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It is shown that correlation effects in the region of ferroelectric transitions of the displacement type 
are apparently not small and can significantly affect the thermodynamics of the transition. The first 
correlation correction to the free energy and the temperature-dependent corrections to the Devonshire 
expansion coefficients above the transition are found. The thermodynamics near the transition and in 
the ferroelectric phase is investigated qualitatively. It is shown that the correlation effects can explain 
some of the properties of the transitions, particularly the proximity of first-order transitions to those 
of second-order and the temperature dependence of the Devonshire coefficients. The results are com­
pared with experiments on BaTi~. Numerical estimates of the temperature anomalies of various 
quantities near the transition are presented. 

1. INTRODUCTION 

THE thermodynamics of ferroelectrics of the displace­
ment type is customarily described with the aid of the 
Devonshire expansionl11 of the free energy in powers of 
the polarization P and of the temperature T. This ex­
pansion is a particular case of the Landau phenomeno­
logical theory of phase transitions l21 , and for a free 
crystal it takes the form 

F(P, T) = 1/ 2a0 (T- T,)P2 + 1/ 4BP' + 1/ecP6, (1) 

where the coefficients a 0 , B, and c are assumed to be 
independent of the temperature T. If B > 0, then a 
second-order transition takes place at T = Tc, and the 
highest-order term cPs becomes superfluous, whereas 
if B < 0, then a first-order phase transition occurs at 
T =To> Tc, and the addition of the term with cPs is 
essential for the stability of the system. For a more 
detailed description of the elastic, striction, and other 
properties, the expansion of F is written in the form of 
a series in P and in the deformations ua~ (see[l) or 
Eq. (3) below). The aggregate of the results obtained in 
this case is in qualitative agreement with experimentl11 . 
There is therefore a widely held opinion that the expan­
sion (1) is valid for the ferroelectrics under considera­
tion and has a physical meaning, and consequently 
attempts were also made to derive it micro­
scopicallyl3'41. 

However, the accumulation of data on perovskites, 
which are the most thoroughly investigated ferroelec­
trics with a displacement-type transition, points to a 
number of facts which are difficult to explain within the 
framework of ( 1), and require additional artificial hypo­
theses. 

1. All the known transitions of the displacement type 
are of first order, although they are close to second­
order transition in the sense that the difference To- Tc 
<< To, and the spontaneous polarization P and the ion 
displacements Ax in atomic units are quite small. In 
the expansion (1) this would correspond to a systematic­
ally negative B and to just as systematically anomal­
ously large value of c. 

2. In contrast to the assumption that the coefficients 
of (1) are independent of T, measurements of B in 
BaTi~ in an interval ~ 30° above To yielded a rather 
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strong temperature dependencel4' 51 , approximated by 
the formula B(T) ~ Bo [1- 9(T/To- 1)]. Attempts to tie 
in this dependence with the temperature dependence 
P(T) below To leads to just as sharp a dependence of c 
on TlsJ , namely, (T = Co [1 - 8(T /To- 1) ]. 

The indicated properties of B and c appear to be 
particularly strange if an attempt is made to derive (1) 
microscopically, for example by the methods ofl3' 41 . In 
accordance with the sense of the expansion (1), the quan­
tities P and T are small parameters, and the expansion 
is in powers of the ratios of T to the atomic energy Eat 
~ 1 eV and of the ratios of the displacements Ax to the 
inter-ion distances a, viz., F(P, T) = f(Axa-\ TEat-1). 
The ratios Ax/ a and T I Eat are of the order of several 
hundreds, so that in order for the second and third 
terms of (1) to be commensurate the parameter c in the 
corresponding atomic units should be larger by thou­
sands of times than B. The temperature dependence of 
B and c in the crystal is a result of anharmonic correc­
tions of relative order TE~t• so that the temperature 
corrections to B and c should apparently also be smaller 
by hundreds of times than the values indicated above. 

3. In the Devonshire expansion, the elastic moduli 
Cik in the paraphase (or in the ferroelectric phase at 
constant P) should not change with T. Experiment indi­
cates apparently that cik decreases on approaching 
Tol1' 71 a possible connection of anomalies of this type 
with the correlation effects in the region of the transi­
tion was discussed by LevanyuklsJ ). 

4. An argument in favor of (1) is frequently assumed 
to be satisfaction of the Curie-Weiss law E(T) 
= C(T- Tcr1 at T >To. However, this relation was 
usually verified in a narrow interval of P, on the order 
of several dozen degrees. In this interval, variation of 
the parameters C and T c makes it possible, as will be 
shown below, to approximate also the more complicated 
1/ E(T) dependence by a linear one. To describe E(T) in 
broader intervals, one uses the formula E(T) = EL 
+ C(T- Tcr1. As noted inl91 , the values of EL obtained 
in this case turn out to be approximately four times 
larger than expected from the usual dispersion formula 
for a crystal (in which account is taken of the presence 
of the soft Cochran branch of the oscillation llol); this 
also calls for an explanation. 

These and some other facts suggest that the phenom-
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enological theory for a quantitative description of the 
transitions of the displacement type may be just as in­
convenient as for transitions in magnetic systems of the 
order-disorder type£11 ' 121 • The general cause for the 
deviations from this theory are, as is well known, 
correlation effects and the interaction of critical fluc­
tuations in the transitionsu3 ' 111 • In transitions of the 
displacement type, these effects consist of interactions 
between phonons of the critical low-lying branches. It 
is shown in £41 that the correlation parameter ~ (T), 
which determines the magnitude of the deviations from 
the predictions of the phenomenological theory, is pro­
portional in these substances to TE~t• but increases on 
approaching the transition. 

A quantitative estimate has yielded 

(2} 

Here b11 is the coefficient of P 4/4 in the Devonshire ex­
pansion (3}, and i\. and s determine the spectrum of the 
critical phonons w c (k) at small values of k; thus, 
neglecting the anisotropy, w~(k} = i\.E-1(T} + k2s. Since 
no data on the spectra were available at that time, the 
value of a for BaTi03 was estimated in£ 41 , from the 
values of s for SrTiOa lHJ • This yielded a ~ 10-2 and 
has made it possible to regard the correlation effects 
as small. However, the data of Shirane et al. £151 , which 
were published soon thereafter, have shown that s in 
BaTiOa is smaller by several dozen times than in 
SrTiOa, so that a ~ 1 and it turns out that ~ ~ 1 at 
T ~ To. Thus, in the vicinity of the transition the corre­
lation apparently are not small, and, as will be dis­
cussed below, it is possible that the transitions occur 
precisely at such T - T c that the correlation effects 
cease to be small. The small magnitude of these effects 
makes a quantitative description difficult, but a possi­
bility appears of expanding a number of qualitative 
effects. 

Since. there are still no microscopic methods for des­
cribing the region ~ 1::. 1, we confine ourselves below to 
a calculation of the first correlation correction to F, 
which corresponds at T > To to the first approximation 
in terms of ~. The results have a quantitative meaning 
only when ~ « 1, i.e., not too close to the transition. 
But since in these substances ~ is apparently not much 
larger than unity, the results will probably be suitable 
for a qualitative description and for semiquantitative 
estimates also at the limit of the employed approxima­
tion ~ ~ 1. 

We use the notation and the results of£41 , which is 
henceforth cited as I. The critical and acoustic coordin­
ates xc and u will be defined in accordance withusJ, in 
which a connection the constants 11 and llr of I a:re set 
equal to zero. 

2. CALCULATION OF THE FIRST CORRELATION 
CORRECTION TO THE FREE ENERGY 

As discussed in[U' 41 , to find the first correction to F 
it is necessary to find the irreducible self-energy part 
~ of the correlation (Green's) function Gin the first 
order of perturbation theory. Then F is determined by 
summing all the chains with these~, and in accordance 
with the rules for writing down the diagrams U?J , the 

chain with n blocks ~ is divided by n, so that the sum of 
the chains is not a geometric progression, but the ex­
pansion of the logarithm. Graphically, F and ~ are 
shown in Fig. 1; just as in I, the crosses with the 
dashed lines denote the mean values of the coordinate 
xc and of the deformation uaf3' In the expression for F 
and ~, we have discarded all the terms of higher orders 
in P and T, since, as noted in the introduction, their ad­
dition is apparently both inconsistent and unnecessary. 

-=-+~ 

J;' X X f' 

z;:::. --o- = j_ + jL+ il-r -o-
FIG. I 

The analytic expression for F, corresponding to 
Fig. 1, is 

Here Fo denotes the regular part ofF, which does not 
depend on P or uaf3• the first six terms are the Devon­
shire expansion and are discussed in I, while the last 
term Ic describes the contribution of the correlation 
effects. The zeroth Green's function G( 0 >(k, iwn) is 
given by expression I(26) at S0 = Q = 0, i.e., it corre­
sponds to neglecting the gap in the spectrum of the 
critical phonons. In the correlation term Ic, the last 
two terms in the brackets are subtracted from the first, 
because their sum (-yTuaa + 27TP2TC(/) has already 
been taken into account in the Devonshire part of F. 
Since the inte~ral over k in Ic converges at small 
k ~ (T- T c) 1 2 and small P, only the low-frequency 
critical and acoustic branches are of importance in it, 
so that G~j and ~~j can be taken to mean six-row ma-
trices and their expansion at small k can be employed. 
In this case ~lj ;>' 0 only when i and j are the critical 

components; in this case ~~{3 = S~f3 = ~~~ + "A/Jaf3' 

where~~~ is given by I(24) (with the already mentioned 
discard of the terms of higher order ~ TP2 and P 4). The 
components f af3 are equal to Q01 f3 of I(25) when a and f3 
are the acoustic and critical components, respectively, 
and are equal to Q~f3 when a and f3 are the critical and 
acoustic components, respectively; in all other cases 
they are equal to zero. The expansion of G0 is 

co _,_(A(k) V(k) ) 
( ) - V(k) S(k)+ lcg1 • 

(4} 

The matrices A, V, and S, which are proportional to k2 , 

are determined here by formula I(9}, gz is given by 
formula I(10); the term >..gz, just as in I(39) and I(30}, 
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describes the influence of the Coulomb forces; in the 
solutions, A must tend to infinity in accordance with 
1(30). 

We confine ourselves, as beforel4' 161 , to a region of 
not too low temperatures, T > b w c (0), when in the sum 
over n in (3) it is sufficient to retain only the term with 
n = 0, corresponding to the use of classical statistics. 
Going over from summation over k to integration with 
respect to d3k = k2dkd n, integrating over k by parts, 
and going over from six-row matrices to three-row 
matrices, we obtain for Ic: 

Ic =- _!_ \ ,dQ ~ dk Sp [ , , k' (ikz - q) 
3·(2n)3 0 k's-ikz-t-a+l.g1 2 

+ k's~t.g,;; + -}(k's:t.g,z)'] · 
The matrices s, z, and 6, which here no longer depend 
on k, are defined here by 

k'; = S- V k 1V, iki = Q+A-1V + VA-1Q, ,; = S0 - Q+A- 1Q (5) 

To effect the transition A - oo it is convenient to 
change over to a coordinate system in which one of the 
axes is directed along k, and the other two are perpen­
dicular to it (to the "k-system"). In this system, the 
transition A - oo in (4) corresponds to retention of only 
the "transverse" components r 22, r 23, r 32 , and r33 in all 
the matrices qk. In connection with subsequent calcula­
tions, we present the explicit form of the matrix of the 
transition from the system of the crystal axes x, y, z to 
the k-system, in which the axis 2 lies in the plane (k, x): 

r' = UrU-1 = UrU, U = (- ~~ n~~,/n~ :,~.In~). 
0 - n3/n~ n2jn~ 

(6) 

Here ni is the projection n = k/k on the crystal axis and 
n}_ = 1- ni. In the k-system, the integration over k is 
carried out in elementary fashion, and yields 

T s ';, 'h 
I,=- 48n' dQ (u+ + u- ), 

1 
u± = { cr2ss + cr3s2 - 2cr,s,- z2 

2(s,sa- s,2) 

± [ (crzs3 + cr,s,- 2cr4s4 - z2) 2- 4(s2s3 - s,') (u2cr3 - cr42)]'1•}, 

where r2 = r22, r3 = r33, r4 = r23, z = Z4 = Z23, and the 
quantities u. depend, generally speaking on n. 

(7) 

Formula-(7) gives a general expression for the corre­
lation correction for any direction of P. To calculate Ic 
in closed form it is necessary to substitute in (6) the 
expliGit forms of So and Q in accordance with 1(24), and 
1(25), to substitute A, V, and Sin accordance with 1(9) 
(for the tetragonal phase, these matrices are given 
inl181 ), and to multiply the matrices. 

3. REGION ABOVE THE TRANSITION 

Above the transition in not too strong fields, Ic can 
be expanded in powers of P and u0113 , determining by the 
same token the correlation corrections to the Devon­
shire coefficients in (3). In the general case, this yields 
cumbersome expressions, the presentation of which is 
meaningful only for numerical calculations. For sim­
plicity and clarity, we neglect the anisotropy of the 
spectra above the transition, putting in 1(9) aa = sa= va 

= 0, but we retain in the solutions the striction aniso­
tropy qa = q11 - ql2- q 44, so as to show that averaging 
over the angles in (7) decreases noticeably the contribu­
tion of the anisotropy terms, so that in the case of ordin­
ary anisotropy of the order of unity, its influence can be 
also quantitatively small. Formula (7) for P = Px takes 
in this case the form 

1 

I - - __!_ )..'/, S dn {f 4n T- Tc- 2 2 
c - 96 'I ( 2 -1) '/ 1 L c t"]q+ + ~q-.n 2 St - Vt at 2 0 

)]'1 
where 

(8) 

(9) 

Substituting (8) in (3) and expanding in powers of P, 71, 
and (;, we obtain an expression for F above the transi­
tion with correlation corrections of first approximation: 

( 7 ) T-T + 3~'c- 1- 40 sx- + 2nP2~ (1- ~ai) 

( 
a1 ) b11P4 

-l]P"q+ 1- ~.2 - 2~q-(1- £a,)+-4- (1- saa). (10) 

Here ~ = ~ (T) is given by the right side of (2) with the 
substitution s - St - Vt ai\ and the constants ai, K ±' and 
c_ are defined by 

4~- 2q2 - d' 4eq + 2bd 16e2 + 362 

a1 = 1 + 6 - 15 - 105 ' 

7 7B-2q'+7d' 2eq+bd 12e2 -j-62 

a, = 20 - 60 42 315 

6 ( d' )' 9fl'- 8Bq' + 3q' 1 ( a• ) a3 =- 1 -- + +- 1-- ( ~- q2) 
5 3 30 5 3 

8 ( d' B-q') - 35 (2eq+6d) 1-3 +-4- + ... , 

q. 
E=--

1buC44' 

(11) 

In the formula for a3 in (11), we have not written out, for 
the sake of simplicity, the terms of higher order in E 

and 6, whose coefficients, just as in a 1 and a2, decrease 
rapidly with increasing power of E or 0. 

The first term of (10) describes the correlation 
contribution to the specific heat, the second the contri­
bution to the thermal-expansion coefficient, and the next 
are the corrections to the elastic moduli c., to the stric­
tion coefficients qik, and to the nonlinearity b11• The 
order of magnitude of these corrections and a compar­
ison with experiment on BaTi03 are discussed in Sec. 6. 
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4. QUALITATIVE INVESTIGATION OF THE VICINITY 
OF To IN THE TETRAGONAL PHASE 

We start from the assumption[19J that the phase tran­
sition in the "clamped" lattice, in which no account is 
taken of the strictfon interaction of the critical degrees 
of freedom with the acoustic ones, is a second- order 
transition. Then, as shown in[2ol, the striction interac­
tion causes a first-order transition to occur in the sys­
tem, and the transition temperature To is determined, 
rougly speaking, by the condition that the product of the 
corresponding striction constant by the correlation 
parameter, which increases on approaching the transi-

f 't I [2ol . 'd d tion, become of the order o um y. n 1s cons1 ere 
the case of small striction, when the transition occurs 
in the region of strong correlation effects, where it is 
reasonable to describe these effects by dimensional 
methods [12 J , and the employed approximation ~ < 1 is 
utterly inapplicable[11J. However, in the ferroelectrics 
under consideration the striction, generally speaking, 
is not small, and the parameters K±' q, etc. are of the 
order of unity. It is natural to assume that in this case 
the transition occurs already at correlation effects on 
the order of unity, i.e., on the boundary of applicability 
of the employed approximation ~ ~ 1. Then we can 
attempt to employ relations (3) and (8) also for the 
description of the vicinity of To and of the region above 
T0 • This can give reasonable qualitative and sometimes, 
as in the case of ''strong striction'' described below, 
also qualitative description of the transition. In addition, 
its consideration makes it possible to find the natural 
variables and similarity relations, and also certain in­
equalities between the thermodynamic coefficients. 

We confine ourselves, as above, to the tetragonal 
case P = Px, and introduce in place of P, T, 11, l; the 
dimensionless variables x, t, u, and v: 

b11Px"=a2x, 4n(TC-Tc) a2t, 2q+TJ=a2( u+x';). 

2q_(;=a•(v+x~); (12) 
here 

T b11'J..'Io 
a= 

32n'" (st- Vt2at-1)'1• 

The quantity a ~ TE!tl « 1, and the phase transition oc­
curs at ~ = 2t-112 ~ 1, i.e., at t"'" 1. 

In terms of the variables (12), the dimensionless free 
energy cp takes the form 

b11 (F-F0) u2 v2 xt vx" q:'= '=--+--+-+ --
1 a• 2x..r X- 2 4 

f 

f 

- ....!_ S dn1(t- u + v + bx- xq2n12)'f• 

3 0 

- _!__ S dn1 {t- u- v(2- 3n12) + x[b + cnJ.•- n1•(q + 2enJ.2) 2 
3 0 

- nJ.2 (d + lln12) 2]}''•; 

v = 1 - 0.5x+- X-, b = ~ + 0.5(X-- x..r), c = 3- ~ -1.5X-. 

(13) 

The equilibrium values of u, v, and x are determined by 
the conditions acpjau = acp/av = acp/ax = 0. In describing 
the transition with the aid of (13), we can use the usual 
consideration concerning the minimum of F. Far from 
the transition, both when t ~ 1 and when -t ~ 1 and 

x ~ 1, the term 1c in (13) is small compared with the 
Devonshire cpD, but when t ~ 1 the presence of Ic is 
significant and leads, generally speaking, to the appear­
ance of an additional minimum of cp(x, v), besides the 
point x = v = 0. If this. minimum becomes smaller than 
cp(O, 0) at t = t 0 , then a first-order transition takes 
place. Since a test of expression (13) for a minimum 
is a cumbersome task, we shall illustrate these con­
siderations by analyzing two particular cases of special 
relations between the constants in (13). As already 
noted, in the case of the exact description of the corre­
lation effects (and not the model description as in (13)), 
the second minimum and the first-order transition must 

1 [20] apparently take p ace . 
1. The case of "strong" striction, v << 1. From the 

stability of the cubic phase far from the transition it 
follows that v > 0; let us consider the case when the 
sum of the striction constants 0.5 K+and K_ is close to 
the maximum value, unity. It is geometrically obvious 
that in this case the quality cp(O, 0) = cp(x, v) will be 
reached already at quite large t and x, whereas u, v 
<< x. Therefore, accurate to first order in v ~ t- 1 

.... x-112 , we can write the function cp in the form 

xt vx• ax'/, ( u• v2 -- -) q:=-+---+ -+--bu(t-u)yx-bvvl'x . 
2 4 3 2x+ X- (14) 

Here the constants a, bu, and bv are obtained in obvious 
fashion by expanding (13) at large values of x; the term 
in the parentheses is a small correction of the order of 
v to the first three terms, and is given to illustrate the 
character of the expansion. Confining ourselves to the 
first term, we find that the transition point to and the 
x(t) dependence are determined by the relations 

2a2 4a• - 3 -( 1/ Bt ) 
t0 =9v, Xo=x(to)=gv•, 1"x=41"xo 1+ y 1-ru;;- . (15) 

If we define the "Curie-Weiss" point tc by the rela­
tion acp/axlx=v=O = 0, then in this case tc "'"1 and we 
get x(tc)/x0 Rj 9/4. Thus, the "strong" striction .c?rre­
sponds to very rapid growth of x below the trans1bon, 
although it can be shown that the terms of higher order 
in v in the expansion, slow down this growth noticeably 
already at v ~ 0.2-0.3. We note also th}!t since in this 
case the correlation parameter ~ = 2t-1 2 is still small 
in the transition region, the employed approximation of 
the self-consistent field is quantitative, since the 
"dangerous" region of large correlations is not attained. 
The term Ic is comparable with the "zeroth" approxi­
mation cpD in (13) only as a result of the special small­
ness of cpD, whereas the terms of next higher order in 
~ are smaller in terms of the parameter v. 

2. Case of "weak" striction. At a certain ratio of 
the constants in (13), a case is possible when x and v 
are small in the transition region: x, v << t- u. Thus, 
if K+ in (13) is small, the corresponding condition takes 
the form 

A= a3 - va1 +1!-a~(4a,- 0,7x.-)-•~ 1. 

Since physically this means that the transition is close 
to a second-order transition and should actually be ac­
companied by strong correlations, Eqs. (7) and (13) are 
not quantitative in this case, but make it possible to 
trace the character of the results obtained in the case 
that is the opposite of strong striction. 
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The expansion of cp in this case is in powers of x and 
v up to third order, and is analogous to the Devonshire 
expansion (1), but the coefficients depend on t and u. 
The general formulas are similar to the Devonshire 
formulas, but are cumbersome, and we confine our­
selves to indicating the dependence x(t) in the vicinity 
of the transition t- tc ~ to- tc ~ A2 « 1. We have 

2 [ ( 3 f - fc ) '''] x(t)=-Xo 1+ 1---- , xo~L'>. 
"l 4 lo- tc 

(16) 

In this case the ratio x(tc)/xo = 4/3, so that the polariza­
tion increases quite slowly with decreasing t. ·In the 
intermediate cases of "medium" striction, the depen­
dence x(t) in accordance with (13) has apparently the 
character intermediate between (15) and (16). 

We have used relations (12) above only for a model 
investigation of F in accordance with formula (13). How­
ever, as already noted, the transition region for the 
considered substances is characterized apparently by 
the same values of the parameters x, t, u, v "" 1, while 
the transition temperatures To vary over a wide range 
for the different substances. Therefore (12) can be re­
garded as a set of similarity relations, by putting in 
them Xo ~to~ Uo ~ vo ~ const for different transitions. 
This leads to certain statements which will be discussed 
in Sec. 6 below. 

5. RHOMBIC AND RHOMBOHEDRAL PHASES 

We have considered above the tetragonal phase, in 
which cp = cp 7 was given by (13). Using (7), we can also 
consider the rhombic (cp = 'Pr) and rhombohedral 
(cp = 'Pp) phases. We write out first the general expres­
sion for the Devonshire part (3) in the notation of (12) 

u 2 3u2 + w2 u,2 + u,2 + vs2 x + y + z 
c:pv = -2 + 3 + 2 2 + 2 t 

"+ "- q 
xy + yz +zx 

:- 1-' 2 . (17) 

Here 

11 =' 1- ~ + q2 -1,5x-, a2y = baP,2, a'z = bi1Pa2, 

a2 (w + 3/ 4x_(y- z)) = q_(u22 - u33), a2 (u4 + q2yyz) = q44u23 , (18) 

and v5 and v6 are obtained from v 4 by cyclic permutation 
of the indices 1, 2, and 3. 

Below the transition point t = tD = 0 we have 'PD < 0, 
and the values of 'PD in the different phases are related 
like 

1 1 1 
(jlDT: <jJDc: (jlDp = ~: V- ~-t/2 : V- 2[!/3' (19) 

When JJ. > 0, the minimum of 'PD corresponds to the 
rhombohedral phase x = y = z, and when JJ. < 0 we have 
the tetragonal phase x"" 0, y = z = 0. Therefore the 
possible existence of a rhombic phase x = y"" 0, z = 0 
in this picture is due entirely to correlation effects. 
When JJ. > 0 the possibility that the system will go 
through a tetragonal and (or) rhombic phase before the 
rhombohedral phase is reached is also connected with 
the presence of Ic, namely, the correlation effect, as 
noted above, decreases with increasing distance from 
Tc, so that the system tends to a minimum of 'PD with 
decreasing T. 

Explicit calculation of 'Pr and 'Pp in the case of small 
anisotropy E, 6, 1 - f3 "" 1 leads to expressions that are 
more cumbersome than (13). To illustrate the course of 

FIG. 2 

i 

!\ 
\J: 

cp 7 , 'Pr• and cpp with decreasing T, let us consider in (7) 
the case of small anisotropy E, 6, 1 - f3 << 1, assuming 
as before that aa = sa = va = 0; then, as can be readily 
seen, we also have JJ. << 1. Then in the approximation 
linear in E, 6, and JJ. it turns out that the following rela­
tions hold between the differences cp 7 p = cp 7 - 'Pp and 
'Prp = 'Pr- 'Pp• at the same value of P 2 = b1; 1a 2 (x + y + z) 
and at a transverse dielectric constant EI in the tetra­
gonal phase: 

[ ( 8cp-r) ]-' 2n Ej_'=2n a2 - = 2 • (20) 
iJy y~o a 3(q:p- <pt) 

The differences 'PT. and 'Prp are proportional to the 
anisotropy and to t~e square of the polarization, so that 
if P2 increases below the transition point, then cp 7p and 
'Prp' generally speaking, increase. But if it turns out, 
for JJ. > 0, that cp 7p(to) < 0, then, as already noted, the 
value of cp 7p should reverse sign somewhere with de­
creasing g, and the relative variation of cpT' 'Pr• 'Pp and 
E I is as shown in Figs. 2 and 3. 

We see that in this approximation, which is linear in 
the anisotropy, the rhombic phase is missing, as before, 
but the transition from the tetragonal phase to the 
rhombohedral phase, accompanied by an increase of E1 
(which is infinite in this approximation), is possible. 
The relations needed for this purpose (which correspond, 
generally speaking, to smallness of JJ.), can be obtained 
by investigating the explicit form of cp 7 and 'Pp· Thus, 
in the strong-striction case considered above, l.J << 1, 
this condition takes the form 

-(7 /)) 3 A = l'2 - d2 - e +- -- qe. 
8 16 4 

(21) 

In real substances, the anisotropy is not small, so 
that the considered approximation, which yields (20), 
is, in the main, illustrative. In the next-higher approxi­
mations in the anisotropy, the relations (20) and the 
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triple intersection of cp7' 'Pr and cpp at one point, shown 
in Fig. 2, do not take place. If as a result of this 
"splitting" the course of 'Pr relative to 'Pp and cp7 is of 
the form shown dashed in Fig. 2, then we go through all 
three phases in succession with decreasing t, namely 
7 - r - p, and the value of E 1 is finite at the point of 
the second transition. 

6. DlSCUSSION AND COMPARISON WITH EXPERIMENT 

In connection with the noted difficulties of the quanti­
tative description, the most reliable results in the pres­
ent analysis are the qualitative ones; let us compare 
them with experiment. From the fact that in the given 
substances the effective striction constants K+, q, E, 0 
and the correlation effects in the transition region are 
of the order of unity, it follows, in accordance with Sec. 
4, that the transitions should be of first order. Further, 
we can explain the basic fact, namely the closeness of 
the transitions to those of second order, namely, ac­
cording to (12}, the values of ~ (T} = ~(To) ~ 1 at which 
the transition takes place, correspond to 

(To- Tc) /To ~ To/ BaT~ 1. (22} 

If it is assumed that the microparameters of the sub­
stances under consideration (particularly perovskites}, 
K1 , aT-\ etc., which enter in (12) and (17), are of the 
same order of magnitude, namely atomic, then, accord­
ing to (12), a systematic growth of the quantities 
To- Tc, P(To), t(To}, etc. should be observed with 
increasing T0 • A comparison of the data on BaTi()g 
(To~ 400°}, KNb()g (To .... 700°), and PbTi()g (To .... 760°) 
confirms this tendency. The correlation effects lead to 
a temperature dependence of the thermodynamic coeffi­
cients in the vicinity of the transition; at small values 
of ~, it is given by (10). We see that the elastic moduli 
c1 (T} and the nonlinearity coefficient b11(T} decrease, 
and the change of bu (with allowance for 11 = 1- 0.5K+ 
- K_ > 0) is much stronger than for c+. In the dielectric 
constant, t'he approximation of the relation E-1 
= T(T- Tc)C-1(1- ~a1) by the formulaE= EL 
+ Ce(T- Tcef1 leads to the need for introducing a large 
EL' Thus, the facts indicated in the introduction find a 
natural explanation. 

The aforementioned "dependence of the Curie- Weiss 
constant C on T'' should also cause measurements near 
To to yield larger values of Ce than far from To. Such a 
tendency is apparently not contradicted by experi-
ment ll,sl , although a considerable scatter of Ce is ob­
served in the experiment. The results of Sec. 5, namely 
that the rhombohedral phase is stable when Jl > 0 at 
low values of T and the tetragonal phase is stable at 
Jl < 0, and that in the former case the transitions can go 
from the tetragonal to the rhombic and to the rhombo­
hedral phase and from the rhombic to the rhombohedral 
phase but not vice versa, must apparently be compared 
with experiment with caution. We have not taken into 
account quantum effects that are important at low 
T ~ flwc, as well as the presence of other "non-ferro­
electric" degrees of freedom, which can lead to addi­
tional transitions. Therefore the foregoing statements 
must be taken apparently only as indications of a general 
tendency of ferroelectric transitions; in this sense, they 
can probably be regarded as in accord with the data inlll 
on the transitions. 

Let us attempt to obtain numerical estimates for 
BaTi()g, the most investigated perovskite. The formulas 
in (10) have been derived for ~ « 1, but correlation 
effects are observed mainly where they are not small, 
i.e., in the vicinity of To. For lack of something better, 
we shall compare with experiment the approximation of 
(10) which is linear in ~, although the "corrections" 
involved in this case may become comparable with the 
"zeroth" approximation. This nevertheless gives an 
idea of the order of magnitude, although such a compar­
ison, besides the already mentioned difficulties, is ag­
gravated also by the scatter and by the inaccuracy of the 
experimental data. 

According to experiment[ll and formula (10}, the 
quantities qik(T} and cik(T} change little in the vicinity 
of the transition, so that in first approximation they can 
be identified with the constants qik and cik in (3). Ac­
cording to[7 ' 1l , we have (in cgs units): c+ = 4.2 x 1012, 
c_ = 0.82 x 1012 , q+ = 2.1, q_ = 1.3, C44 = 1.1 x 1012, and 
q44 = 0.78. Then it follows from the inequality 11 > 0 
that b11 > 3. 5 x 10-12 , and from the condition Jl > 0 it 
follows that Jl = 1 - {3- b~~ x 3. 7 x 10-12 > 0. As noted, 
the presence of three successive transitions corresponds 
apparently to small Jl, so that it can be assumed that 
Jl « 1 in BaTi()g (and KNb()g). 

In comparing the E(T) dependence with experiment, 
we start from the fact that the "Curie-Weiss law" ob­
served near To is an interpolation of the relation (10) 
into this region: 

T-Tm T-T. o 
--~--(1-6at), T-Tol'5;50. (23) c. c 

From the foregoing figures and from the inequality 
for b u it follows that the quantities q2, d2, E2, 0 2 in (11) 
are all ~ 0.1-0.5, and, as will be shown below, {3 is 
also small. Therefore, in first approximation a1 ~ 1, 
a2 ~ 0.35, and a3 ~ 1.2. We determine the constant C 
from measurements made far from the transition[9' 2ll: 
C ~ 1.2 x 105 • (Here and below, C and Tare in degrees 
Kelvin.~ We determine the constants of the left side 
from[22 : Ce = 1.73 X 105 , To= 393, To- Tee= 10. 
Then, equating the functions and the derivatives in both 
sides of (23), for example at 7 = T- To= 30, we get 
To- Tc ~ 24 and for ~(7} we obtain ~(30) ~ 0.5 and ~(0) 
f=:; 0. 7. It is easy to verify that the experimentally ob­
served 10-20% variation of C and Ce does not exert a 
strong influence on the value of ~ , and particularly on 
~~ = ~ (7}- ~ (0). Figure 4a illustrates the temperature 
dependence of both halves of (23). We determined the 
coefficient b11 with the aid of[5J , in which the nonlinear­
ity coefficient B11 of the free crystal was measured in 
the interval 7 ~ 30. According to (10) this quantity is 

to ~ to• 

8 

{j 

" 

FIG. 4 
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equal to bu(T)v(T), where the dependence of b11 and v 
on T denotes allowance for the correlation corrections: 

Bu ~ bu [v- 6 (a3- 1/2al'x+- 2a21<- + 1/sx+' + 7/40x_2) ]. (24) 

Equating (24) to the experimental value of B11 R: -0.67 
x 10-15 at r = 20, we get b 11 R: 4.4 x 10-12 • The corre­
sponding values of K+ and K_ are equal to 0.31 and 0.64, 
and the condition p. ~ 0 yields {3 ~ 0.16. The tempera­
ture dependence of (24), together with the experimental 
points from lsJ is shown in Fig. 4b. We note that when 
~ ~ 1 formulas (10) apparently overestimate the corre­
lation effectsl111 • Therefore a certain overestimate of 
the ''theoretical'' curves in Fig. 4 at small r over the 
experimental ones is natural, and might possibly be 
even larger if the "true" values of b11, C, and To-T 
are substituted in (10). We see, however, that the c 
chosen values describe satisfactorily the course of 
E(T) and Bu(T). The order of magnitude of ~ (T~ agrees 
also with formula (2). If we assumel151 that .A 1 2 R: 0.8 
x 1013 Hz and recognize that when anisotropy is taken 
into account the value of s in (2) is equal not to sv but 
to some combination of stand sa averaged in some 
manner over the angles (it is too complicated to write 
out here), then the results correspond to s R: 2 x 1010 

h 10 ' w ereas st""' (1-1.5) x 10 , and sa is apparently larger 
by several timesu5 •231 • 

Let us discuss now the anomalies of c+, q+, and also 
Of the Specific heat Cv and of the coefficient of linear ex­
pansion yT: 

( 8n2T ) 
Cv=C,o 1+6--2- , 

buG c,-o 
d~ ( 4nq+ ) '\'T=-=yo 1-6 . (25) 
dT , 3b 11Cc+yo 

Here cvo and y 0 are the specific heat and the expansion 
coefficient far from the transition; in BaTiOs near To 
we have Cv0 R: 15v(;\ where Vc is the volume of the cell, 
and Yo R: 10-5 deg-1• Using the foregoing estimates, we 
find that in BaTiOs all these anomalies are apparently 
small. Thus, in the interval r = 30-0 we have~ 
= ~ (30)- ~ (0) R: -0.2, so that in accordance with (10) 
we have l:!.c+/c+""' 0.015, t:.c_/c_ ""'0.02, l:!.q+/q+ ~ 0.1, 
t:.q_jq_ ~ 0.07, l:!.yTho""' 0.08, and l:!.cv/Cvo- -0.003 
(the special smallness of l:!.cv is connected with its 
"l'b 1" all -1 ) 1 era sm ness ""TEat . The observation of these 
anomalies called apparently for an increase in the ex­
perimental accuracy. The observed anomalies of the 
elastic moduli l1 ' 71 and of the striction coefficientsl241 

have the correct sign, but seem to be too large to be 
attributed only to these effects, although, as already 
noted, -Qur estimates cannot be regarded as quantita­
tively exact. 

7. CONCLUSION 

Thus, the previously advanced opinion l4J that the 
phenomenological theory describes well the phase tran­
sitions of the displacement types, and that the correla­
tion effects are small in this case, is apparently in­
correct. In this case, the Devonshire expansion (1) in 
the vicinity of and below T0 must be regarded simply as 
an empirical formula, having no microscopic meaning. 

The author is grateful to N. E. Zelts for great help 
with the work and to A. I. Larkin for numerous discus­
sions. 
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