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Covariant equations describing the propagation of electromagnetic waves in an isotropic medium at 
rest in an arbitrary noninertial reference system (or located in a gravitational field) are derived on 
the basis of general relativity theory and electromagnetic field theory for continuous media. The 
dielectric permittivity and magnetic permeability tensor is introduced in order to formulate the 
covariant material equations that supplement the Maxwell equations. Resonance properties of a 
ring optical resonator rotating at constant angular velocity together with the medium in it are in­
vestigated with aid of the derived equations. The natural frequencies of the rotating ring resonator 
observed in the rotating reference system are expressed in the first approximation of perturbation 
theory in terms of the natural frequencies and modes of a stationary ring resonator. 

INTRODUCTION 

MANY recent papers are devoted to investigations of 
ring lasers. A correct analysis of the effects produced 
in a ring laser situated in a non-inertial (particularly, 
rotating) reference system, with allowance for the op­
tical properties of the medium, must be based on gen­
eral relativity theory. To this end, it is necessary 
first to obtain equations describing the propagation of 
electromagnetic waves in a material medium that is at 
rest in the non-inertial reference frame. Heer et alY1 

considered a ring resonator that rotates together with 
the medium that fills it, and obtained formulas for its 
resonant frequencies. Khromykh[ 2l took additional ac­
count of the motion of the medium relative to the ro­
tating resonator. The material equations in[ 2l were 
obtained by a direct generalization of the Minkowski 
formulas for media moving with constant velocity in an 
inertial frame. 

In this paper we investigate, by a different method, 
the resonant properties of a rotating ring resonator 
filled with an isotropic medium, and the dependence of 
the frequency shift of the opposing waves produced in 
such a resonator on the angular velocity of the reso­
nator rotation. To determine the material equations 
that connect the vectors of the electromagnetic field in 
the medium, we use a general method first proposed by 
Mandel'shtam and Tamm[ 3l, and show that the covariant 
form of the material equations, which gives correct 
relations between the field vectors in the inertial sys­
tem, still does not ensure that these equations hold in 
a non-inertial system. It is necessary to justify 
physically the choice of one of the possible methods of 
writing down the covariant equations. The final formu­
las of our paper differ from analogous results obtained 
in[1 • 2 l, and from the results of[4l, in which the connec­
tion between the tensors of the electromagnetic field 
in the material equations is established with the aid of 
a fourth-rank tensor. 

In[s] they introduced a dielectric-constant and mag­
netic-permeability tensor of the medium, S a{3yv or 
Sa{3yv· With the aid of the tensor S a{3yv and the ten­
sors of the electromagnetic field, one writes down co-

variant material equations that establish the connec­
tion between the vectors of the electromagnetic field in 
the medium. U the coefficients saf3yv and Saf3yv are 
transformed, on going over to other systems, in accord­
ance with the rule for the transformation of contravari­
ant and covariant tensors of fourth rank, then the ob­
tained material equations express correctly the con­
nection between the components of the electromagnetic­
field tensors in any reference frame. The formulation 
of the material equations proposed in[ a] makes it pos­
sible to obtain covariant or vector material equations 
for a medium that is at rest in an inertial reference 
frame and is considered from an arbitrary, not neces­
sarily inertial reference frame. For a rotating ring 
resonator, this corresponds to the case in which the 
medium filling the resonator is not absolutely dragged 
upon rotation, and is at rest in an inertial reference 
frame. On the other hand, the case when the medium 
filling the resonator rotates with the resonator (or is 
partially dragged by it) is of greater practical im­
portance. It is therefore necessary to see how the ro­
tation of the medium influences its optical properties 
and how the resonant frequencies of the rotating ring 
resonator change as a result. 

1. ELECTRODYNAMICS OF INERTIAL MEDIA 

The propagation of electromagnetic waves in an 
arbitrary system of coordinates is described by the 
covariant Maxwell's equations[s,s]: 

H"'~; p = -!!!!_ja., F,.p; 1 + Fp1;,. +Fv<>; p = 0, (1) 
c 

where Haf3 and F a{3 are respectively the contravar­
iant and covariant tensors of the electromagnetic field, 
ja is the current four-vector, and c is the velocity of 
light. The indices separated by a semicolon denote the 
covariant derivatives with respect to the correspond­
ing coordinates. Henceforth, the Green indices 
a, {3, y, .•• will run through the value 0, 1, 2, 3, and 
the Latin indices i, j, k, ..• through the values 1, 2, 3; 
summation is carried out over repeated indices. 

Equations (1) can also be written in the form 
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-= y-gH"P =-.~j", -+---h--=0. 1 ~ - ) 4n iJFrr.p. iJFp1 iJF1rr. 
"f-g iJ:xP c iJ:xV iJ:x" iJ:xP (2) 

We introduce three-dimensional vectors in accordance 
with the schemeC7 l 

E; = F0;, B; = - 1/2eiklFkz, I;= 1/-gji 

and the charge density 

p=f-gj0 /c. 

(3) 

here Eikl is a perfectly antisymmetrical unit pseudo­
tensor of third rank, g = I ga{31 is the determinant of 
the four-dimensional metric tensor. Going over, on 
the basis of (3 ), to vector notation for equations (2 ), we 
obtain a system of equations that coincides with Max­
well's equations for the electric field in material 
media that are at rest in the inertial reference frame: 

1 iJD 4:n 
rotH---=-1, 

c iJt c 
1 iJB 

rotE+-;---at=O, 

div D = 4:np, div B = 0. 
(4) 

The quantities introduced in (3) are not independent. 
In vacuum, the connection between the components of 
the electromagnetic induction tensor Ha{3 and the field 
intensity tensor Faf3 is established in simple manner 
with the aid of the metric tensor ga{3(a,s]: 

- - 1 - () '(-gHaP="f-ggrr.vgP•F1v or Fu.p=-=grr.1gp.y-gHvo, 5 
y-g 

where 
ga1gvP = bu.P. 

In the inertial reference frame, in the absence of 
gravitational fields, the metric tensor is a diagonal 
matrix with elements: 

Krr.P = diag (1, -1, -1, -1), gr>P = diag (1, -1, -1, -1). (6) 

In this case relations (5 ), written out in vector form 
with allowance for (3) and (6), take on the form that is 
customary for vacuum: 

D=E, H=B. 

In any other reference frame (or in the presence of 
a gravitational field) there are no such simple rela­
tions between the induction vectors (D and H) and the 
intensity vectors ( E and B )C 6 -sJ. 

Thus, if we introduce three-dimensional vectors in 
accordance with the scheme (3 ), then the equations of 
the electromagnetic field will coincide formally with 
Maxwell's equations for material media (seeC6 • 7 l ), but 
a difference appears between the vectors D and E on 
one hand, and H and B on the other, even for vacuum 
in non-inertial reference frames or in the presence of 
gravitational fields. Naturally, when the potential of 
the gravitational field tends to zero or when we change 
over to an inertial reference frame, then the quantities 
E and B tend to their limiting values D and H, just 
as in the case of an inertial medium the vectors E and 
B take on the values D and H when the dielectric con­
stant and magnetic susceptibility vanish. Consequently, 
we .should retain for the vectors E and B the same re­
sultant-field meanings that they have in a dielectric 
medium that is at rest in an inertial reference frame, 
and retain for the vectors D and H the meaning of 

inductions, to the values of which the vectors E and B 
tend in vacuum on going over to an inertial reference 
frame (in the absence of gravitational fields). 

The medium exerts an influence only on the resultant 
electromagnetic fields E and B, i.e., on the compon­
ents of the covariant tensor Faf3 of the electromagnetic 
field. At specified charges and currents, the intensity 
E of the electromagnetic field decreases by a factor E 

compared with its value in vacuum (see[sl, p. 59). The 
presence of a magnetic medium leads to a change in 
the intensity of the magnetic field B by a factor J.L, 
while the induction H remains unchanged (see, for 
example,CSl, p. 162). Here E and J.L are respectively 
the dielectric constant and the magnetic permeability 
of the medium. 

We introduce the mixed tensor S~ characterizing 
the electromagnetic properties of the medium. For a 
medium that is at rest in any reference frame with a 
space-time metric ga{3 or located in a gravitational 
field, the material relations corresponding to equations 
(5) in the case of vacuum can then be rewritten as fol­
lows: 

(7) 

or 

Taking into account the physical considerations ad­
vanced above, it is easy to show that in the case of a 
linear isotropic medium that is at rest in an arbitrary 
reference frame the tensor sg has the components 

SOo = e y~ s•, = 822 := 88a = 1/Y!£, (8) 

and the remaining components of S~ vanish. Here E 

and J.L are the dielectric constant and the magnetic 
permeability of the medium, measured by local obser­
vers connected with the medium. For a medium that is 
at rest in an inertial reference frame, Eqs. (7) with the 
tensor (8) give the correct material relations: 

1 
D =eE, H=-B. 

1£ 

In vacuum, we have S~ = 6~ and relations (7) take the 
form (5). · 

It should be noted that besides the tensor S~ (8) and 
the material equations in the form (7 ), it is also possi­
ble to introduce a tensor s~ with nonzero components 

SOo = 1_ , S1t = S\ = SSa = y'ji: (9) 
e l'l£ 

With the aid of the tensor S ~ (9) the material equations 
that give the correct relations between the vectors D, 
E, H, and B in the inertial medium at rest can be 
written in the form 

S"1SPv Y- g HW = Y- g grr.~gPaF'I.a, 

1 -
-=grr.~pa~1Sa. Y- g Hw = Fa.p. 
l'-g 

(10) 

Here the tensor S ~, which characterizes the electro­
magnetic properties of the medium, act on the com­
ponents of the contravariant electromagnetic field 
tensor Haf3, i.e., on the inductions D and H. However, 
by virtue of the physical considerations advanced above, 
preference should be given to Eqs. (7), although both 
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(7) and (10) give the correct relations between the 
electromagnetic field vectors for an isotropic medium 
that is at rest in an inertial reference frame. 

In an inertial frame and in the absence of gravita­
tional fields, the tensor sctf3 = garsf3 coincides with 

'Y 
the tensor of the dielectric constant and magnetic 
permeability, encountered in the relativistic theory of 
moving inertial media[ 3 l. 

Equations (7), together with the covariant Maxwell's 
equations (1 ), describe completely the process of propa­
gation of electromagnetic waves in a medium for the 
general case of four-dimensional space-time of arbi­
trary metric. Consequently, to describe the electro­
magnetic processes in a material medium in the gen­
eral case, it becomes necessary to introduce three 
tensors: the tensor sg' characterizing the electromag­
netic properties of the medium, and the electromag­
netic field tensors Ha{3 and F a{3· The material equa­
tions, which relate the components of the tensors of the 
electromagnetic field and depend on the properties of 
the four-dimensional space, are determined com­
pletely by the metric tensor gaf3, which characterizes 
all the properties of the geometry of the space in each 
given system of coordinates. 

Relations (7) between the field vectors in the mate­
rial medium was obtained by us by starting from sim­
ple physical concepts concerning the "attenuation" of 
the resultant fields in the medium. The same equations 
can be obtained, however, more formally by generaliz­
ing the known concepts of polarization of an inertial 
medium by a field. 

In vacuum, the tensor Haf3 and Faf3 = gargf3 11 Fyv 
are equal to each other (see (5)). To write down the 
covariant equations of a macroscopic electromagnetic 
field in a material medium we define the antisymmetric 
polarization tensor of the medium Maf3 by the relation 

1-gH"~ = Y-g(F"~ + 4nM"~) 
or 

(11) 

i.e., in perfect analogy with the definition for media at 
rest in an inertial frame[ 9 l. 

We introduce the three-dimensional dielectric­
polarization vectors of the medium P and of the mag­
netization of the medium M, in accordance with the 
scheme 

If the medium is polarized isotropic ally and linearly 
over the field, then 

e -1 
P; = xE; = --;;;-E;, 

X ~-~-1 
M; = -B; = --B;, 

I' 4:tl' 
(12) 

where K is the coefficient of polarization of the 
medium (the dielectric susceptibility of the medium), 
E is the dielectric constant of the medium, x is the 
magnetic susceptibility, and J.L is the magnetic permea­
bility of the medium. The quantities K, E, x, and J.L are 
the characteristics of the medium measured by a local 
observer connected with the medium. 

Taking relations (3 ), (8 ), and (12) into account, we 
see that the components of the summary tensor Faf3 

+ 411"Ma{3 coincides with the corresponding components 
of the tensor S~sfjF;\a from (7). Thus, the material 
relations in the form (7) are equivalent to those of (11 ). 

To establish the connection between the vectors of 
the electromagnetic field in accordance with formula 
(7) in a non-covariant form, it is necessary to know the 
components of the metric tensor. 

2. ROTATING ISOTROPIC MEDIA 

Assume that we have a material medium rotating 
with constant angular velocity 0 relative to the in­
ertial reference system. The metric tensor in the 
rotating reference frame, the z axis of which is 
directed along the vector of angular velocity of rota-
tion 0 of the medium, has the following components [s,lOJ: 

Qy Qx 
0 c c 

ElL -1 + Q'Y' Q•xy 
0 

g"~ = c c• -C2 
, det [ ga~ I = - 1. Qx Q•xy Q•x• -- -C2 c -1+C2 0 (13) 

0 0 0 -1 

If we introduce three-dimensional vectors in ac­
cordance with the scheme (3), then the covariant 
Maxwell's equations (1) can always be written in the 
vector form (4 ). Further, substituting in the first equa­
tion of (7) the expressions for the components of the 
electromagnetic field tensors Ha{3 and Faj3 from (3), 
the tensor s~ from (8 ), and the metric tensor from 
(13), we obtain non-covariant material equations con­
necting the field vectors in a medium that is at rest in 
the rotating reference frame: 

D=eE--H[O:] BJ, H=: -({O:] n1. (14)* 

Equations (4) together with the material equations (14), 
written in the reference frame connected with the 
medium, describe completely the propagation of elec­
tromagnetic waves in a medium rotating with constant 
angular velocity 0 relative to the inertial reference 
frame. 

3. FREQUENCY SHIFT OF OPPOSING WAVES IN A 
ROTATING RING RESONATOR 

We note, first, that whereas in the first part of this 
paper we obtained exact equations, the results of this 
section have an approximate character and are valid 
only in the first approximation in I 0 x r/ c 1. The 
space metric is Euclidean in this approximation. 

To find the natural frequencies of a resonator at 
rest with the medium filling it in a uniformly rotating 
reference frame, we employ the method used in[ul to 
find the natural frequencies of a resonant volume. 

Let wp, Ep and Hp be the natural frequencies and 
modes of a resonator at rest in the initial inertial ref­
erence frame, normalized in the following fashion: 

5 (isE/ .-y;Eq'") dV = 5 (y;Hp' · yj;:Hq'")dV = I'Jpq, p, q = 0, 1, 2, 3, 4, ... 
v v 

We expand Maxwell's equations (4), just as inr 11 l, 
in terms of the eigenfunctions Ep and Hp of the rest-

*[Ur] =n X r. 
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ing resonator, with allowance for the first approxima­
tion (with respect to I 0 x rIc I) of the material re la­
tions (14) and the boundary conditions for the functions 
E and H. Equating the coefficients of the series in 
both parts of the equations and neglecting the right 
sides of the equations, we obtain for the quantities E, 
D, B, and H, which are monochromatic with frequency 
w, the following system of equations: 

wp'e s EEp''dV- W/-1 s HHp''dV- wef.t s [[Ocr] E] Hp''dV = 0, 
,. v v . (15) 

w/1-1 S HHp'* dV- we SEEp'* dV + ro ~ [ [~r] H] Ep'* dV = 0. 
v v v 

In the first approximation in I 0 x r/c I, we obtain 
from (15) by perturbation theory 

.1rop = 2rogl = rop' ~ S [r{[Hp'Ep"] + e1-1 [H/'E/]}] dV, 
c v 

where Ep, Hp and wp are the modes and the natural 
frequenc1es of the resonator at rest in the inertial ref­
erence frame, wk1 ) is the first-approximation correc­
tion to the natura! frequency wp = w~l. 

Let us consider a plane electromagnetic wave propa­
gating in a rotating ring resonator, having a contour 
perimeter equal to L. Let part of the resonator, of 
length l, be filled with a dielectric medium. The fre­
quency shift of the opposing waves in such a resonator 
is 

where 
1 ! 

St = - ~ [rdl], 
2 0 

f L 

S2 = 2 S [rdl], n = fe-~. 
l 

S1 is the area bounded by the contour section l filled 
with the medium and by the rays joining the ends of the 
section with the center of rotation, and S2 is the re­
maining area of the contour. 

4. COMPARISON WITH RESULTS BY OTHERS 

It was already noted in the introduction that similar 
investigations of the dependence of the frequency shift 
of opposing waves in a ring resonator on the angular 
rotation velocity of the resonator were carried out 
in[1• 2• 41. The deviations of the results of the indicated 
investigations from one another and from the present 
results are due to the fact that they employ different 
material equations for the electromagnetic field in a 
medium that is at rest in the rotating reference frame. 
Thus, in[1' 21 the material equations for the medium at 
rest in a rotating reference frame are written in vec­
tor form, in first order approximation in I 0 x r/c I, 
in the form 

D=eE-[[~rJH]. H=~B-~[[~r]E]. (16) 

In[41, the material equations are written with the aid 
of the fourth-rank tensor xot{3yll' which describes the 

electromagnetic properties of the medium and the 
geometry of the corresponding reference frame. How­
ever, to determine the material equations for the 
medium at rest in the rotating reference frame (or 
moving in some other fashion), the tensor xot{3yv is 
resolved in[41 into two components, one describing the 
vacuum and the other determined by the polarization of 
the medium, whereas in our case (and in other cases) 
the component tensors are transformed independently 
of each other. For a medium resting in an inertial 
reference frame, the following material equations were 
obtained in[4 J (compare with (14) and (16): 

D = eE- [ [O:] B] , 
(17) 

H= ~B-[[0:] E]+[[O:][[~r]Bll· 

it is easy to write out equations relating the vectors D, 
E, H, and B in vacuum. Therefore Eqs. (17), (16), and 
(14) differ only in the fact that they contain the charac­
teristics e and Jl of the medium in different manners. 
The indicated differences in the material equations 
lead to different values of the frequency shift of the 
opposing waves in a ring resonator rotating together 
with the medium. In this connection, it is very desira­
ble to verify the results experimentally. 
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