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The electrical properties of semiconductors with an S-shaped current-voltage characteristic in 
crossed magnetic and electric fields are considered. The uniform current distribution in electric 
fields that correspond to a negative differential resistance is unstable. It is shown that under these 
conditions and for a certain sample geometry a solitary current density wave (current pinch) is 
formed and moves with a constant velocity in a direction perpendicular to the electric and magnetic 
fields. The wave is stable for a given total current passing through the sample. This phenomenon 
leads to oscillations of the electric field in the external circuit. The variation of the current-voltage 
characteristic of the sample, due to movement of the current pinch, is considered. Estimates of the 
pinch velocity are made for various mechanisms of formation of the S-shaped current-voltage char­
acter is tic. 

IN systems with negative differential resistance, the 
homogeneous distribution of the current or the field, 
under definite conditions, becomes unstable[1• 21 • In the 
case of a S-shaped current-voltage characteristic (with 
voltage ambiguity), the distribution of the current 
density in the sample becomes inhomogeneous and a 
current pinch is produced. The pinching of the current 
was experimentally observed in[3- 6 l. The pinch in suf­
ficiently long samples is in a state of indifferent 
equilibrium relative to translation[7 l. Therefore even 
weak perturbations should shift the pinch along the 
sample. It is clear that pinch motion can be caused 
by a magnetic field perpendicular to the current. 

Unlike the motion of a plasmoid in a plasma injector, 
in the systems considered here the motion of the cur­
rent pinch is not connected with the transport of mass 
and does not reduce to the trivial action of the Lorentz 
force, but is determined by thermomagnetic phenom­
ena. Thus, in a system with the superheat mechanism [?J, 

the carrier density is in general constant in the sam­
ple and the motion of the current pinch is a solitary 
wave of the effective temperature of the electrons. 
Since the electron mobility depends on the effective 
temperature, the current density wave is connected 
with such a temperature wave. In the case when the 
S-shaped characteristic is connected with breakdown 
or with a semiconductor-metal phase transition, the 
motion of the current pinch constitutes a solitary ioni­
zation wave. 

PINCH VELOCITY 

Let us consider a substance in which the negative 
differential resistance is the result of a sharp depend­
ence of the conductivity on the temperature. Such a 
dependence a( T) is observed, for example, in mater­
ials with a semiconductor-metal phase transition[8l, in 
compensated semiconductors[6 l, in InSb at low tem­
peratures [91, etc. The temperature T can in this case 
be either the lattice temperature or the effective car­
rier temperature. A linear analysis of the superheat 
instability of a uniform distribution of the currep.t_in a 

90 

transverse magnetic field B was carried out inl10 J. 

Whereas at B = 0 the largest growth increment is 
possessed by waves with a wave vector k perpendicu­
lar to the electric field E, in the presence of a mag­
netic field the largest increment is possessed by long­
wave "oblique" waves with a vector k making an 
angle 

with E, where CT~z and CT~z are the derivatives of the 
components of the electric conductivity tensor with 
respect to temperature, E is directed along the z 
axis, and B along the y axis. Waves with k?; n/L 
( L-characteristic thermal length) attenuate. The mo­
tion of a current pinch in a magnetic field, naturally, 
can be observed only in the case when the dimension 
of the sample in one of the directions (x, Fig. 1) 
greatly exceeds the pinch dimension. A linear analysis 
of the superheat instability for such a sample shows 
that if the sample dimension in the direction z is lz 
$ L tan cp, then the largest increment is possessed by 
waves with a wave vector directed along the x axis. 
When this condition is satisfied, it can be assumed that 
the temperature and the current density do not depend 
on zu. 

To determine the peculiarities of the behavior of 
the current pinch in a magnetic field, it suffices to 
consider the case when the current density and the 
temperature in the sample vary in the x direction. 
Such "one-dimensional" pinches (layers) of current 

FIG. 1. Geometry of sample 
and its arrangement in electric 
and magnetic fields: I - semicon­
ductor with S-shaped character­
istic, 2 - metallic electrodes. 
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1>We note that when a magnetic field is applied to a sample having 
the large dimension along the z axis, the stationary distribution of the 
current may in general not have the form of a pinch, and may comprise 
moving "oblique" magnetic striations [ 11 ]. 
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are stable when the sample dimension in the y direc­
tion is smaller than the pinch direction in the x direc­
tion[71. 

The one-dimensional distribution of the current in 
the sample is determined by the following system of 
equations (averaged over z): 

aT a T 
cpat= -a;qx-CP-:;+izE, 

aT 
q.= -xa;+M, 

aT 
j,= a(T,B)E- pii7, 

l=Elys a(T,B)dx, 

(1) 

(2) 

(3) 

(4) 

where qx is the heat flux along the sample; jz and E 
are the current density and the electric field in the z 
direction; B = (0, -B, 0); li and {3 are the crossing 
thermomagnetic coefficients; c, K, and p are the 
specific heat, the corresponding component of the 
thermal conductivity tensor, and the density; I is the 
total current flowing through the sample. The ambient 
temperature is taken to be zero. The second term in 
the right side of (1) describes the loss of heat from the 
system. The temperature r can depend on the tem­
perature (for example, for hot electrons). In (1)-(3), 
the electric-field component along the sample Ex is 
assumed to be equal to zero, since the sample, which 
is thin in the z direction, is contained between two 
metallic (equipotential) electrodes (Fig. 1)2l. We note 
that the motion of the current pinch in the magnetic 
field is best observed in a sample having the form of 
a narrow ring, where short-circuited Hall current also 
flows. In the expressions for the fluxes, we disregard 
the terms proportional to the concentration gradients, 
which is valid for monopolar semiconductors with a 
De bye radius much smaller than L2 ). In addition, it is 
assumed that the characteristic time of the problem 
L/v (v-pinch velocity) is much smaller than the Max­
wellian time. 

Equation (1) can be written in dimensionless vari­
ables in the form 

aT a ( ar) aT -=- x(T)- -a(T)--<P(T,E,B), 
at ax ax/ ax 

where 
tE• 1 a6 ) 

a(T)=--,-+~To E, <f(T,E,B)=T-a(T,B)E2• 
cpToL aT 

(5) 

Here the length is measured in thermal lengths 
L = (rK0 /cp)lf 2 , the time in units of r, the electric 
conductivity in units of cpT0/rE~; as the unit of the 
electric field it is convenient to assume the minimum 
value of the field E1, at which there still exists an 
ambiguity of the current-voltage characteristic (Fig. 2). 
The temperature and the coefficient of thermal conduc­
tivity are measured in the units To and Ko which are 
characteristic of the problem. We note that the coef­
ficient a is proportional to the magnetic field B. 

An analysis of Eq. (5) in the absence of a magnetic 

2lThis is valid when /z:::; L. On the other hand, if L < lz < d (d -
width of pinch), then Ex differs from zero only in the wall of the pinch. 
The influence of this field, just as in the case when B = 0 [7 ), leads to 
renormalization of the coefficient K, which in this case is the true coef­
ficient of thermal conductivity. 

FIG. 2. Current -voltage characteris­
tic of semiconductors; l - in the case of 
pinching of the current; 2 - in the case 
of uniform distribution of the current. 
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field was carried out in[7]. Homogeneous distribution 
of the temperature (of the current density) corresponds 
to solutions of the equation cp ( T, E) = 0. If the sub­
stance has an S-shaped current-voltage characteristic, 
this equation has three solutions in a definite region of 
the fields. At currents corresponding to the region of 
the negative differential resistance, the uniform dis­
tribution becomes unstable. This leads to the forma­
tion of the current pinch, which is stable if the total 
current through the sample is specified. 

When the magnetic field is turned on, the current 
pinch (the region of increased temperature) begins to 
move along the sample in the direction of the action of 
the Lorentz force. The mechanism of this motion can 
be explained in the following manner. The deflection of 
the electrons in the magnetic field gives rise to an ad­
ditional heat flux in the x direction; this flux equals 
li( T) E and corresponds to the Ettingshausen flux in 
the case of a short-circuited current in a transverse 
direction. The coefficient li for the considered ma­
terials increases with increasing temperature. This 
leads to a flux difference on the boundaries of the 
pinch. Thus, additional heating of the material occurs 
constantly on the leading front, and on the trailing 
front there is cooling, and this indeed causes the mo­
tion of the pinch. Acting in the opposite direction is 
the thermomagnetic current (38T/ax (this current is 
the cause of the Nernst thermomagnetic effect). Indeed, 
on the leading front of the pinch, it leads to a decrease 
of the current across the sample, and consequently, to 
a decrease of the Joule power, and on the trailing edge 
it increases these quantities. This effect is always 
smaller than the first effect in the systems under con­
sideration. 

The solution of Eq. (5), describing the motion of lhe 
pinch, can be naturally sought in the form of a station­
ary solitary wave T(x - vt) moving with constant 
velocity. Eq. (5) in a coordinate system (11 =x- vt) 
moving together with the wave has the following form: 

!_(.x(T) aT)-(a(T)-v) aT -<P(T,B,E')=O, 
all 01] all 

(6) 

where 
E' = E _}!_B. 

c 
For a single hot pinch, the boundary conditions are 
(aT/811) 111 =±oo = 0, and the temperature T at 11 = ±oo 
tends to the smaller solution of the equation 
cp(T, B, E') = 0. 

In the absence of a magnetic field (a = 0 ), the solu­
tion of Eq. (6) at specified boundary conditions exists 
only when v =0. This can be verified by multiplying 
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the equation by K(T)&T/&7] and integrating it from 
- oo to +oo. 

To find the velocity in a weak magnetic field B we 
can use the small parameter E = JJ.B/ c = nr l>' where 
JJ. is the carrier mobility, n is the Larmor frequency, 
Tp is the electron momentum relaxation time. From 
the structure of Eqs. (4)-(6) we see that the velocity 
v is an odd function of the field D, and the variation 
of the electric field an even function 31 • This makes it 
possible to seek the solution of (6) in the form 

T(rt) = To(rt) + eT1 (rt) + e2T•(rt) + ... , 
v = ev0 + e3v1 + ... , (7) 
E = E<•> + e2EIIJ + ... . 

Here T0(7J) = T0(x) and E< 01 are the stationary temper­
ature distribution and the electric field at T = 0. The 
function T0 ( 1J) satisfies the equation 

!__(11(To) a To)- cp(To,E<0l) = 0, 
lin art , 

(8) 

which can be integrated in quadratures. Thus, the dis­
tribution of the temperature in the absence of a mag­
netic field can be regarded as known. The equation 
for the correction linear in E is 

A a(To)- vaT. 
LTt = 8 Otj, 

(9) 

where 
- a• {)cp 
l, = art• (x{To) ... ) +aT (To). (10) 

The inhomogeneous equation (9) has a solution only 
in the case (at a value of the velocity v) when its right 
side is orthogonal to the solution of the adjoint homo­
geneous equationr121 : 

i+e == (11(To)..!:... + ihl! (To E<•>) J 8 = 0 (11) 
art• aT ' ' 

We have thus obtained the condition for the determina­
tion of the velocity: 

r aTo 
J drt8(rt)[a(To)-v]-=0. 

-oo art 
(12) 

Differentiating Eq. (8) with respect to 1], we can 
readily verify that the function ® = K(T0)&T0 /&7J is a 
solution of (11). Since (11) is linear and the boundary 
conditions are homogeneous (&®/&7] 171 =±oo = 0), this 
solution is unique. Substituting the obtained value of 
® ( 1J) in (12), we obtain the value of the velocity in the 
approximation linear in E : 

( Sco ( aT0 )2)-1 sco f aTo )' 
v= drtx(To) T drta(To)x(To)\-a- . (13) 

-oo t] -oo t] 

This procedure can be continued to find the corrections 
to the velocity of higher order in E. 

We note that when the pinch moves its shape changes 
in the manner shown in Fig. 3a. This follows directly 
from the fact that the function T1(7]), which describes 
the change of the shape of the pinch, is odd (this is 
seen from Eq. (9)). 

Let us calculate the quantity E< 11 , which character­
izes the change of the total resistance of the sample 
when the magnetic field is turned on. Since the total 

3> At a specified total current in the sample, the electric field 
changes when the magnetic field is turned on (owing to the motion of 
the pinch). 

j"'' FIG. 3. Form (temperaturea __ ,/~1 •,,~-
distribution) of the moving pinch ~ __ 
-a (the dashed line shows the dis- .....,::;L-----L---'f-ti,----ls:.----:11::-
tribution of the temperature in the b : v r 'II : 
absence of a magnetic field), and -+---- : 
form of the "potential well" corre- --:~--+--F-1-----'\tf----:­
sponding to the pinch- b. 

current in the external circuit I is specified, it follows 
from (4) and (6) that 

E<1l=E<0l{ 1-0 a(To)drtr ~ [ ~ :~ (To)Tt2 (rt) 

+:;(To) T,(rt) ]drt }. (14) 

where T 2( 1J) is determined by the equation 
A ( a ) aT{ 1 a2cp LT = --Vo ----(To)T12 +a(To)((E1°l) 2 -2E<0JE<1>). 

2 e art 2 aT• 

The quantity E< 11 can be readily estimated for a 
broad pinch. Indeed, the functions aa/&T and &2a/&T2 

in (14) differ from zero only on the boundaries of the 
pinch (in regions of the order of the width of the wall 
of the pinch Zc), and therefore the ratio of the integrals 
in the right side of (14) amounts to a quantity on the 
order of lc / d, where d is the width of the pinch 
(Fig. 3a). Thus, for a broad pinch E ~ Eo( 1 + &1 2 r~ ), 
i.e., the change of the total resistance of the sample in 
the z direction increases in exactly the same manner 
as the linear magnetoresistance, in proportion to 
(&1Tp)2. 

To determine the pinch velocity in a strong magnetic 
field (nrp >> 1) we can use the small parameter e' 
= 1/Grp. The calculation procedure does not differ in 
general from that described above. 

The method considered by us for calculating the 
velocity is based on the use of a small parameter con­
nected with the value of the magnetic field. Actually 
we have used the smallness of the "magnetomotive 
force" a(T)&T/&7] in (6) compared with the remaining 
terms of this equation. The smallness of this force is 
connected with the fact that it is determined by the 
crossing terms in the flux of (2) and (3), which in our 
case cannot exceed the main fluxes. 

STABILITY OF MOVING PINCH 

We have shown above that Eq. (5), which describes 
the motion of a current in a magnetic field, has a solu­
tion in the form of a solitary stationary wave moving 
at constant velocity along the sample. Let us ascertain 
the stability of such a wave. 

The stability of the pinch in the absence of a mag­
netic field was investigated in[7 • 13l. A current pinch is 
stable only when the total current through the sample 
is specified (i.e., in the case of a large load resistance 
in the external circuit). This is connected with the 
fact that the perturbations leading to the change of the 
current in the external circuit are attenuated by the 
power dissipation in the load resistance. This conclu­
sion remains valid also for a pinch in the magnetic 
field, since the equation of the external circuit does not 
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change on going over to a moving system of coordinates. 
Thus, the stability of the moving pinch must be re­
garded relative to the perturbations that do not change 
the current in the external circuit. We must therefore 
take into account the perturbations that are inhomo­
geneous also along the y axis. Linearizing Eq. (5) 
relative to small deviations from the stationary distri­
bution 

T(x- vt, t)- T(x- vt) = 6T(TJ) cos (kvY) exp (-yt), (15) 
we obtain 

{)2 {) 8<f· 
- (xbT)-- (a- v)/lT--/lT = (-y+ky2x)llT. (16) 
fJTJ2 8TJ fJT 

Here K, a, and cp are tunctions of 11, since we have 
substituted in them the stationary distribution T( 11 ), 
ky = rrn/ly, and ly is the dimension of the sample in 
the y direction. The stationary wave is unstable if 
along the eigenvalues y of Eq. (16} some are negative. 

The substitution 
1 ~ a-v 

6(TJ) = X(TJ)IlT{TJ)exp{ 2 1-x-dTJ} (17) 

transforms Eq. (16} into the self-adjoint equation 

(18) 

where 

_ _!_~ __!_ {) ra-v)+~(a-v)2. (19) 
V(TJ)- '){ aT + 2 &;]\ x 4 x 

We note that the substitution (17) leaves the bound­
ary conditions of Eq. (16) (a(oT)/a111 11 =±co =0) homo­
geneous. Thus, the problem of finding the spectrum of 
the Eq. (16) has been reduced to a sturm-Liouville 
problem. 

Let us estimate the lower bound of tpe negative 
eigenvalues y of (18). To this end, we use the fact that 
when the function K(11) in the right side of (18) is re­
placed by its minimal value Ko = 1, the eigenvalues 
can only decrease[ 12l, i.e., y 2: k~ + ~. where ~ are 

the eigenvalues of the operator H. 
It is easy to verify that 

~ 

fJT { 1 S a- v } 9o{TJ)=x(T)-exp - --dT] 
fJT] 2_oc X 

(20) 

is an eigenfunction of the operator H with ~ = 0. This 
is connected with the fact that this function describes 
the change of the temperature distribution following a 
small shift of the pinch, relative to which the pinch is 
in a state of indifferent equilibrium. The function 
®o(11) has one node (i.e.,~ = 0 corresponds to the first 
excited state), therefore, according to the oscillation 
theorem[12\ the operator H has only one negative 
eigenvalue. A similar method of investigation of sta­
bility was proposed by Zel'dovich and Barenblatt[14l 
and was used to investigate the stability of the mains 
in the Gunn effect[ 1sJ and of current pinches[71 • 

Following[7 J, we used for the estimate of the principal 
(negative) eigenvalue the fact that (18) has the form 
of a one-dimensional Schrodinger equation for a parti­
cle with a potential energy V(11). This energy has in 
our case the form of two asymmetrical potential wells, 
with a width on the order of the thickness lw of the 
pinch wall, separated by a distance equal to the width 
of the pinch d (Fig. 3b). 

The difference between our case and that considered 
in[7J lies in the fact that the potential wells are not 
identical, since the temperature distributions on the 
front and rear ends of the moving pinch are different 
(Fig. 3a). The function ® ( 11) can be approximately re­
garded as a superposition of two waves ®1(71) and 
® 2 ( 11) describing the motion of a particle in each of 
the potential wells (Fig. 3b). It is easy to verify by 
direct differentiation of Eq. (6} that these functions 
correspond to the eigenvalues ~ = 0, and since these 
functions have no nodes, the value ~ = 0 is the princi­
pal one. When account is taken of transitions between 
two wells, this level splits into two, and the magnitude 
of the splitting is determined by the overlap of the 
functions ® 1 and ® 2 • Thus, the ground state, to which 
a symmetrical combination of the functions ® 1 and 
e 2 corresponds, has an eigenvalue ~0 ~ - exp( -d/ lc), 
just as in the case of a pinch at rest [7]. Since 
y 2: ( rr/ l y )2 + ~o, a sufficiently broad pinch moving in 
a magnetic field is stable. 

ESTIMATES OF THE VELOCITY 

Let us examine certain mechanisms for the forma­
tion of aS-shaped current-voltage in semiconductors, 
and let us estimate the velocity of motion of the corre­
sponding current pinch. 

At low temperatures, the mechanisms of the relax­
ation of energy and momentum can lead to the forma­
tion of S-shaped current-voltage characteristics[2J. 
Such a characteristic was observed in n-InSb at 
B = 0[91. In this case the electron concentration and 
the sample does not depend on the coordinates. The 
thickness of the current-pinch wall in such a system 
is L ~ VT ..fTf.Tp ~ 10-3 em, where VT is the electron 
thermal velocity and ;€ and Tp are the energy and 
momentum relaxation times. The crossing thermo­
magnetic coefficients for a nondegenerate semiconduc­
tor can be written in the form [161 

enQ enQ( 5 ) f1 =--(1-2s)(-rp2(e)), ll =-. --2s T(-rp2(e)), 
m' m 2 

where Tp(€) ~ €-s (here € is the electron energy}. 
Substituting these coefficients in formulas (5) and (13), 
we obtain the following value of the velocity: 

v ~ AIJ-rpf,IB [em/sec], (21} 

where A = 1 + 0' 2 - 2s) ( 1 - 4s/ 3 ), and the parameter 
s for semiconductors with S-shaped characteristic is 
always negative. For example, in scattering of elec­
trons by ionized impurities s =-7'2, i.e., A =17.5. 
Thus, the velocity of the pinch in this material can 
reach 107 em/sec already at B ~ 100 G (OTp ~ 0.1) 
(IJ.""' 5 x 105 em/sec, E ~ 1 V/cm). 

Generally speaking, in strong magnetic fields 
( OTp > 1 ), the S-shaped characteristic in a regime 
with a short-circuited hole current (at our sample 
geometry) can vanish and can even change into an N­
shaped one. This leads to a vanishing of the current 
pinch. 

When OTp >> 1, the crossing thermomagnetic co­
efficients o and f3 do not depend on the momentum 
scattering mechanism, meaning also on the tempera­
ture. If the electron energy and momentum scattering 
mechanisms are such that when 0Tp >> 1 the current-
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voltage characteristic of the sample has an S shape, 
then the velocity of the pinch coincides with the drift 
velocity of the electrons in the electric field, v = cE/B. 

We note that in a strong magnetic field the S-char­
acteristic can be connected with breakdown, i.e., with 
ionization of the neutral donors, whose levels are split 
off the continuous spectrum by a strong magnetic 
field[ 17l. The foregoing estimates remain valid also 
for this case, if the Debye length of the carriers is 
much smaller than the thermal length L, as is usually 
the case under real conditions. The current oscilla­
tions observed in n-lnSb in the case of breakdown in a 
magnetic field[ 17l may be connected with the motion 
(occurrence and disappearance) of a current pinch in 
the sample. 

In some transition-metal oxides ( VO, V02, Tia03, 

etc.), at definite temperatures, a semiconductor­
metal phase transition is observed, accompanied by a 
jump of the conductivity (sometimes by several orders 
of magnitude)C 8l. Naturally, such a sharp variation of 
the conductivity leads to the formation of an S-shaped 
current-voltage characteristic(laJ. It is interesting to 
note that in this case the problem of the pinching of the 
current and of the motion of the pinch in a magnetic 
field can be solved exactly, making it possible to as­
certain certain peculiarities in the behavior of narrow 
pinches. The results of the calculations lead to the 
following value of the velocity for a broad pinch: 

2x 6M 2x n · eF ( ) 
v =----E"""'-----~hpflE. 22 

(1 + x) cpTo 1 + x cpTo 

All the quantities (OM, JJ., € F) pertain here to the 
metallic phase, n is the electron density in the metallic 
phase, and To is the temperature of the phase transi­
tion; K is the ratio of the coefficients of thermal con­
ductivity of the metallic and dielectric phases, and €F 
is the Fermi energy. 

Narrow current pinches produced at E0 < E < E 2 

(Fig. 2) are more sensitive to the magnetic field. With 
increasing pinch dimensions, the velocity of their 
motion in a magnetic field and the change of the sam­
ple on the voltage increase. 
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