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Asymptotic formulas are obtained which describe the evolution of solitary electroacoustic waves in a 
plasma due to electron-ion collisions. 

IT was shown in[ll that in a plasma with negative di­
electric permittivity, there may propagate "electro­
acoustic solitons" - stationary, solitary waves of 
density rarefactions with high frequency electromag­
netic fields trapped in them. rnt 21 , a general nonsta­
tionary solution of the equations for electroacoustic 
waves of sufficiently small amplitude was obtained. 
That solution described the dynamics of the formation 
of electroacoustic solitons as a result of the incidence 
of a modulated electromagnetic wave on the plasma 
boundary. 

It was assumed in the cited papers that the dissipa­
tive processes could be neglected. The conditions for 
these processes to be small were considered briefly 
in[ll. However, weak dissipative effects, which do not 
substantially influence the process of formation of the 
electroacoustic solitons, do have a considerable effect 
on their further evolution. 

The present note is concerned with an investigation 
of the role of electron-ion collisions (EIC) in the dy­
namics of electroacoustic solitons of small amplitude 
(in a rarefied plasma with Te » Ti, this dissipative 
effect is dominant over a vast range of parameterst 1 l ). 

In order to derive the equations describing the 
evolution of electroacoustic waves in the case of small 
(but finite) frequency of the EIC, we write the electric 
field in the following form 

.W(x, t) = Re [E(x, t)e-i"''], 

where E(x, t) is a slowly varying complex amplitude. 
The equation for E is of the form (see[ll, Eq. (1.19)) 

[ 8eo iJ2 J 8(uho) 8E 
w2e0 + w2 - (p- po) + c2 - E + i----- = 0. 

8po ax2 aw at 
(1) 

Here E 0 (w, Po) is the dielectric permittivity of a 
plasma with unperturbed density p 0 ; Eo is determined 
by 

wo2 i 
eo=1--+-. 

(1)2 "tW 
(2) 

The quantity T is the characteristic time of the EIC[ 3 J 

It is assumed here that 

Expressing the complex amplitude of the field in the 
form 

E = a(x, t)ei~(x, 0, 

where a( x, t) and cp ( x, t) are real functions, we ob­
tain from (1) and (2 ), by omitting the term in a E/at 

(3) 

(4) 
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which is small in comparison with c 2 a 2E/ax2 (seet 1 l, 
Sec. 3 ), the following equations: 

axx- J-t2y-2 (y" + v)a- <px2a = 0, 

( a"q>x) x = -wa2 I c'-t. 

For waves of sufficiently small (but finite) ampli­
tude, propagating in the positive direction of the x 
axis, the quantity v = (p - Po)/ Po satisfies the equa­
tiont4l 

The following notation is used in (5) and (6 ): 
flz = (wo2- ,w2) I &, 

v" = (wo2 - <if) I wo2, 

Ec2 = 16npoc,2, c,Z = Te I m;. 

(6) 

(7) 

For T = oo, the system (5) and (6) coincides with the 
full set of equations for the electroacoustic waves of 
sufficiently small amplitude, which was considered 
in[ 2 ' 4l. Accordingly, the range of applicability of (5) and 
(6) is limited by the same conditions as in[ 2' 4l. 

In the static case, when the plasma density is time­
independent, Eqs. (5) and (6) coincide with those for the 
stationary skin layer, which have been derived and 
discussed by Silint 51 • 

The system (5) and (6) has a solution of the form 

a(x, t) = e-t/2<A(~), <p = <p(~), 
Ao2- A2(~) 

v(x,t)= 2Ec2(1- w/c,) '\-2, 

where 

~ = x- c,t + 1:(c,- w) (1- e-tl<), 

dP I d£ = -A2w /'tc2, P(s) = cp;A2• 

Here w and A0 are arbitrary constants. 

(8) 

(9) 

(10) 

(11) 

The system of ordinary differential equations (10) 
and (11) for the functions A(~) and P( ~) has the same 
form as Eqs. (5.2) and (5.3) of the paper by Silint 5 l. 
Using results of that paper, we find that for sufficiently 
small frequences of the EIC, T-r, the general form of 
the function A(~) is as displayed in the figure. For 

"E, 
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clarity, the form of the solution for two different values 
of T is presented there. 

As wr- co, the separation of the individual oscilla­
tions in the front part of the wave increases. The lead­
ing oscillations in the front, which are well separated 
from each other, can then be described by the follow­
ing asymptotic formula 11 : 

A (6) = 2Ecv(1- w I c,) ''•sech ~-t(s- so), (12) 

where ~ 0 is the coordinate of the peak of the oscilla­
tion under consideration (see the figure). The constant 
Ao appearing in (10) then has the following limit: 

lim Ao=l'2Ecy(1-w/c,)'l•. (13) 
(w<,__, 

Inserting (12) and (13) into formulas (8 ), we obtain 
the following asymptotic expression describing the 
amplitude of the field and the relative change of the 
plasma density in the leading oscillation, for large wr: 

2(x, t) = e-112•Amsech ~-t(s- so), 

Am = 2Ec'\' ( 1 - W I c,) '", 

(14) 

(15) 

v = -2v" sech2 ~-t(·s- so). (16) 

The formulas (14)-(16), together with the expres­
sion for the quantity ~, describe an electroacoustic 
soliton having at t =0 an amplitude Am and velocity w 
(cf. the corresponding expressions in£ 2~ 41 ). At the sub­
sequent instants of time, the wave described by formu­
las (14)-(16) and (9) conserves its soliton-like profile. 
Its "Mach number" is determined by the expressions 

M(t)=_!(dx) =1-[1-M(O)]e-tt<, (17) 
Cs dt ;~<,. 

M(O)=wlc., (18) 

and the maximum amplitude of the electric field is 
equal to 

a,.(t) =Amexp (-t/2-r:). (19) 

In accordance with (15 ), (17) and (19 ), the relation be­
tween the amplitude am(t) and the Mach number at any 
instant is of the form 

am(t) = 2Ecv[1-M(t)J"', (20) 

which coincides with the corresponding expression for 
the electroacoustic solitons of small amplitude without 
the damping taken into account. 

Allowance for the EIC thus leads to an exponential 
damping of amplitude in the soliton21 ; accordingly the 
Mach number M( t ), in accordance with formula (17 ), 
tends to unity exponentially when t - co. 

As far as the profile of the relative density, v( 0, 
is concerned, it follows from (16) that its form does 

1>For values of (wTf1 sufficiently small, it follows from ( 11) that 
dPidE""' 0. Taking account of this fact and of the boundary condition 
A(oo) = 0, we obtain from (10) the approximate expression (12). The 
domain of applicability of that relation is considered in the Appendix. 

2>The particular solution considered here describes, as can be seen in 
the figure, electroacoustic waves which can be excited on the boundary 
of the plasma under certain special boundary conditions, which can be 
determined with the values of the functions a(x,t), P(x,t) and v(x,t) at 
x = 0. However, it follows from the formulas describing this solution 
that the leading wave at sufficiently large values of t does not depend on 
the initial condition any more, and assumes the form of a soliton, so 
that the formulas (14) - (16) and (9) describe the propagation of a soli­
ton, with the EIC taken into account, in the case (WT) ~ 1. 

not depend on time. This is connected, first, with the 
fact that we do not take into account the slower dissi­
pative processes, viz., the ion-acoustic Landau damp­
ing and the plasma viscosity caused by ion-ion colli­
sions. Second, we neglect the nonlinear steepening of 
the density profile of the ion-acoustic wave (Eq. (6) is 
obtained from the linearized equations of the ion­
acoustic fluid dynamics). 

The condition of applicability of expressions (14)­
(16) and (9) is of the form 31 (see the Appendix) 

(21) 

We now briefly consider the role of other dissipative 
effects. If the viscosity and heat transfer are the most 
important processes next to the EIC, then the evolution 
of an electroacoustic soliton will proceed as follows: 
first the electromagnetic field trapped in the soliton 
will attenuate and the speed of that field will become 
close to the speed of sound; then the joint influence of 
the viscosity, heat transfer, and the nonlinear steepen­
ing of the wave profile will result in a triangular form 
of the density profile. 

We take the opportunity to express our gratitude to 
V. P. Sokolov for useful discussion of the results. 

APPENDIX 

We now determine the domain of validity of solution 
(12 ). Let us substitute (12) into (11 ). With the boundary 
condition P( co) = 0, we obtain 

IDAm2 
P(s) = c2-r:~-t [1- th ~-t(s- so)]. (A.1) 

Using (A.1) and (12) to calculate the ratio of the last 
term to the first in (10), we get 

p2(6) m2 e-z~-w (A2) 
A"(s)A;; c4-r:2~-t' [sh2~-t(s- so) -1] ch'~-t(6- so). • 

It follows from this expression that 
p2(s) { (y!-r:ID)-2, s >so (A.3) 
A3 A;; - (y2-r;ID)-2 e41'(0•--<>, 6 <so 

In order that the term in P 2 ( ~) in (10) be negligible in 
the range of values of ~ that correspond to a solution 
with its peak at the point ~ = ~ 0, it is necessary that 
the ratio appearing on the left side of (A.3) be suffic­
iently small at the distance of a few soliton lengths 
from the peak41 • Putting ~ 0 - ~ = kJ.L -', where k,... 1, 
we obtain the corresponding condition in the form 

(A.4) 

Assuming for concreteness that k = 2, we obtain (21). 

1 V. Ts. Gurovich and V.I. Karpman, Zh. Eksp. 
Teor. Fiz. 56, 1952 (1969) [Sov. Phys.-JETP 29, 1048 

3>For the frequency of the EIC to be much larger than the Landau 
damping decrement for the ion-acoustic wave, T~, the inequality T-1 ~ 
T~ ""' l0-2W"flc should hold. It follows from the condition of consist­
ency of the last relation with (21) that cs/ c-y < 1. This inequality is, at 
the same time, the condition of validity of the initial equations in (5) 
(see [ 1 )), and thus is assumed to be true from the very beginning. 

4>The quantity (A.2) also becomes large in the neighborhood of the 
point of inflexion of the soliton profile (where AE~ = 0). However the 
size of that domain is of the order of ll~ ""'p-1('Y2Twr2 <p-1, i.e., much 
smaller than the size of the soliton. 



790 V. Ts. GUROVICH and V. I. KAR PMAN 

(1969 )]. 
2 V. I. Karpman, ZhETF Pis. Red. 9, 480 {1969) 

(JETP Lett. 9, 291 (1969)). 
3 V. L. Ginzburg, Rasprostranienie elektromagnit­

nykh voln v plazme (Propagation of Electromagnetic 
Waves in Plasma), Nauka, 1967. (English Trans. of an 
earlier edition, Gordon and Breach, 1961 ). 

4 V. Ts. Gurovich, V.I. Karpman, and P. N. Kauf-

man, Zh. Eksp. Teor. Fiz. 56, 1979 (1969) [Sov. Phys.­
JETP 29, 1063 (1969)). 

5 V. P. Silin, Zh. Eksp. Teor. Fiz. 53, 1662 (1967) 
(Sov. Phys.-JETP 26, 955 {1968)). 

Translated by W. Zielke 
170 


