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A theory of stimulated Mandel'shtam-Brillouin and entropy backscattering of light is developed in the 
prescribed pumping field approximation, taking into account fluctuation processes in the medium. The 
intensity and spectral distribution of light scattered by laser pulses, whose duration is either greater 
than or smaller than the time of flight of the scattering volume by the light, are determined. Accumu­
lative effects arising in the scattering of a set of ultrashort pulses are discussed. In particular, nar­
rowing of the scattered light spectrum with increase in the number of the exciting pulse is considered. 

1. INTRODUCTION 

IN the first theoretical papers devoted to stimulated 
light scattering, l 1' 41 it was assumed that the scattering 
time greatly exceeds the time of the transient process. 
The resu~ts obtained by such an approach permit us to 
determine the minimum power of the incident radiation 
(pumping), for which the scattered light differs apprec­
iably from the spontaneous. However, sufficiently high 
intensity of the excited coherent light is obtained in most 
cases only from lasers generating pulses of length about 
10-a sec and shorter, i.e., of the order of or smaller 
than the relaxation time of the entropy and hypersound, 
respectively, for stimulated entropy (temperature) scat­
tering (SES) and stimulated Mandel'shtam-Brillouin 
scattering (SMBS). In theSES and SMBS of such pulses, 
the effect of the nonstationarity of the process on the 
characteristics of the scattered light become important. 
Furthermore, in the scattering of picosecond pulses, lsJ 

an additional feature appears, determined by the fact 
that the spatial dimension of the pulse lpul = tpulv gr be­
comes less than the dimensions of the scattered volume. 
In this case, the effect of the boundaries on the course 
of nonlinear phenomena can be insignificant and the 
corresponding processes can be regarded as processes 
in an unbounded medium. In addition to some difference 
in the mathematical approach to the analysis of phenom­
ena in bounded (lpul ~ L corresponds to "short" pul­
ses) and unbounded (lpul « L corresponds to "ultra­
short" pulses) media, the corresponding processes 
have a number of physical peculiarities. Thus, for ex­
ample, the stimulated backscattering of pulses in un­
bounded media begins with the leading edge of the pulse, 
while the scattering in bounded media begins with the 
boundary of the nonlinear volume. The theoretical study 
of the amplificiation in the field of an intense plane 
wave of the prescribed pumping field of spontaneous 
scattering[6 ' 71 makes it possible to estimate the time of 
the transient process in stimulated scattering, and to 
explain a series of experimental results which pertain 
to the scattering of short pulses. However, a more pre­
cise and complete characteristic of scattered light, both 
here and in other cases, can be obtained in the analysis 
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of the development of fluctuations of parameters directly 
in the field of the laser beam. Such an approach is also 
used in the present research in the theoretical study of 
nonstationary SMBS and SES of short pulses, and also 
SMBS of ultrashort pulses. 1> 

The results pertaining to scattering of ultrashort 
pulses are easily generalized to other types of stimula­
ted scattering, SES, stimulated Raman scattering (SRS) 
and stimulated Rayleigh wing scattering (SRWS). The 
difference lies only in the size of the relaxation time and 
in the order of the material equations. 

2. INITIAL EQUATIONS 

Statement of the problem. We assume that a mono­
chromatic beam of light of amplitude that is constant in 
time is incident perpendicularly (along the z axis) on a 
plane-parallel layer of a nonlinear medium. We shall 
neglect reflection from the boundaries. The transverse 
cross section of the beam of light St is assumed to be 
sufficiently great that we can use the quasi-optical ap­
proximation in the calculations. We shall carry out the 
analysis in the prescribed pumping field approximation. 

The temporal and spatial change in the dielectric 
permittivity E, which leads to the light scattering, can 
be due to the change in a number of parameters which 
characterize the thermodynamic state of the medium. 
Consequently, in the general case, in the consideration 
of stimulated light scattering in the prescribed field ap­
proximation, simultaneous account of all processes 
taking place in the medium is necessary. The corre­
sponding relations for the increments were obtained 
in[ 4' 91 • However, the systematic procedure of simul­
taneous nonstationary consideration, associated with the 
account of fluctuations of thermodynamic parameters of 
the medium, is associated with a number of difficulties. 
Taking it into account that conditions are frequently 
realized in the experiments for which a single process 
dominates the others, independent consideration is given 
below of nonstatioriary SMBS and SES. 

Spontaneous Mandel'shtam-Brillouin and entropy 

1>Preliminary results of this research were reported at the IV All­
union Symposium on Nonlinear Optics.[8 ] 
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scattering is due, as is known, to fluctuating deviations 
of the pressure ffJ and the entropy S in a unit volume 
from their equilibrium values f!J~ and S0 : 

ap = 9 - 9 0, a. = S -So, I ap I <i!!; 9o, I a, I <i!!; So. 

SMBS and SES can be treated as scattering on the fluc­
tuations ap and as, which develop in the field of an 
intense laser beam. 

The change in the local values of the pressures in the 
medium is connected with the action on the material of 
the electrostrictive force, the density of which fst 
= C/s7T)(paE/ap)s VIE 12 (E = Eo + Ep is the intensity of 
the total electric field, due to the incident and scattered 
(by the pressure fluctuations) waves, p the density of 
the medium). This force, together with the external 
fluctuation force producing thermal De bye waves, with 
density fex; enters into the right hand side of the 
Navier-Stokes equation[1oJ 

(1) 
where 

f=: [! TJ+TJ'+ ::(y-i)J, 
1J and 1] 1 are the coefficients of the shear and bulk vis­
cosities, K T the coefficient of thermal conductivity, 
y = cp/cv is the ratio of specific heats at constant pres­
sure and volume, Vp is the velocity of hypersound. 

In SES the stimulated entropy change of the medium 
is due both to the absorption of light and to the electro­
caloric effect. [11 ' 12 l In what follows, we have in mind 
only a liquid with a sufficiently large amplitude coeffi­
cient of optical damping (6 J:::j 10-1-10-2 cm-1), we neglect 
the effect of the electrocaloric effect. u 1 J 

Taking into account the fact that the power absorbed 
in a unit volume, Pstim = (%7T)6vgriE 2 1 (E =Eo+ Es, Es 
is the electric field of the wave scattered by the entropy 
fluctuations), we write down the equation for the depar­
ture of the entropy as from the position of equilibrium 
in the form 

(2) 

x = KT/PCp is the coefficient of temperature conductivity, 
T the temperature of the medium, Sex the intensity of 
the external source, due to random local changes in the 
heat in a unit volume, Pex = -T(<lSex/at), and conse­
quently, the random fluctuations of the entropy. The 
intensity of the sources can easily be found from the 
fluctuation-dissipation theorem (FDT) for linearly dis­
tributed systems. [I3J Assuming fex(r, t) and Sex(r, t) to 
be homogeneous stationary processes, [I3J we write down 
the correlation function of their space-time Fourier 
components, on the basis of the FDT, in the form 

(f 0x(M, Q)fex· (x', Q')) = (1isn4)kBTpfx263 (x- x')6(Q- Q'), 

(Sex(x, Q)Sex·(x'Q')) = (1/s:'t'!J2)k8rcpJ(x263(x- x').S(Q- Q'), 

kB is Boltzmann's constant. 
Abbreviated equations for the scattering of short 

pulses. We shall represent the electromagnetic pumping 
field in the scattering region in the form 

X exp [ ik;01x + ik (O)y + i(k<•> _ [k~OJJ2 + [kJ•>p) 
• y 2k<0> z 

- iw<0>t J dk;O) dkt01 + c.c. (3) 

Such a representation is suitable if the condition A 3 L/a 4 

« 1' where a ~ st_~2 is the characteristic dimension of 
change in the field in the transverse direction, 
A = 27T/k<o>, k< 0 > = w <o> /vgp· The fact that the pumping 
field is not constant in time and has the shape of a rec­
tangular pulse is taken into account in the following in 
the form of initial conditions for the scattered field and 
the fluctuations of the medium. The pulse length is auto­
matically accounted for by the choice of the observation 
interval. It is evident that such an approach is justified 
only if the condition tpul » L/vgr· The case tpul 
« L/vgr• which occurs for scattering of ultrashort 
pulses, will be considered below. Since the length of the 
exciting beam in the nonlinear medium is usually much 
greater than its transverse dimension, the most effec­
tive light scattering takes place in directions close to 
the backward direction.21 We shall seek the backscatter­
ing field in the form of a set of plane waves each of 
which is propagated at some angle to the longitudinal 
axis and has a wave vector and a frequency defined by 
the Bragg conditionuoJ for the given angle. Assuming 
that the amplitude of each of the plane waves of the 
specified set is a slowly changing function of the longi­
tudinal coordinate z and the time t, we write down the 
field of the scattered light in the form 

:1: .. 
E (r t)= S S dk<P. "1dk(P,sl; (k<P.•J k<P. •> t) p, B f X J1 C!'J p, B X t y f z, 

xexp(ik<P·•>r-iw<P.•>t)+ c.c.Bp,,.Lk<P.•>, (4) 

where k(p,s) = w(p,s);vgr• w(p,s) is the frequency of 
each of the plane waves of the set. In the case of SMBS,31 

w(P) = w' 01 - q(p)vp, where q(P) is determined by the 
well-known relationl 1oJ q(p,s) = 2k'01 sin(0/2). The angle 
of back scattering cp = 1T - e is connected with the com­
ponents k(p, s) and k(p, s) of the vector k(p, s) of the 

X y 
corresponding plane wave by the equality 

sin2 cp= [k~P.•l/k<0lj2 + [k~P.•l/k<0>]2, cp<i!!; 1. 

In the case of SES, it is convenient to choose w<s) = w<o>. 
We represent the fluctuations of the parameters of 

the medium ap and as in a form analogous to (4): 
+.,. 

( t) - s s d (p, s) d (p, 8) I (q(p, 1) q(p, 1) ~ t) ap, a r, - qx qy ap, • x , 11 , .. , 

X exp[iq(P· •>r- i(w<0>- w<P. •l)t] + c.c. 

Substituting (3)- (5) in Eqs. (1) and (2) and also in the 
Maxwell equation 

(5) 

o2E oe o2 ( ) e-+c2 rotrotE=-----(ap,E), E=Eo+Ep, 6 
ot2 oap, • ot2 ' ' 

and equating the Fourier components over the trans­
verse coordinates, we get (after averaging), equations 
for .!p, s and ap, s: 

2lThe forward scattering which takes place without any appreciable 
shift in frequency [ 11 ) and which is related to the problem of the self­
action of the light, is not considered here. 

3lSMBS for the stimulated process is negligibly small at the anti­
Stokes frequency. 
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( 1 {) {) ) ,.. (k(p,s) k(p,s) t} 
---- e;;lp,s r , 11 ,z, 
vgr &t {)z 

+~ 

=_i_l,~) /r;(O) s s dk~)dk~0)80 (k~O), k~O)) 
2e &ap,s s,p _ 00 

t• ( (P,s) _ k(O) (p,s) _ k(O) t} ['q(p,s) (q(p,s) q(p,s)} Z 
X ap,s qx X ' qy y 'z, exp II z X ' y 

_ iq}P• s) (q;p, s) _ k~•>, q!p,s) _ k~O) )z], (7) 

( 0 {} -1 ) t• (p, s) (p, s) } 
at+vp,s{}z +tp,s ap,s(qx ,qy ,z,t = 

+ 00 

A S Sdk(O)dk(O),...(k(O) k(O)),.. (k(P,•)-k(O) k(p,s)_k(O) Z t) === p, a X 'II fD 0 X t J/ (t:J p, 8 X X t J/ l/ t t 

X [ .k(p,s)(k(p,s) k(p,s)} - 'k(p,s)(k(p,a)_k(O) k(p,s)_k(O)}z] 
e:X:plz ,x ,y Z lz X Xll/ 1/ 

±oo 
+ S S dxzdQijl;,.(x,Q)exp(-i(xz-q~p,s))z-i(Q+ro<0>-ro<P.•l)t]. 

Fo.; ;onvenience of common recording in (7), we intro­
duce Vs = 0 and use the notation 

i ( poe) , Vgrlle _1 r ( ( lj2 Ap=-- -,- k,0>vp, A,=--, tp =- qP, 
4:n: op , nT 2 

XVp S ") t,-1 = J((q<•>j2, 1jlp = 2q<P/ex(X, Q), 1jl, =- iQ ex( X, •• ' 

qx,y = Xx,y, 

tp, s ar~ the relaxation times of hypersound and entropy, 
respechvely. 

If the conditions for the applicability of the geometric 
optics are satisfied (A L/a2 « 1) for components scat­
tered at angles cp « 1, Eqs. (7) remain valid even for 
a/L :<: 1. This allows us, for example, to consider the 
scattering of a plane wave for cp « 1. 

An important feature of the scattering of bounded 
beams is that the components ~· (k(p, s), k(P, s)z, t) of 

p,s x y 
the scattered field are not correlated over the trans­
verse wave vectors, in contrast with the scattering of a 
plane wave. This is connected with the fact that the 
various components of ~o(~0>, k~0>), scattered by the 

same wave a' (a(p, s), q(p, s), z, t) lead to correlation 
p,s -x Y 

of the components ~ (k(p, s), k(p, s), z, t) in the reg-
p,s Y Y 

ion .... a- 1 • The latter circumstance generally makes the 
solution of Eqs. (7) difficult, since all the functions in 
the integrand in these equations have a characteristic 
scale ~k(p,s) .... a-1 • However, in this case, when the 

x,y 
change in k(p, s) takes place in limits appreciably ex­

x,y 
ceeding a-1((k(p,s)) ~ ak<o>;L » a- 1 is the 

x,y max 
geometric- optical approximation), the correlation of 
~ (k(p, s) k(p, s) z t) in the region a-1 has no signifi-
p,s x ' y ' ' 

cant effect on the quadratic characteristics, since the 
latter are already averaged over a scale exceeding a -•, 
but at the same time less than (k(p, s)) ~ ak<o> /L. 

x,y max 
Therefore it is sufficient to consider the problem of the 
scattering of a plane wave (a= 00 , a-1 = 0) and then to 
identify the quadratic characteristics obtained in this 
approach in a unit solid angle for cp « 1 with the corre­
sponding quantities in the case of scattering of bounded 
beams with uniform amplitude distribution over the 
cross section. 4> Equations (7) for the plane pumping 

4lThis conclusion is supported, in particular, by the results of a con­
sideration of spontaneous scattering, when Eqs. (7) are decoupled (Ap,s 
= 0) and are solved with comparative ease. 

wave i"o(k~o>, k~0>) = "i o0 (k~0,)<'i (k;>), take the form 

88 p,' = - _i_ ( ~) k<0>8 0a;, ,, 
{)z 2e &ap, • s, p 

Change in the scattered wave during time of passage of 
the light through the medium/7 ' 14J is neglected in (7a), 
which can be valid for tp » L/vgr· 

3. STATIONARY SCATTERING 

The scattered wave in an established stationary proc­
ess is the Fourier transform of the system (7a). For 
zero boundary conditions ·~p, s lz = L = 0, Eq. (7a) has the 
form 

,.. _. (&e/&ap,s)s,pk(0)8o rs d d"•1,• i(ll+m(O)_.,(p,s))l 
C!1p,s- z 2e ~oo Xz ~,...,p,se 

-1 }{iMp, ,t;,1,- i(x,- q,}[-i(Q + oo<0>- oo<P. •>) + t;:1,]}-l, (8) 

where Mp, s = (% ~o:)(at:/aap, s)p, sk< 0 > l~ol 2 Ap, stp, s· For 

SMBS the conditions M « % v t are used, for which 
' p p p [1 2 6] 

generation on the opposed wave is excluded, ' ' and 
only amplification of the fluctuations takes place. l3 J For 
most experiments, this condition is satisfied at room 
temperature. Thus, for example, for scattering in 
cs2 ((pa~o:jap)s = 2.39, € = 2.8, p = 1.26 g/cm\ vp = 1.26 
x 105 cm/secltoJ), ruby laser light (w<o> = 2.7 
x 1015 sec-1 , tp = 5 x 10-9 sec), having an intensity Io 

(megawatt/cm2), the value of Mp = 0.075 Io[cm-1) while 

%vptp ~ 400 em-\ i.e., Mp < %vp~ for Io <53 
x 104 megawatt/ cm2 • 

In obtaining (8), we also used the condition of the 
smallness of the region of correlation of the sound in 
comparison with the length of the scattering volume, 
L/vp~ » 1. 5 > Equation (8) makes it possible to find the 

correlation function of the electric field Gp, s = (%7T)V gr" 

< E (rh t 1) • E* (r2 , t 2 ). The Fourier integral for p,s p,s 
the correlation function of the density angular spectrum 
of the scattered light (OTis the solid angle) has the 
form 

aGp.. -5 --= dQcos(QM)Gp,s(Q), !:..t=t1-t2• 
dQT -oo 

The functions Gp,s(O), which determine the spectral 
intensity of the scattered light for the region outside 
the scattering volume (z ::; 0) are expressed in the fol­
lowing way: 6> 

s) At low temperatures, this condition cannot be satisfied. In this 
case the intensity of the spontaneous scattering depends nonlinearly on 
L, since the spatial part of the correlation of acoustic photons is com­
parable with the dimensions of the scattering medium. 

6l As the limiting case for I Mp,s I -+ 0, these formulas give the well­
known spectra of spontaneous scattering. [ 10 ] 
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)'2(8e/8T)p[k<111)3 k8T2 
K,= . 

32n31let, 
(9) 

The bounded character of the interpretation of stimula­
ted scattering as the stimulated amplification of the 
ordinary thermal scattering considered as an external 
field is seen from (9) (see, for example, l3J). However, 
in two limiting cases M ,sL « 1 and ~,sL » 1, both 
interpretations lead to ~e same results for the integra­
ted light intensity scattered in a unit solid angle at the 
angle cp « 1. For sufficiently large power of the exciting 
radiation (~, sL » 1) 

dGp,•! ,;-:n 
-d" =Ip,s=Kp,s f-r-expfp,s, 

::.li'.T At=O p,.s 

_ -.-- 2 _ {21MpiL for SMBS, 
fp,s-(Re)'2tMp,.L) - IM,IL for SES, 

rp, s is the increment of stationary scattering. At the 
optimal frequency, the halfwidth of the spectrum of 
stimulated scattering here is determined by the relation 

(P) 
ll (p)- r-v, t -1- llrosp 
ro-p p-r~t~' 

p 

i.e., for rp,s » 1, the spectrum of stimulated scatter­
ing is much narrower than the spectrum of spontaneous 
scattering ow = t-1 • 

p,s 
The most typical estimates for the backscattering of 

ruby laser light in CS2: IMsiL = 0.05IoL, IMpiL 
= 0.075IoL, Ks = 12 W/cm2, Kp = 5.5 W/cm2. For esti­
mates other than the quantities given above, we used the 
values: (ae/aT) = -2.75 x 10-3 deg-r, cp 
= 107 ergs/g-deg, ts R:: 10-8 sec, [1oJ o R:: 0.05 cm-r, 
T R:: 300°. It follows from (9) that the SMBS SJ?ectrum 
is symmetric with respect to the frequency w(P}; the 
spectral distribution of SES has an asymmetric charac­
ter with a maximum displaced in the antistokes region 
(for ae/aT) < 0) by a value Aw(s) R:: t~1 • As a conse­
quence of tCe narrowing of the spectrum in stimulated 
scattering, there is an increase in the correlation times 
t~ and t~ in comparison with the corresponding spon­
taneous values 7 > 

dG, I agT =I, exp [- (At)21 (t,k) 2] cos (MIt,), t,k =, (2f,) '1•t,,(10) 
dGp I dQT = Ip exp [- (~t)2/ (t,k) 2l, tpk = 2f p ''tp, 

ac;~ ,jdQT = I;~,exp(-IMI/tv,s)· 

All these formulas, by virtue of what has been said 
above, refer both to the scattering of a plane wave and 
also to bounded beams for cp « a/L « 1. Since the 
scattering intensity in the stimulated process (I~, s I L 
» 1) of components with cp > a/L is negligibly small 
relative to the scattering intensity of components with 
cp < a/L « 1, then the approximate expression for the 

7lThe appearance of cos (A t/tS) in the first formula of (I 0) is con­
nected with the fact that the spectral expression for Gs in (9) is written 
relative to the unshifted frequency. 

total intensity of light scattered in the backward direc­
tion will be Gp, s I At= o, z = 0 R:: Ip, s(St0t/L2). 

4. NONSTATIONARY SCATTERING OF SHORT PULSES 

The solution of Eqs. (7a) in the nonstationary case 
for zero initial and boundary conditions, for an electric 
field ·.wp, sIt= 0 = .Wp, s lz = L = 0, obtained by a Laplace 
transformation, has the form 

. (iJs/iJap,s)s,pk<>lr£.t r . r . 
f£ p,s = l 28 ) ) dxzdQ'i'P.• ) dz1 exp {- l (x,- q,) z!} 

-oo 0 

[
e -tit P.•J o ( 2 V- iM p,sttp·;,z!) r { t - t1 

X + ~ cxp ----
tj;~, - i (Q + ro<oJ - w<P.•>) 0 tp,s 

- i (Q-+- ro<•>-ro<P.•l)t1} 1 0 (2 V-illi p, 8tp~8Z1 (t- t!)) dt1 ]. (11) 

The integrated light intensity, scattered in non­
stationary fashion in unit solid angle (cp « 1) can be 
represented in the form of the sum of two components 
Inst = Iinit + Isource, one of which is determined by the 
p,s p,s p,s . 't 

initial fluctuations (~~1s), and the other by the develop-

ment of fluctuations as the result of a fluctuating source 
in the time of the pulse (!source): 

p,s 

Iinit=l'f /i 6ni -r-•e-•' I'ourr:=_ 1 I {1+<I>(v), v>O (12) 
p,s p,s P.• ' p,s -2 p,s 1-ll>(-v),v<O'. 

where , 
ll>(v) = (2/l'n) S e-u' du 

0 

is the error integral, v = ...fFi- ..,lrp, s• T = t/)l, s 

» r-1 s· For T « r s/2, we have p, p, 

1~1 I I~:"c~ )'f P., /2-r > 1, 

i.e., the scattering on the initial fluctuations dominates 
the scattering on the fluctuations due to the action of the 
fluctuating source in ~h~ time of the pulse. However, 
even for T = r /2, 11mt;yaource R:: (nT r 1 « 1 and 

p,s p,s )l,s p,s 
Iinit- 0 as T-oo. It follows from (12) that the time of p,s 
the transition process to the stationary scattering8 > 

t~~s = tp,s(rp,s/2). (1 + 2Nrp,s), rp,s » 1. For the 

quantity rp, s ::::;; 10, t~~ s is approximately twice the 

corresponding value obtained by Kroll csJ for SMBS 
under the assumption of the specified light source. 

Figure 1 (curve a) shows the development of stimu­
lated scattering (rp, s = 8) with time. In the same figure 

FIG. I. Development of stimu­
lated scattering (I' p,s = 8) in time -
curve a, ratio of length of scattered 
pulse to length of incident, curve b. 

8lin the presence of saturation (inverse reaction of the scattering 
field on the pumping), the time of the transition process is reduced and 
for sufficiently intense pumping, can evidently be less than the relaxa­
tion time. 
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is shown (curve b) the dependence on time of the ratio 
of the length of the scattered pulse to the incidence pulse 
for the level 0.5. Estimates show that for propagation of 
megawatt pulses of length 20-30 nsec in liquids at room 
temperature, SMBS can occur at the stationary level. 
SES under these conditions is essentially nonstationary. 
In this connection, the problem of the spectrum of non­
stationary SES is of interest. 

Analysis of Eq. (11) shows that for tpul « rsts the 
maximum in the spectrum of light scattering is shifted 
relative to w <o> into the antistokes region (for (8£/aT) 
< 0) by an amount p 

~Wt <•>= yr,/2tpult• ~(f. <t> /2) t;~l, (13) 

where rJt) = v'2rstput!ts is the total spatial increment 
of amplitude at the end of the pulse for SES, tp~l is the 
width of the spectrum of the incident pumping pulse with 
sinusoidal carrier. With increase in the pumping pulse 
length, the maximum in the scattered light spectrum is 
shifted to the side of w <O> right up to the transition to the 
stationary process. The half-width of the spectrum of 
nonstationary scattered light for 1>ul « rsts is equal to 
ow~s) = ~w~s). If the threshold of stimulated scattering 

is exceeded by several fold, then r(t) is a quantity of 
the order of several units and the efhift in the scattered 
light spectrum should exceed the width of the spectrum 
of the incident pulse with sinusoidal carrier. It is evi­
dent that for sufficiently high intensity of the incident 
light, a more rapid progress to the stationary regime is 
possible, a consequence of which can be a decrease in 
the value of the shift and the width of the scattered light 
spectrum. 

The interpretation of the experiments, from the view­
point of the given calculations, is very complicated at 
first glance, since under real conditions the width of the 
frequency spectrum of the incident pulse ow <o> is much 
greater than the value determined from the pulse length, 
ow<0 > >> tp~1 . However, one can show that the value of 
the shift in the spectrum of the nonstationary scattered 
light, apart from the pulse length, is determined only by 
the rate of growth of the stimulated process. The latter 
depends basically on the mean of the value of the pump­
ing intensity and is practically unconnected with the 
degree of modulation of the exciting radiation. There­
fore, the shift in the spectrum of stimulated scattering 
should not depend on the width of the frequency spectrum 
of the incident pulse, and Eq. (13) can be applied for the 
estimate of the frequency in real experiments. Some 
results of the experiment applicable to this case, and the 
corresponding estimates are given inl141 • 

Estimates for nonstationary SMBS in a quasi-parallel 
laser beam show a rather good agreement of the calcula­
tions with experiment (see, for example, llsl ), especially 
close to the threshold, when the effects of saturation are 
unimportant. It should be noted that nonstationarity for 
SMBS leads not to a shift in the maximum of the scat­
tered light spectrum, but only to a broadening of the 
spectrum. 

5. SCATTERING OF ULTRASHORT PULSES 

General relations. As has been noted in the introduc­
tion, the features of stimulated scattering of ultrashort 

FIG. 2. Spatial distribution of 
the exciting radiation, density fluc­
tuations of the medium and scat­
tered light in the scattering of ultra­
short pulses (p' =a). 

z 

pulses of light will be considered below in the example 
of SMBS. The condition 1>ul < L/vgr corresponding to 
this is satisfied in most cases simultaneously with the 
condition tpul ~ Tp = 21r/Op (Op = q(P)vp is the frequency 

of hypersound), for which in place of the pressure fluc­
tuations ap it is more convenient to consider the density 
fluctuations ap. The wave equation for ap for ~ul ~ Tp 
can be averaged only over the spatial coordinates. The 
backscattering electric field Ep will be sought at the 
unshifted frequency w< 0> (similar toEs in (4)), while the 
fluctuations ap will be described similar to as (see (5)). 
Neglecting the dispersion spreading and the inverse 
effect of the scattered pulse on the pumping, we divide 
the scattering medium into three regions (Fig. 2): 
1-the region in front of the pulse (~ = t- z/v r < 0), 
li-the region inside the pulse (0 < ~ < t), n:f--the region 
behind the pulse (!nul< ~ < t). The equations describing 
the process of scaftering of a plane wave in all three 
regions, for cp « 1, have the form (the index p is omitted 
for q, qx, Y' kx, y) 

(.2_!_-~) {fjp (kx, k~, Z, 6) = _!__( iJe) k(OJ{!Jo(6) ap'' (qx, qy, Z, S), 
vgr iJ1; iJz 2e iJp ' 

( az iJ ). 1 ( piJe ) 
o&2 + Vp2q2 + 2tp -1 ar ap'' (_qx, qy, z, 6) = Sn Op s 

±<><> 

x qZ{fJ0 (1;){!Jp(k~,ky,z,1;)+ ~ ~ dx,dQ(ixj0/(x,Q)) · 

(14) 

In the case considered, when the pumping amplitude has 
the form of a rectangle (Fig. 2), the equations are ma­
terially simplified. Their solution in region I makes it 
possible to determine the following quantities: 

n dQ dx,(ixf.x'(x, Q)) exp[- i(.x,- q,- Q/vgr)z] 
-Q2 + Vp2q2- 2iQtp I 

Ss dQ dx,(Qx/ex' (x, Q) )exp[- i(l<z- q,- Qjvgr)z] 
_ QZ + vp2q2- 2iQtp-1 

which, together with c\!'(kx, ky, z, ~)I~ = 0 = 0 serve as the 
boundary conditions for the solution of Eqs. (14) in reg­
ion II. Solving the system (14) in the region II by the 
Laplace transformation, we find 

{!Jp=-'-· (!!._) k<0ivgrEo S S dJ.l1 dQ(ixfex'(x,Q))ei~,,(± a;eP;o), 
4e iJp • - j=l 

Up = rs df.li dQ(txfex'(x, Q))e1~•' [ ~ a;eP;f. ( P;- i J.li;gr)], 
-oo j=l 



BACKSCATTERING OF LIGHT PULSES 173 

Q 
l't=X,-q,--. 

Vgr 

Here p4 =-in, P1,2,3 = -iOps1,2,3; s1,2,3 are the roots of 
the cubic equation 

where 

I' = J.IIVgr I 2Qp, a= A3 I Q,3, VI = T, I nt, ~ 1, 
A3 = p (De I 8p)ivgr[k<0>]"1Bo 12 I 4ne. 

(15) 

The coefficients aj are determined by the expression 

. - Pl+ vp•q•-2iQt,-• rr--1_. . k -1 2 3 4 
a,- -Q2+v 2q2-2iQt 1 p·-pk' 1' - ' ' ' · 

p p k=l=j J 

In the region m, relaxation of the hypersound and 
linear propagation of the scattered light take place 
independently (in the approximation used). 

Since the solution of Eq. (15) is complicated in its 
general form, we shall limit ourselves here only to two 
limiting cases: 1) y~ « a« 1 and 2) a ~ 1, ~ul < Tp. 
For example, for ruby laser light scattering in CS2 
(y 1 = 10-2) we have o = 0.2 Io, Io in gigawatts/cm2. 
Consequently, the first case corresponds to scattering 
of giant (0.5 megawatt/em• « To« 5 gigawatt/cm2) 
pulses of duration of the order of nanoseconds 
(tpul < ~) and shorter in sufficiently large volumes 
(L 2:: 1 m). The second case refers to scattering of 
picosecond pulses with a power of several tens of 
gigawatts. 

In both cases the contribution to the value of the 
increment associated with the relaxation of sound is 
relatively small and can be neglected in the zero ap­
proximation. Then the cubic equation (15) is written in 
the form 

t~(s) = (Jl.- s) (s -1) (s + 1) =a. (15a) 

Since the function f ll (s) has three points of intersection 
with the s axis, it is evident that the complex roots of 
Eq. (15a) and consequently the stimulated scattering 
(Re Pj = ± IRe Pj I cF- 0) exist only for those harmonics for 
which a < a, where o is the maximum of the function 
fll (s). 1'fi.e smallest threshold (in the zeroth approxima­
tion considered) has a harmonic width ll = 1. We now 
consider the two cases mentioned above in greater de­
tail. 

Scattering of giant pulses (y~ « a « 1). For a « 1 
the threshold conditions are satisfied only for harmonics 
with Ill I « 1 (Jl = ll - 1). The approximate roots of Eq. 
(15a) are 

s1, 2 = 1 ± (i /2)l'2a- jl.2, s3 = -1, 

and the increment of the amplitude is 

{ ± 1/ 2Qpf2a- [12, [l < 2a 
Re p1 ,2 =- QplmSt,2 = O, 

[l > 2a 

The spectral distribution for z :5 0 of the intensity of 
scattered light in a unit solid angle in the backward 
direction for angles cp « 1 for plane wave pumping has 
the form 

In this case the integrated intensity of light scattered in 
a unit solid angle is determined by the expression 

(16a) 

For bounded beams of pumping with uniform amplitude 
distribution over the cross section Sb, the total light 
intensity scattered in the backward direction, for 
Sb/l~ « 1 is equal to G~1>16.t=O,z=O ~ IJ>1>(Sb/l~). Since 
o « 1, the stimulated scattering takes place only for 
~ul ~ Tp· A comparison of the obtained increment with 
the corresponding value in the case of bounded media 
shows that the stimulated scattering, for L/vg_r « ~ul• 
is less intense, as is to be expected, than for-L/vgr 
« tpul· The maximum in the spectrum of scattered 
light (16) is displaced by the standard Mandel'shtam­
Brillouin shift in the Stokes region and the halfwidth of 
the spectrum ow(P) = v'2j3/tpul = v'213tpulowp for stimula­
ted scattering exceeds several fold the width of the spec­
trum of the exciting pulse with sinusoidal occupation, 
owp ~ tp~l· We note that for Sb ~ l~, Eqs. (16) and (16a) 
are valid for directions close to the axis of the beam 
(cp « 1). 

Scattering of homogeneous picosecond pulses (a ~ 1). 
For a >> 1 the greatest contribution to stimulated scat­
tering is made by harmonics with ll « a (as has been 
shown, the maximum increment is for harmonics with 
ll = 1). The roots of the cubic equation (15a) correspond­
ing to these harmonics, s(IJ.), are such. that ls(!l)l ~ 1. 
The very equation (15a) can in this approximation be 
written in the form s 2(!l- s) = o. Actually, making this 
substitution, we neglect effects connected with the 
propagation of acoustic excitations in the time of the 
linear interaction. This approximation is valid for scat­
tering of powerful pulses, whose duration is less than 
the period of the generated hypersound tpul < Tp. In 
this case the spectral distribution of the light radiation 
scattered in a unit solid angle for cp « 1 (both for <>. 

plane wave and for bounded beams for cp < vSJ!l;) is 
represented in the form 

G~2l(Q) = 1~> (tpui/ A) ''• exp (- Q 2/Q12), Q, = 2, 3(A/tpui) ''•. (17) 

The integrated intensity in a unit solid angle is 

I/)~ 2 ·10-• [k<•>]"vgreA(kaT) exp(}/3At~J) (17a) 
Vp2 (Atpui) •;, 

Equations (17) and (17a) are valid for A~ul ~ 1 (stimu­
lated process). 

The light spectrum scattered by the picosecond pulse 
has a maximum at the unshifted frequency in the ap­
proximation considered (Op/ A« 1). The width of the 
spectrum of stimulated scattering (A~ul ~ 1) is 
n1 = 2.3v'Atpulow.and exceeds by several fold the width 
of the spectrum of the incident pulse with sinusoidal 
filling, ow~ tp~l· Analysis of the expression for the 
increment shows that the integrated intensity of scat­
tered light sharply increases with increase in the length 
of the picosecond pulse, even if the total energy of the 
exciting pulse remains constant. 

Numerical estimates show that the scattering in 
liquids takes on a stimulated character (A~ul ~ 1) for 
pumping powers Io ~ 103 gigawatts/cm2 and picosecond 
pulse length exceeding 10-11 sec. In particular, for scat­
tering of the pulse of a ruby laser in cs2, the value of 
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v'3 Atpul Rj 3 x 10-2Io 113tpul> where Io is in gigawatts/ cm2 

and tpul in nanoseconds. 

6. SCATTERING OF SUCCESSIVE PICOSECOND 
PULSES 

A succession of picosecond pulses generated by solid­
state lasers in the regime of Q modulation ordinarily 
has a power of the order of several tens of gigawatts 
with a repetition interval oft= 10-a-10-10 sec and a 
corresponding number of pulses n Rj 100-1000. In the 
scattering of such a sequence, certain features appear 
connected with the fact that in some cases the acoustic 
excitation induced by the previous pulse does not succeed 
in being materially damped (relaxation time of several 
nanoseconds) before the arrival of the next pulse. If the 
succeeding picosecond pulse is incident on the nonlinear 
medium after the light radiated by the previous pulse 
emerges from the scattering volume, then the interac­
tion of the light waves will not take place. Together with 
this, the acoustic excitation induced by the previous 
pulses remains in the scattering medium (vp « vgr) up 
to the moment of arrival of the next pulse; therefore, 
generally speaking, "storage" of the acoustic excita­
tions from pulse to pulse is possible, up to the appear­
ance of a saturation effect. 

Analytic consideration of the scattering of a sequence 
of picosecond pulses presents no difficulties in principle 
in comparison with the scattering of a homogeneous 
pulse, but is very involved. The field scattered by the 
nth pulse consists of a series of components connected 
with acoustic excitations induced by each of the previous 
pulses and amplified by the latter. Each component has 
its own growth increment. We shall write down here only 
the maximum increment of growth of the light amplitude 
scattered after passage of the nth picosecond pulse: 

( y3 ill ) 1'3-
gn=(n-1) 2 Ati>urt;", +TAtpul· 

The threshold condition of scattering growth from pulse 
to pulse ("accumulation" of sound) has the form 

thr· cf(b.t/tp)a I . GW/ 2 
lo>lo =4,9·10-t&p(8e/8p),•[k<•l)3ti>~I' om em, 

It follows from the estimates that in light scattering 
with ~ = 0.69 micron in cs2 the value of ~hr 
= 2.3 (at)10Dipu1)3 gigawatt/ cm2 • "Accumulation" can 
occur independently of the regularity in the succession 
of picosecond pulses. Experimental realization of this 
effect for a succession of gigawatt pulses (n Rj 20-40) 
with a length of several picoseconds each is possible 
only if the relaxation time of the sound is several times 
greater than the distance between pulses. 

We note a characteristic feature connected with the 
narrowing of the spectrum of scattered light. The inci­
dent pulse, scattered by the acoustic "lattice" formed 
by the previous picosecond pulse affects the density 
distribution such that the acoustic "lattice" becomes 
more regularly established (only components with 
resonant wave vectors are amplified). For sufficiently 
large n, the acoustic profile becomes so regular that 
scattering takes place with a spectrum much narrower 
than the spectrum of the incident pulse. In this case, if 
the intensity of the scattering of the pulses in the sue-

cession is much greater than that of the spontaneous 
and the intervals between pulses is such that the acous­
tic excitation induced by the first pulse at the moment of 
arrival of the second pulse becomes much greater than 
the unexcited value, then the width of the spectrum of 
the scattered light decreases with increase in n as 
On= 01/..fn. 9> The latter expression can easily be ob­
tained if we proceed from the spectral light distribution 
scattered by a single picosecond pulse, G~2 >(o) 
~ exp (-0 2/0~), in the given approximation, to the spec­
trum of light scattered by the nth pulse, G~2 >n(O) 
~ exp (-n0 2/0~). A succession of less powerful and 
longer pulses in unbounded media (Io Rj 100-1000 mega­
watts/cm2, inul Rj 1-10 nanosec) also for definite condi­
tions (growtfi increment of a single scattering act ex­
ceeds the relaxation within the time between pulses) can 
produce accumulation of acoustic excitations in the med­
ium. 

In conclusion, we point out the possibility of a similar 
process of accumulation of temperature excitations in 
the medium for SES (ts Rj 10-a sec). For stimulated 
combination scattering and stimulated Raman scattering, 
a similar process can take place only for very high in­
tensity in the succession of pulses, since the corre­
sponding relaxation times are very small. 
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