 
R/v. On the left we have the time of the transition and on the right we 
have the duration of the collision, V(R) is the interaction, and vis the 
relative velocity of the colliding atoms. The change of the atom velocity 
after covering such a distance is of the order of Llv"' (R/Mv)VV. Thus, 

L\v li VV(R) 
-v-= Mv V(R)-

For a Vander Waals interaction at a temperature 300°K and R- 10"7 

em we have Llv/v- 10"1 - I 0"2 , so that neglect of this quantity is justi­
fied. 

so that no transitions with .a.m = ± 1 take place. This 
does not mean at all, however, that some selection 
rules exist in the laboratory coordinate system. 

In the calculation of YK in accordance with formulas 
{4)-{6), it is possible to substitute Urs(+1T/2) for Prs. 
since the phase separated in the transformation {15) 
does not influence the result. 

As seen from (17) and {18), the values of Urs• and 
consequently also of Mjn. depend on v and p only via 
a single parameter z (the Massey parameter). Replac­
ing the integration variable pin (5) by z, and integrat­
ing over the velocities, we obtain for the coefficients 
gj the expression 

g; = n:; I z-'1• ( 6;0 - ~ JM;nl 2 ) dz, (21) 
0 " 

where v = {8kT/1TJ..L)112 is the average relative velocity of 
the alkali atom and of the noble-gas atom, J..L is the re­
duced mass of these atoms, J = 1 is the electron angu­
lar momentum, and 

s=3(24n4)''•f('/5) (C'f,-C'")'/.. 
5 vn (22) 

Equations (17) and (18) subject to the initial condi­
tions (20) were solved with a computer, and the integrals 
contained in (21) were evaluated. Table I lists the ob­
tained values of the coefficients gj and YK· We note that 
the sum of all the gj is equal to zero; this follows also 
from (21), if it is recognized that 

~ IM;nl 2 = 1. 
.in 

Table I gives only the relative values of the decay con­
stants. We note that the calculation of these relative 
quantities does not involve any assumptions concerning 
the magnitude of the Vander Waals constants. How­
ever, to find the absolute values of the decay constants 
it is necessary to calculate the quantity s, and conse­
quently to determine the Van der Waals constant. 

3. CALCULATION OF s 

We now proceed to calculate the Vander Waals con­
stants entering in formula (22). Starting from (11) and 
taking into account the fact that the energies in the de­
nominator do not depend on the magnetic quantum num­
bers, we obtain the expression 

c•;, -c;,= 3 ~ {l<'l•ldoln>!'-1 (3/2l~oln)~2} I(OIPola)l 2_ ( 23 ) 
£...J En +Erl-1!. 111 -Eo 

(t/1 

The energy differences (En- Em) pertaining to the al­
kali atom are small compared with the resonant excita­
tion energy of the noble gas. This makes it possible to 
carry out an expansion in powers of the ratio 
(En- Em)/(Ea- E0 ). The coefficient of the first power 
of this small ratio turns out to be equal to zero, by vir­
tue of the theorem concerning the sum of the oscillator 

Table I 

Y. 

I 
gx'nrs 

I 
yY. l·t•s 

0 0.91 0 
1 -0.~1 0. 92 
2 -0.41l 1 . 1'~ 
:J -0.:>2 l. ()[ 
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strengths. The next term of the expansion (quadratic) 
can be estimated with the aid of the virial theorem for 
the alkali metal and the functions calculated in [20J for 
the noble gases. An estimate has shown that the con­
tribution of this term does not exceed several per cent. 
Thus, in formula (23) we can retain only the zeroth 
term of the expansion and write it in the form 

(24) 

or 

(25) 

Here a is the polarizability of the noble gas, (r 2 ) 

is the mean square of the distance of the valence elec­
tron from the nucleus for the alkali atom in the excited 
state under consideration, and e is the electron charge. 

The quantity (r2 ) was calculated by means of the 
formula for the p-state of the hydrogen atom, in which 
the principal quantum number was taken with allowance 
for the quantum defect. Thus, the following values were 
obtained: (r 2 ) = 38, 49, 55, and 63 for the first-excited 
states of Na, K, Rb, and Cs, respectively. The values 
of (r2 ) are given in units of a~ (a0-Bohr radius). For 
comparison we indicate that the calculations of Bauer 
and Callaway, [21J using wave functions calculated by 
the self-consistent-field method, led to values 40.1 
and 52.0 for Na and K, respectively. 

Table II lists the values of s calculated using for­
mulas (22) and (25). With the aid of s and Table I it is 
possible to obtain the absolute values of the decay con­
stants of the orientation, alignment, and octupole mo­
ment of the electron shell of the alkali atom in the ex­
cited state due to collisions with noble-gas atoms. 

The results make it possible to obtain the total re­
laxation matrix for the state 2P 3; 2 of the alkali atoms 
with allowance for the hyperfine structure. 

4. RELAXATION OF THE DENSITY MATRIX WITH 
ALLOWANCE FOR THE HYPERFINE STRUCTURE 

In the presence of nuclear spin, the density matrix 
of the atom depends not only on the quantum numbers 
characterizing the electron shell, but also on the nu­
clear spin projections. It is convenient to introduce the 
quantity fK~, which has the meaning of the average prod­
uct of the qmomentum of the electron shell of order K on 
the momentum of the nucleus of order K. [18J The con­
nection between this quantity and the density matrix in 
them, M representation XmM m'M' (m is the projec­
tion of the momentum of the electron shell, M is the 
projection of the momentum of the nucleus) is given by 

2J 21 X K 

;{m.1I,•n'W= ,E L L L (T_,/),,,,(f_QK)uw(-l)"+Qj'IQxK, (26) 
x=O K =0 q=-x Q=-K 

where I is the spin of the nucleus, J is the angular mo-

Table II. Values of s 
x 1016 (em 2) at 

T = 300°K 

He ~c Ar 
I 

Kr Xe 

nb 57 9'\ 19:1 
I 

2SO :~ 1!) 

C:s 60 106 209 27:1 :J'JK 

mentum of the electron shell, T ~ is the irreducible 
tensor operator customarily employed in the analysis 
of isotropic relaxation of the density matrix (see, e.g. 
[ 13• 14J). The inverse relation can be obtained with the 
aid of the orthogonality properties of the tensor oper­
ators. 

Since the duration of the collision is much shorter 
than the reciprocal hyperfine splitting, the state of the 
nucleus does not have time to change during the colli­
sion. Therefore the equation characterizing the relax­
ation off~~ will have the same form as Eq. (3), namely 

(27) 

The decay constant YK characterizes the decay of the 
momentum K of the electron shell and does not depend 
on K. Using (26) and the inverse transformation, and 
changing over to the F, mF representation with the aid 
of the vector-addition formulas, we obtain the following 
relation describing the relaxation of the density matrix 
PFmF,F'mF in the collisions 

(28) 

where the relaxation matrix r is given by 

r;::;;:,~:::;:"' = L [(2F + 1) (2F' + 1) (2F,' +,1) (2F, + l)]'h(-1)''''-n, 
jn 

( F F 1 j ) ( F' F 1' j ) { J j ! } { I j l } (2 9) 
X ' ' f' I F 1"1' I F' (Z! + t)gj, -mm1 n -m m1 n '1 

In formulas (28) and (29), F and m characterize re­
spectively the total angular momentum of the atom and 
its projection. The quantities gj are connected with YK 
by the relation (4). Formula (29) is general and de­
scribes the relaxation inside the state with an electron­
shell momentum J via the constants gj . The nuclear 
spin enters only in the 6j-symbols. Since the sum gj is 
zero, the relaxation is described completely by 2J in­
dependent constants. As applied to the first-excited 
states of Rb and Cs, these constants were calculated 
in the preceding sectionso 

From the properties of the 3j symbols that enter in 
formula (29) it follows that the collisions connect only 
those elements of the density matrices PFm F'm' and 
PF m F'm' for which m- m' = m 1 - m~. In' addition, 

1 1, 1 1' 
it follows from the properties of the 6j-symbols that 
j::::: 3, and therefore only the relaxation-matrix elements 
for which I m 1 - m I ::::: 3 differ from zero. This "selec­
tion rule" is a direct consequence of the assumption that 
the projection of the angular momentum of the nucleus 
on the quantization axis does not change upon collision. 
As to the other selection rules discussed in the litera­
ture (e.g., .D.m = 0 ± 2, and m 1 * - m), they do not exist. 
This is seen, for example, from Table III, which gives 
the probabilities of the transitions between the Zeeman 
sublevels in the simplest case I = 0. The negative num­
bers in Table III characterize the total probability of 
departure from a given level because of collisions. 

It is possible to introduce the cross section aFm• 
characterizing the departure from a given level, F, m 
in the collisions: 

1 ,Fm,Fm 
GFm =--= l Fm, Fm • 

nc 
(30) 
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Table In. Relative probabilities of the transitions 

(- r!Jm1J,Jm1jnvs between the Zeeman sublevels m, m 
for I = 0 and J = t 

I 3'2 I 112 mi -1/2 I -3/211 m I- 3;2 I 1/2 mi -1/2 I -3/2 

•;, 1-0.751 +O.~O I +0.2?1 +0.1811 -:/· I +0.271 +0.22,-0. 791 +O·~~ 
'/2 +0.30 -0.19 +0.22 +0.27 -h +0.18 +0.27 +0.30,-0.Ia 

This cross section can be expressed in terms of the 
quantities s listed in Table II: 

(31) 

By way of an example, we give the values of the co­
efficients kFm for 87Rb (I= ! : 

k3.3 = O.i4; k3.2 = 05l0; k,, = 0,91; k3.0 = 0.91; k 2.2 = 0.90; 
l.-2.1 = O.!l2; k2.o = 0.97; ku = 0,94; kt.o = O.!l1; ko.o = 0.07. 

For 85Rb, these quantities lie in the range 0. 74 :s kFm 
:s 0.97. We note that all the kFm are of the order of 
unity. Therefore the values of s given in Table II char­
acterize correctly the order of magnitude of the collision 
cross sections. 

5. APPLICATIONS OF THE RESULTS 

Let us see how the developed theory can be used to 
calculate quantities measured in concrete experiments. 

1. Level intersection. In the case of an isolated in­
tersection of the two levels of the excited state, impor­
tance attaches only to the density-matrix non-diagonal 
element that relates the intersecting levels. The colli­
sion broadening of the intersection signal is determined 
by the decay constant of this matrix element. We can 
obtain for this constant the following expression: 

where 

E F .-· ( F Ft j ) { I j I } 
l)j,J= Re(c1,;c1,)[(2F+1)(2F+1)]'i• -m 

n, m 0 F, I F 
(33) 

In formulas (32) and (33), the indices f and f' denote 
the total angular momenta, which characterize the in­
tersecting levels in the absence of a magnetic field, and 
m and m' are the projections of these momenta. 

The quantities cfm are the expansion coefficients of 
the eigenfunctions ~Im(H) of the Hamiltonian in the mag­
netic field H in terms of the functions lJIFm in a zero 
field: 

'ft,.,(fl)= I:c!mF(H)I):Fm· 
F 

(34) 

In practice it is possible to insert in (33) the values 

of the coefficients cfm for the field H corresponding to 
the intersection. The formulas (32) and (33) were de­
rived using (29) and (34), by converting the density 
matrix into a representation that diagonalizes the 
Hamiltonian in the magnetic field. Thus, to take into 
account the influence of the collisions on the width of 
the intersection signal, it is necessary to add to the 
natural width of the level the quantity Yfm f'm' deter-
mined by formula (32). ' 

2. The Hanle effect (intersection of levels in a zero 
field). In this case an important role is played by the 
elements of the density matrix PF m·F m+K which are 
diagonal in F but are not diagonal 'in 'm' (K = 1 for ori­
entation). Elements with different values of K do not 
get entangled by the relaxation matrix (29). This ma­
trix, however, connects elements with different F and 
m. Thus, to calculate the signal with allowance for col­
lisions it is necessary to solve the system of equations 
for PF,m;F,m+K at fixed K. The number of levels can 
be decreased with the aid of a procedure used by 
Omont. [141 It is important that the influence of the 
collisions on the Hanle effect in the presence of the 
hyperfine structure cannot be characterized by a 
single cross section. 

3. Optical orientation. In the case of pumping by 
circularly-polarized light, the principal role is played 
by diagonal elements of the density matrix PFm Fm 
(populations). ' 

To take into account the mixing in the excited state, 
it is necessary to add to the usual balance equations 
the relaxation term (28), in which only the diagonal 
elements of the density matrix are retained. 

Unfortunately, the presently available experimental 
data are insufficient for a detailed comparison with the 
proposed theory. The most direct information on the 
values of gj, which enter in the theory could be obtained, 
in our opinion, from experiments on the level intersec­
tion. However, in the papers known to us, no data are 
given on the dependence of the widths of the individual 
intersection signals on the noble-gas pressure. Galla­
gher[21 and Chalka and co-workers[11 give cross sec­
tion values determined from the broadening of the 
Hanle-effect line, for collisions of Rb and Cs in the 
2P312 state with certain noble gases. These cross sec­
tions do not differ strongly from the values of s given 
in Table II. A direct comparison, however, is impos­
sible, because, as already noted above, the influence 
of the collisions on the Hanle effect cannot be charac­
terized in general by a single cross section. 

In [6• 71 are given the values of the pressures P0 if 
the inert gas, at which the Cs and Rb optical-orienta­
tion signals go through zero in the case of pumping by 
the D2 line. The balance equation in optical pumping 
does not depend on the buffer gas. Its concentration 
and specific features enter only in the parameter nvs. 
Therefore P 0vsjkT should have the same value for all 
the noble gases for a given alkali atom. Table IV gives 
the values of this quantity, calculated using the experi­
mental values of P 0 and the values of s from Table II. 
The indicated property is satisfied within the limits of 
experimental error for all noble gases except helium. 
The measurement errors are much smaller for the 
ratios of P 0 of the two Rb isotopes. It follows from 
Table IV that these ratios are independent of the type 
of the inert gas, with a high degree of accuracy. An 

Table IV. Values of 
(P0vsjkT) x 10-8 (sec-1) 

• 1Hb 
•'Hb 
133Cs 

Inc I Xc I Ar I Kr I Xe 

I 0.:16 I 0.6l I O.H I 0.5~ I 0.69 
0.21 0.5[ 0.02 1!.'+8 0.57 
o .. :6 o.Bs o.6s o.:;;, o.5s 
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exception is again helium. Probably, for helium the 
Vander Waals interaction is not predominant, owing 
to the small polarizability. We indicated in this con­
nection the work by Faroux and Brossel, [22J who inves­
tigated the depolarization of mercury in the 63P1 state 
in collisions with noble gases as a function of the tem­
perature. They observed that for Ar, Kr, and Xe the 
interaction is of the Vander Waals type, whereas for 
He and Ne a shorter-range interaction predominates. 

We emphasize in conclusion once more that in our 
theory no account is taken of transitions between fine­
structure levels. This is justified if the fine splitting 
exceeds the reciprocal collision time. For lithium, 
and also for higher excited states of other alkali atoms, 
the relation is reversed. In these case it can be as­
sumed that the projection of the electron spin (as well 
as the projection of the nuclear spin) remains un­
changed in the collisions. The matter reduces only 
to reorientation of the orbital angular momentum. 
Formulas (4)-(6) remain in force also when J is re­
placed by L. We note that the values of y K for L = 1 
in the case of a Van der Waals interaction were calcu­
lated by Rebane. [lSJ The changeover to the relaxation 
matrix in F, m F representation can be carried out in 
accordance with the rule for the vector addition of the 
angular momenta. 

We are grateful to M. I. Kliot-Dashinskil:' for a dis­
cussion of the calculation methods and to N. B. Brov­
tsyna for help with the calculations. 
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