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Multiphoton transitions to a degenerate level of the hydrogen atom induced by intense laser radiation 
of a given frequency w and an additional light source of variable frequency 0 are considered. The 
laser radiation perturbs the degenerate level and determines the parameter of the theory of multi
photon transitions. The dependence of the transition probability on the statistical properties of the 
radiation is established. An "inhibition" of the resonance absorption of the light of frequency 0 by 
the laser radiation is predicted. 

MuLTIPHOTON ionization of atoms (see, for example, 
[ 11 ) has recently been investigated in detail. Multipho
ton transitions (with the number of photons greater than 
two) in the discrete spectrum of atoms has been studied 
in less detail. On the other hand, the development of 
methods of multiphoton spectroscopy may turn out to be 
fruitful, for example, in order to obtain information 
about the basic parameters which determine the "reso
nances" [ 21 associated with multi photon ionization of at
oms. 

Multiphoton transitions in the hydrogen atom are of 
special interest since the well-known l-degeneracy of 
the energy levels is realized in it. In this connection 
the contribution of the electron-photon interaction to the 
expansion parameter which determines the probability 
of a multiphoton transition may turn out to be much 
larger than in the case of hydrogen-like atoms. Multi
photon transitions from the ground state of the hydrogen 
atom to the level n = 2 will be investigated below. Since 
the laser frequency w is usually fixed, in order to 
achieve a transition we introduce into consideration, in 
accordance with the fundamental idea of multiphoton 
spectroscopy, an additional source of radiation with a 
variable frequency 0 of generation. 

Let us consider the Hamiltonian of a hydrogen atom 
interacting with stationary laser radiation. We expand 
the vector potential A in a series with respect to the 
normal coordinates. We go over to the representation 
of second quantization for both the photon and electron 
subsystems. In the dipole approximation the operator H' 
describing the interaction of the electron with the radia
tion has the form[ 21 

H~ , ie0 ~ , f ffix A + + 
=-c- ~ V z( ,.r)1; (b_,.-b,.)a1 a;. 

i,J,'X 

Here we have introduced the notation 

, /4nn 
A,.=c V ue'"'e,. 

(1) 

(eK is a unit polarization vector); b:K and bK are Bose 

operators for the photons; at and aj are Fermi crea

tion and annihilation operators in the i-th and j-th states 
of the atom; e0 is the electron charge; c is the velocity 
of light; L3 is the volume of quantization. The total 
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Hamiltonian is given by 

H= Ho+il', 
Ho = ~ B;ata; + ~ nffix (b~b,. + 1/,), (2) 

i " 

where Ei denotes the energy of the i-th state of an elec
tron in the hydrogen atom. 

Let us consider the case of a single laser mode of 
Z-polarization. We assume that the frequency of the la
ser does not coincide with any of the eigenfrequencies 
of the atom. For simplicity we shall confine our atten
tion to taking account of the electron-photon interaction 
only for the level n = 2. l) In the dipole approximation 
the matrix element between the following states (nlm) 
will differ from zero: a(200) and /3(210). Thus 

ii' = m .. p(b+- b), 

Bap""' v .. pa .. +ap + vp .. ap+a.., 
Vcxp = Vpcx = 3eoaoL -'hl'2nliw. (3) 

Here a0 denotes the Bohr radius. 
The probability of absorption by an atom per unit 

time of light of a frequency n lying within the interval 
between n and 0 +dO, of intensity 5l'(G), and of polari
zation Z is determined by the Fourier transform of the 
correlation function of the dipole moment operators:[31 

-+-
dW=~!l'(Q) r :rt(t)e-illtdtdQ, (4J 

h•c }"" 

:rt(t)= ~ d;;"d;.;,:rt;;;,;,(t), 
!, j, it. j, 

:rt;;;,;, (t) = q;;;a;+a; I a;,+(t)a;,(t) :>. (5) 

Here 

and the symbol (( ••• )) denotes statistical averaging 
over the initial state of the system (atom + laser radia
tion). 

To a high degree of accuracy (in the concentrations) 
one can neglect the contribution of excited states of the 
atoms to the absorption and consider only transitions 

l) One can neglect the influence of the laser radiation on the ground 
state energy level of the hydrogen atom since, as it is not difficult to verify, 
the corresponding Stark correction is negligible. 
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from the ground state. Since the ground state a; I 0) of 
hydrogen in the chosen model is not perturbed by the 
laser radiation, the atomic and field variables factor so 
that to the accepted degree of accuracy 

.7C iii,;, (t) = Sp {p1 (0 [ a,ata;eiHt/11a1, ~a,,e-!ftt!lla,+ [ 0) }. (6) 

Here Pf is the statistical operator which describes the 
electromagnetic field of the laser. The subsequent cal
culation is carried out exactly. 

Inside the trace sign in formula (6) we perform a 
canonical "shifting" transformation with the aid of the 
unitary operator: 

U=exp{li~ Bap(b++b) }. (7) 

It is not difficult to verify that 

~~~ ~ 1 ~ 
UHU-1 = Ho- ;;;;;Bap2• (8) 

Formula (6) takes the form 

{ 
~ (1) (2) (s) } X;;;,;,(t) = Sp Pt ~ R,;;v,(t)Rv,v,(t)Rv,;,;.,(t) . (9) 

v,v, 

Here the following notation has been introduced: 

{!) '/ ' { it ( Bap
2
)} I > R,;;v,(t)=\ 0 a,a1+a1exp -h ~ &;a;+a;- liw av,+ 0 .' 

i 

R~,(t)= (0[ av, U+(O) U(t)av,+IO), 

(3) < I { it ( B .. p")} I > Rv,;,;.,(t)= 0 av,a;,+a;,exp -h ~ e1a;+a;-hw U+(t)U(O)a,+ 0 . 

' (10) 
A calculation according to the formulas (10) givP.s 

(I) { it ( Vap2 )} R,;;v,(t)=ll1,1l;~v,(llv,a+llv,p)exp h ev,- liw ; 

ca> { ie, } Rv,;.;,,(t)= ll;,slli,v,(llv,a+ llv,~)exp - ht 

(15ij is the Kronecker delta). 
Expression (9) takes the form 

X;;;,;, (t) = 6;, ll;v, 6;,8 ll;v,( llv,a + /lv,p) (llv,a 

+ llv,p) exp { ~ ( ev,- e,- v;:)} Kv,v,(t), 

where the notation is defined by 

Kv,v,(t) = (O[av,<II(t)av,+[O), 
d>(t) = Sp {ptf!+(O)U(t)}. 

(11) 

(12) 

(13) 

Let us use the .9'-representation for the density opera
tor Pf:[ 4J 

(14) 

Here .9'( I~ I) is the Glauber weight function for a steady
state source of radiation, and ~ is the complex eigen
value of the photon annihilation operator: 

bfs> =sis>· (15) 

According to the methods of Glauber, [ 41 in order to 
calculate the average value of an operator A(b+, b) it 
is necessary to bring it into normal (N) form for the 
operators b+ and b. In the expression NA the Fock 
operators b+ and b must be replaced, respectively, by 
e and ~' and the result is integrated term-by-term 

with the weight function !f'. It is not difficult to show 
that 

{ iflap · t } { Bap2 (1 · t)} X exp - -- ( 1 - e-"• ) b exp - -- - e"" . 
liw li2w2 

(16) 

Let us consider the evaluation of K 11 11 (t) for two 
1 2 

types of weight functions. 
A. A continuously operating, stabilized laser:[ 41 

1 -
.9'( I W == 9"6( I W = -=o<ISI-l'nJ. 

2rr yii 
Here ii denotes the average number of photons in the 
mode, and 15(0!) is the Dirac delta function. We find 

~ ( Wap - wt ) { - B .. ~• . } <ll<6>(t)=lo --l'nsin- exp ---(1-e•"'1) • 
liw 2 li2w2 

(18) 

(Here and below the superscript (15) indicates the type of 
.9' -function.) J 0 (x) is the Bessel function of zero order. 

In order to evaluate K 11 11 (t) we shall use a repre-
1 2 

sentation of the Bessel function in the form of a series, 
and we also expand the exponential appearing in formu
la (18) in a series. Terms having the structure 

m m ( f)m ( wt )2m ( V p)2(m+n) 
~ ~ - 2yHsin- (ei"'1-1)n _ .. _ 

m=O n~o (ml) 2 nl 2 \ liw 

X llv,v,{(Oiaa(aa+apap+a .. )m+n aa+IO) llv,a 
+ (0 I ap (a~+ aa aa + ap) m+n ap+ I 0) llv,p}. 

will be different from zero. Finally we find 

(19) 

<6> { • wt } } (20) Kv,v,(t)=lo P1Slll2 exp{(e1" 1 -1)po llv,v,(llv,a+llv,p). 

Here the notation is given by 

(21) 

B. A Gaussian source of radiation (for example, a 
laser operating below threshold). The weight function 
has the form 

1 { lsi•} 9"a (I SJ) =--::: exp - -_- . 
nn n 

(22) 

A calculation gives 

A { 2Bap2 } <lJ<Gl(t) = exp - li•w• n(1- cos wt) , 

.i('~~J,(t) = exp {-1/apt2(1- cos wt)} llv,v,(llv,a + llv,p). (23) 

With the aid of the formulas obtained above, let us de
termine the probabilities dw<G> and dw<l5>. We find 

j('(6l(t) = d,a2 exp{ ~ (e .. - e,)t }lo( o1 sin ~t )exp {p0 (ei"1 - 1) }. (24) 

Let us use the expansion[ 61 

lo( p1 sin ~t) = / 02 ( p21 ) + 2 ~/••( p21 ) cos kwt. (25) 

We note that as L3 - oo, p0 - 0 while p1 remains fi
nite (p1 ~ ii/L3, ii = L3N0, where N0 is the number of 
photons in 1 cm3), 

The integration over t in formula (4) is elementary 
to perform with the aid of formulas (24) and (25). We 
find 
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Here 

00 ) 
i Sa- t:s 

dW<OJ = M (Q) ~1.2 (_£_)a (-t;-- Q- kw dQ. 
k~o 2 

4n2 

M(Q) = -d"i£'(Q). n2c 

Jk(x) denotes a Bessel function. 
dwtG> is determined in similar fashion: 

(26) 

dW<GJ = M(Q)exp ( -t")h~ h( p~z) o C"; 8'- Q- kw )do, (27) 

Ik(x) denotes a modified Bessel function. Formulas (26) 
and (27) have the typical structure which describes mul
tiphoton processes. In the absence of laser radiation 
p1 = 0 and only one term out of the sum is left which 
does not vanish for k = 0 (J0 (0) = 1, I0(0) = 1). In this 
connection formulas (26) and (27) go over into the well
known expression for the probability of one-photon ab· 
sorption of a quantum nO by a hydrogen atom. 

If the frequency 0 varies within the interval from 
0 0 to 0 0 + ~0 0 , then for the integral transition proba
bilities we find 

(28) 

Here [k0 ] denotes the integer part of the number k0 : 

kow = (sa- s,) In- Qo. 

The parameter p1 appearing in expressions (28) has the 
form 

12l'2rr eo ,,N-
Pt = ao r o. 

"Jfnw 
At photon densities N0 for which p 1 << 1 we find 

M (Qo) ( Pt2 )[k,J 
w<o>~----

[[ko]!J2 16 ' 

(29) 

W(GJ ~ M(Qo) (~)[ko]. (30) 
{ko]! 16 

It immediately follows from formula (30) that 

W<GJ = (ko]! W<6>. 

In other words, the transition probability (for the same 
intensity of radiation) is, in the case of a Gaussian 
source, [k0 ]! times larger than in the case of a source 
with a 6 •shaped J' -function. Since in an experiment the 
intensity of a Gaussian source is usually not large, this 
result is of rather theoretical interest. (For the case 
of two-photon transitions the indicated problem has been 
extensively discussed in the literature. r5 ' 71 ) 

Let us denote by w<r> the probability for the absorp
tion of a quantum 0 in the absence of laser radiation un
der the exact resonance condition, 0 = (~:: 01 - Es)/ti. The 
corresponding probability wt 6> for the absorption of a 
quantum 0 in the presence of the laser beam has the 
form 

(31) 

As follows from formula (31), the laser radiation 
"modulates" the absorption of light of frequency 0. In 
the absence of the laser beam p1 = 0, J 0 (0) = 1, and 

consequently w< 6> = w<n. With switching-on of the 
laser source and with an increase of its intensity, the 
argument of the zero-order Bessel function increases 
and its value decreases. For sufficiently intense laser 
irradiation the coefficient for the absorption of light 
with frequency 0 may be practically "suppressed." 
Utilization of a carbon dioxide laser (w "'1014 sec-1) 

represents a favorable situation for observation of the 
indicated effect. At fields F "' 5 X 106 V/ em the argu
ment p1 = 3, ,fo(1. 5) ""0.25, and consequently the rate of 
light absorption is decreased by a factor of four. It is 
not difficult to verify that for such fields the decay prob
ability per unit time for the excited (n = 2) state of the 
hydrogen atom is "' 1 x 108 sec - 1 , i.e., it does not ex
ceed the value for the probability of spontaneous emis
sion (6 x 108 sec-1). (In order to estimate the probabil
ity of decay via tunneling, one should use formula (16) 
of article[ 11 in which for the factor S it is necessary 
to take only the first few terms of the series (18) into 
account). 

Side by side with the absorption processes, proc
esses involving the spontaneous emission of the frequen
cy 0 in the presence of laser radiation of frequency w 
are treated in similar fashion. In this connection 

w<": . = w v> . lo'( .£.:.). 
enusswn enusston 2 

If the amplitude of the laser signal is modulated with a 
large period, then one would expect that the intensity of 
the 0-luminescence will contain a corresponding varia
ble signal which may be observed and amplified accord
ing to the well-known techniques associated with much 
weaker laser fluxes. 2 > 

We note that !-degeneracy is also realized for exci
tons in a solid (for example, for excitons in CdSl 81 a 
quasilinear Stark effect arises for the n = 2 level at a 
sufficiently large value of the field F). In this case for
mula (31) is applicable for qualitative estimates. Since 
the radius of an exciton in CdS is 3 0 times larger than 
the radius of the Bohr orbit in hydrogen, complete "in
hibition" of the absorption of light of the frequency 0 
is achieved in the case of a C02 laser for fields F 
"' 3 x 105 V /em. (Since the quantity fi w is an order of 
magnitude larger than an exciton's binding energy, its 
ionization by a quantum of laser radiation is unlikely.) 

In conclusion we note that a factor of the type 
J~kol (p1/2) reflects the fact that there is a definite 

probability for the participation of [k0 ] laser photons 
in the transition. (Coefficients of a type involving the 
square of Bessel functions are also obtained in articles 
r 9 • 101 which are devoted to similar physical problems 
about the high-frequency Stark and Zeeman effects.) 
The factor J~ (p1 /2) expresses the probability that real 
laser photons do not participate in the transition, but 
the contribution of virtual photons to the transition 
probability is appreciable. (In analogy with the well
known Debye-Waller factor in the theory of phononless 
lines and the Mossbauer spectrum.) 

The author expresses his sincere gratitude to Prof. 
Yu. E. Perlin for a valuable discussion of the results of 
this work. 

2l The author is indebted to V. M. BuYmistrov for this observation. 
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