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The interaction and instability of two spatially separated homogeneous semi-infinite plasma beams 
are investigated in the kinetic and quasihydrodynamic approximations. The interface between the 
beams is assumed to be sharp and their temperatures identical. The boundaries of beam instability 
and the wave increments and also the nature of behavior of the excited wave field are determined. 
The dependence of the minimal drift velocity, at which oscillations arise, on the collision frequency 
in the plasma is investigated. It is shown that the wave increments may be quite large and compara­
ble with the corresponding quantities for mutually penetrating beams. 

IT is known that two-stream instability can develop in 
a plasma containing streams of charged particles. In 
the case of mutually penetrating unbounded beams, this 
instability has been investigated in sufficient detail [1' 21 • 

In particular, the necessary conditions for its existence 
have been clarified [3>41 • As to two-stream instabilities 
in a bounded plasma, say a layered plasma, they have 
been rather little investigated. In particular, there are 
practically no studies of the instability limit, of the in­
fluence of thermal effects (spatial dispersion), etc. 

The features of a layered plasma are of interest be­
cause of the possibility of amplification of surface 
waves and of the development of different instabilities 
due to the interaction between the spatially- separated 
beams. This question is of particular importance for a 
plasma, in connection with the possible use of the plasma 
for the amplification and generation of electromagnetic 
waves. The instability of mutually-penetratin~ beams in 
a solid-state plasma was first considered in[5 • In order 
for it to be realized in a two-component single-tem­
perature plasma, it is necessary to satisfy the condition 

V > 0.926(~'Te +uTI,), (1) 

where vis the relative drift velocity of the electrons 
and holes, and vTe hare their thermal velocities. For 
a solid-state plasma, the condition (1) is quite stringent. 
More realistic is two-stream instability in a two-tem­
perature plasma. In this case the instability can arise 
when the relative velocity of the electrons and holes is 
much smaller than the thermal velocity. To this end, 
however, it is necessary that the temperature of the 
electrons exceed the temperature of the holes by not 
less than one order of magnitude. It is quite difficult to 
ensure this condition for spatially unseparated electrons 
and holes. In particular, when a strong electric field is 
superimposed, it is apparently not realized[aJ. So far, 
two- stream instability has not been observed in solids, 
this being possibly due to the indicated difficulties. 

Instabilities in spatially-separated beams offer great 
possibilities in this respect. First, both beams can con­
sist of particles having high mobility (for example, two 
layers of a semiconductor of n-type, separated by a thin 
dielectric layer). Second, by placing the semiconductor 
structure in liquid helium or nitrogen and passing elec­
tric current through the individual layers, it is possible 
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to obtain large values of the ratios of the temperatures 
of the individual beams. 

An investigation of the instability of spatially separa­
ted beams has been initiated relatively recently. In the 
papers devoted to this questionLB-lll, the analysis is 
::mited to the elementary theory, so that the question of 
the boundaries of the instability, of the influence of 
thermal effects, etc., remain open. 

In the present paper we investigate the interaction 
and the instability of two spatially separated homogene­
ous semi-infinite beams in the kinetic and in the quasi­
hydrodynamic approximations. The separation boundary 
of the beams is assumed to be sharp, and the tempera­
tures are assumed to be identical. The limits of the 
two- stream instability and the increments of the growing 
waves are determined. 

1. DISPERSION EQUATION OF WAVES IN SPATIALLY 
SEPARATED BEAMS 

Let us consider waves propagating along two separ­
ate-infinite spatially separated homogeneous beams. 
The corresponding dispersion equations were obtained 
from equality of the surface impedances of the beams. 
Surface impedances of a semibounded immobile plasma 
for different boundary conditions for the carriers 
(specular and diffuse reflections) have been found in[121 • 

We shall use the Lorentz-transformation method to find 
the corresponding expressions for a moving plasma. 

Let the surface impedance of a semi-bounded plasma 
forE-waves, in a reference frame in which the plasma 
is at rest, be 

t'(w' k ') = Ex' ( w', k{) 
"' ' 1 Hy'(w',k{)' 

(2) 

where w' and k~ are the frequency of the wave and the 
wave vector parallel to the boundary of the plasma; the 
XY plane coincides with the plasma boundary. The sur­
face impedance in the reference frame in which the 
plasma moves with velocity v is determined by using 
the Lorentz transformation for the fields, 

Ex'(w', k{)l'i- v2/c2 
(3) 

Hy'(w',k{)-(u/c)E/(w',k{) · 

Using Maxwell's equation 
4n iw 

rotH=-j--E, 
c c 

(4) 
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and the Lorentz transformation for w and k, and assum­
ing the normal component of the current density on the 
surface of the plasma to be equal to zero (which is true 
for reflections of the s~ecular typ.e a~d of the diffuse 
type of the first kind u2 ) , we obtam finally 

where 

(J) k _ w-ktv (5) 
"( 1)- ~~ (w', kt'), 
" ' ''1 z; 2 w 1 -v c 

, w-k1v 
(l) = ' 

")11- v2/c2 
kt' 

kt- vw/c2 

l'l- v2/c2 (6) 

The expression for ~' in the case of specular reflection 
is given inl 12 J. Equating the surface impedances deter­
mined by formula (5) for different beams, we obtain the 
sought dispersion equation. We shall henceforth confine 
ourselves to potential oscillations and assume that 
v « c and k1 II v. In this case the dispersion equation 
for E-waves propagating along the beams takes the form 

-1:"' dka 

- ~ook2ez(k, w- k1v) ' (7) 

where E1 and E2 are longitudinal electric constants of the 
first (immobile) and second (moving velocity v) beams, 
and k2 = k~ + k~~ 

It is interesting to note that if the thermal effects 
are neglected Eq. (7) becomes E1(w) = -E2(w- k1v), and 
the investigation of the instability under consideration 
reduces completely to the well investigated problem of 
the two- stream instability of two mutually interpene­
trating beams lal. 

2. INSTABILITY LIMIT 

Let us find the limit of instability of the oscillations 
determined by (7). We consider first the quasihydro­
dynamic approximation, in which the expression for the 
longitudinal dielectric constant is given by 

2 
Wo 1,2 eJ ,(k,w) = 1- 2 2 

' w(w + iv,,2 ) --k vn,2 /2 
(8) 

where vT = v'2 KT/m is the thermal velocity of the 
plasma particles and wo is the plasma frequency. Sub­
stituting (8) in (7), we obtain 

1 { ikt ) --- 1+-, [e1(0,w)-1] 
et(O, w) ka 

1 { ikt l} =- 1+--;;-[e2(0,w-ktv)-1 , 
ez(O, w- ktv) ka 

(9) 

where 

W { ( Wot2 ) Vt }'/• ka'=-- 2 1--- -klvT12 +2i- , 
VTi W2 W 

ka'' = w- ktv {2 [t- woz' l- k/vnz + 2i-v-'-}"' \10) 
vT2 (w- k1v) 2 w- ktv 

In the general case the solution of (9) is rather compli­
cated. For two identical beams it simplifies somewhat. 
We confine ourselves to this case. 

To find the limiting curve we write Eq. (9) for the 
imaginary and real parts, assuming w and k1 to be real. 
It is easy to see that one of the solutions of the obtained 
equation for the imaginary parts will be 

w=kiv/2. (11) 

The equation for the real parts then takes the form 
;x2y2-1 (12) Cx2(x'yz+ a2 -1)- aA + B= 0, 

xy 

where 
(J) v k~ 'V 

y a=-, 
X= k 1Vr = 2Vr ' =--;;;-;-' Wo 

C = { [2 (x2y2 - 1) - y2]' + 4a2x2y2} '1• 

.,..,.--r=----;;-;---:-:,--~-;--;; 

A = f 1/ 2 [C + 2(x'y2 -1) - y2], B = l'1/z(C- 2 (x>y'- 1) + y']. 

Equation (12) determines the "principal" boundary 
curve. Furthermore, in the case of a small number of 
collisions (v/w 0 ~ 0.03) Eq. (9) contains one more 
"additional" boundary curve. Both curves, calculated 
with a computer for several values of v, are shown in 
Fig. 1. 

The boundary curve corresponding to the elementary 
theory (VT - 0) constitutes two straight lines, w = k1v /2 
= 0 and w = k1v/2 = ..fw~- v2. The "additional" boundary 
curve is doubly degenerate and yields two curves in the 
(wv) plane. In the c.m.s., one curve corresponds to a 
wave traveling in the direction of motion of one beam, 
and the other to a wave traveling in the direction of mo­
tion of the other beam. (In a system connected with one 
of the beams, one wave moves with velocity larger than 
v/2 and the other with velocity smaller than v/2). Fig­
ure 2 shows the dependence of the minimal drift veloc­
ity, at which instability sets in, on the collision fre­
quency. The presented curves show that the two-stream 
instability can occur at relatively small relative veloci­
ties v ~ 1.5 vT. 
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FIG. I. Limits of instability of oscillations: dashed curves- v/wo = 
0.01; dash-dot- v/w 0 = 0.3, dotted- v/w0 = 0.5, solid- kinetic theory. 

FIG. 2. Dependence of minimal drift velocity, at which the instabil­
ity sets in, on the collision frequency. 

It is of interest to study the behavior of the fields of 
the excited wave at the boundary parameters. These 

· · '1 1 d' t r12 J de fields m an 1mmob1 e p asma, accor 1ng o , are -
termined by the equations 

[ 
--k iki 2 .• ' ] Ex(z,k1,•w)=const· w(w+iv)e •'-"kjwo e' '' , 

E,(z, k~, w) = -const· [w ( w- iv)e-'•'- wa2e"'']. (12') 

The fields in a moving beam are derived from the ob­
tained expressions by making the substitution w - w 
- k1v. 

Let us examine, for example, the curve for v/wo 
= 0.01. An analysis shows that for the lower branch 
both terms in (12) attenuate exponentially; for the mid­
dle branch, the second term corresponds to a weakly­
damped longitudinal plasma wave traveling from the 
boundary of the beams; for the upper, degenerate 
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FIG. 3. Frequencies and incre­
ments of excited waves: dashed 
curves- v/w0 = 0.01, v/VT = 2; 
solid- v/w0 = 0.01, v/VT = 8; 
dash-dot- v/w 0 = 0.1, v/VT = 0.4. 

branch, in the case of the wave propagating with velocity 
larger than v/2, the second term in (12) describes a 
wave traveling from the boundary in the stationary beam 
and attenuating exponentially in the moving beam; for 
the wave propagating with velocity less than v/2, the 
picture is reversed. 

As is well known, the quasihydrodynamic approxima­
tion takes into account the thermal effects rather 
crudely. We therefore consider the question of the in­
stability limit in the kinetic approximation. 

We shall assume that the electron beams are des­
cribed by shifted Maxwellian distribution functions, and 
we shall neglect collisions. In this case the dielectric 
constants E1 and E2, which enter in (7), are determined 
by the expressions 

e ( k, w) = 1 + 2 ::2 z2 ( 1 - 2ze-'' S e<' d~) 
0 

wo2 -+ 2i-2 z3 l'n e-'', z = wjkvT. 
(i)J 

(13) 

The solution of (7) with allowance for (13) is analogous 
to the solution of this equation in the quasihydrodynamic 
approximation, and leads to the boundary curve shown 
in Fig. 1 by the solid line. In this approximation, the 
normal drift velocity, at which the instability sets in, is 
vdr ::::; 3.8 x vT. This value is somewhat higher than that 
obtained in the quasihydrodynamic approximation, and 
exceeds by approximately a factor of 2 the corresponding 
quantity for mutually interpenetrating beams (see (1)). 

3. INCREMENT OF EXCITED WAVES 

We shall determine the increments of the excited 
waves in the quasihydrodynamic approximation. Substi­
tuting in (7) the expression (8) and putting w = w' + i w", 
we obtain a system of two real equations determining · 
w' and w ". The computer solution of these equations is 
shown in Fig. 3 for similar values of v and v. The 
presented curves show that the increments of the inves­
tigated waves can be quite large and comparable with 
the corresponding values in the case of interpenetrating 
beams. 
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