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Solutions of the wave equation are considered for an inhomogeneous magneto-active plasma, taking 
account of weak spatial dispersion under the assumption that there is point within the plasma at which 
the component E:xx of the dielectric tensor vanishes (x is the coordinate on which the particle density 
depends; the magnetic field is assumed to make an arbitrary angle with the x axis). It is shown that 
in the region IE:xxl << 1 the solution of the equation is described by a standard function; the asymp
totic form far from the point E:xx = 0 is a superposition of plasma waves and the solution of the equa
tion with spatial dispersion neglected. In general, the coefficients in this superposition are different 
in different sectors of the complex plane of x. However, in the absence of an incident plasma wave, 
in a sector which includes the lower half plane and the real axis of x for a cold plasma the solution 
of the equations is given by a superposition with constant coefficients. It is shown that in lowest order 
in a parameter which takes account of the dispersion the magnitude of the energy carried away by the 
plasma waves coincides with the magnitude of the energy absorbed in the cold plasma. In the case of 
a highly inhomogeneous plasma, solutions are obtained for the "cold" waves in cases in which the 
equations do not break up into independent second-order equations. Making use of these solutions it 
is possible to obtain the boundary conditions at the vacuum-plasma interface which takes into account 
the presence of a transition region in which the density vanishes gradually. 

IT is well known, that in an inhomogeneous plasma at a 
finite temperature there is a coupling between electro
magnetic waves and plasma waves with the possibility 
of conversion between wave modes. This linear trans
formation process is of interest in the analysis of ab
sorption, emission, and scattering of waves in a plasma, 
and is also of interest in connection with stability and 
nonlinear interactions. Transformations of this kind 
have been studied by many authors, but up to the pres
ent time only certain limited cases have actually been 
examined. The most detailed analyses have been given 
to the transformation in isotropic media. [1-41 In a mag
neto-active plasma only that case has been considered 
in which the density gradient is perpendicular to the ex
ternal magnetic field, with certain specialized conditions 
on the incident wave.[ 4 - 81 In many papers the transfor
mation of waves has been discussed from the point of 
view of the geometric optics approximation, that is to 
say, under the assumption that the plasma inhomoge
neity is weak.[ 41 However, the transverse dimensions 
of laboratory plasmas are frequently of the same order 
as the wavelength and for this reason it is of interest 
to consider the exact solutions of the wave equations. 

We wish to consider the solution of the wave equa
tion for a hot inhomogeneous plasma: 

(!)2 

rot rotE --D = 0, 
cz 

(1) 

where D generally contains an integral operator which 
acts on E; in the general case this can be an extremely 
complicated problem. However, in most cases of prac
tical interest the waves in a large region of the layer 
can be divided into long waves, for which spatial dis
persion only introduces unimportant corrections, and 
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plasma waves which can be considered as electrostatic 
waves to a high degree of accuracy. 1 l In other words, 
any solution of (1) E can be approximated by a linear 
combination 

where the solutions Ec and Ep = -vcp are governed 
by the simpler equations 

(!)2 

rot rotE,- -D, = 0, 
cz 

(2) 

(3) 

where Dei = Eik(x)Eck and Eik (x) is the dielectric ten
sor, computed without taking account of the thermal 
motion of the particles, and 

divD(V<p) = 0. (4) 

The approximation in (2) is known to be violated 
near singular points of the "cold" equation (3). In the 
plane case, in which the plasma density depends on the 
x coordinate (this is the only case which will be con
sidered below) the singular points of (3) are defined by 
the condition 

Bxx(Xo) = 0. (5) 

The exact wave equation (1) does not exhibit singulari
ties at these points; on the other hand, in the vicinity 
of these points the field does not separate into the two 
modes indicated above. This means that we can call the 

ll As will be made clear below, this separation does not hold if the 
characteristic scale of the inhomogeneity density is comparable with 
the Larmor (or De bye) radius of the particles; similarly it does not hold 
when the wave frequency is approximately equal to the cyclotron fre
quency or to the second harmonic of the cyclotron frequency. 
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vicinity of the roots of equation (5) regions of "mode 
interaction." Equation (2) represents an asymptotic 
representation of the solutions of (1) outside of these 
regions; obviously, it can have different forms on dif
ferent sides of the interaction region. The construction 
of these representations requires a determination of the 
field inside the interaction region and appropriate 
matching of this field with the selected solutions Ec 
and Ep• 

The present work is devoted to an investigation of 
the behavior of the field inside these regions and the 
construction of asymptotic solutions of (1) for compara
tively general assumptions. We will not give the actual 
form of the layer and will not use the explicit form of 
the tensor Eik(x). Moreover, we do not make any as
sumptions as to whether geometric optics can be used 
in (3). 

1. FIELD IN THE MODE INTERACTION REGION 

In the analysis of the field in the interaction region 
we can make use of the following simplifying circum
stance. In this region there is a transition from plasma 
waves, for which dispersion is strong, to "cold" oscil
lations, for which dispersion is generally not important. 
Thus, under appropriate conditions we can assume that 
the dispersion in the interaction region is weak and that 
it can be taken into account by writing D in the form 

(6) 

where I Oiklm I << 1. 
Actually, (6) should contain terms of the form 

( Yikzc/ w)aEk/axz but it can be shown that in the small 
region in which we use (6) these terms are unimportant 
and can be neglected. The conditions under which the 
approximation in (6) is valid will be clarified below. 

We now consider the wave equation 

in the region of the point x = Xo, which is a root of (5). 
In this region we can write 

Bxx = (xo- x) I a, (8) 

where a is a constant, while the remaining coefficients 
can be assumed to be constants. We make use of the no
tation 

( cZp )''• llx:xxx(xo)""' p, 002a = 'V (9) 

and will assume that (3 is so small that y << 1. In or
der to be definite, for the time being we assume that 
{3 > 0. Then, introducing the new variable ~ 
= (x - xr)/ay and considering waves of the form E 
= E(x) exp {ikyY + ikzz}, after certain transformations, 
to lowest order in y we find 

E.<•>- SEx''- (2- iu)E.' = 0, 
Ev' = iykyaE,, E.' = iyk,aEx, 

where a= a[ky{Exy(Xo) + Eyx(Xo)} + kz{Exz(Xo) 

(10) 
(11) 

+ EzxC:xo)}] and the primes denote differentiation with 
respect to ~. In view of the vector nature of the expres
sions in (2), the coefficients A and B can be deter-

mined from the matching conditions on any component 
of the field. It is clear from the form of the system in 
(10)-(11) that it is most convenient to treat the x com
ponent, which is determined by one equation of (10). 

One of the solutions of this equation is a constant 
while the other three can be found by Laplace transform 
methods. These can be conveniently written in the form 
(k = 1, 2, 3) 

Wh(S) = exp {i ~ (1- iu) (7- 2k)} ~ t-i• exp{ st- ~3 } dt, (12) 
c. 

where the integration is carried out over the plane with 
a cut taken from the origin at an angle arg t = rr /3 along 
the contour shown in the figure. The functions Wk are 
related by expressions 

Wt(6) = Wz(se-''•ni), W,(6) = Wz(!;e'''ni). (13) 

These do not have singularities for finite ~ and are ex
pressible in terms of tabulated functions[ 9l when a = 0. 
In the problem at hand greatest interest attaches to the 
asymptotic behavior of the function Wk when IE I >> 1 
for the entire complex plane of ~. (The assumption I~ I 
>> 1 is compatible with condition I x - Xo I << a if 
y << 1.) We first consider the function W2• 

If 0 ~ arg ~ ~ rr/3 the path of integration in (12) can 
first be taken along the line C0 for the steepest descent 
of exp ~t and then through the saddle point to = -{[in
to the sector T2• In general, the main contribution to 
the integral comes from the beginning of the path in the 
vicinity of the saddle point. The contribution at the be
ginning of the contour is given by the integral 

/ 2 = exp[in(1- iu)] S t-iae<tdt, (14) 
c, 

while the contribution due to the saddle point is of the 
form 

iy-;: [ 2 , ia J -exp --5'•--lns . 
5''• 3 2 

(15) 

In the sector 0 ~ arg ~ < rr/3, Re ~s;a > 0 the expres
sion in (15) becomes asymptotically small and the 
asymptote of W 2 is determined by the initial path. In 
the present case the contour C0 is represented by the 
ray arg t = - (rr + arg ~). Thus 

/z = r(1- iu) I :st-ia. (16) 

When arg ~ is approximately equal to rr/3, Re ~s;a is 
reduced in absolute value and in a certain narrow range 
rr/3- o < arg ~ < rr/3 + o, o ~ I~ 1-s;a (16) and (15) are 
of the same order of magnitude. In this sector 
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Along the path ~ = 'TT/3 the second term represents a 
wave traveling toward the origin. 

When 1T- 0 > arg ~ > 'TT/.3 + 0 the expression in (15) 
becomes exponentially large and the contribution at the 
origin of the path can be neglected: 

W" = q'n exp{-~s'/,- !:!_In~:}. • ;•;, 3 2 • 

In the sector 1T- 0 < arg ~ < 1T + 0 both terms in the 
asymptote are again of the same order of magnitude but 
now the contour C0 passes around the other side of the 
cut in the plane of t and 

eznar(1-io) iin { 2 ' io } 
W2= .. +-exp --£h--ln£ . 

£1-W £'!, 3 2 
(17) 

Along the path arg ~ = 1T the second term describes a 
diverging wave. 

In the region 1T + 0 < arg ~ < 41T /3 the contribution 
of the saddle point again becomes negligibly small. 
When arg ~ = 41T /3 the saddle point lies on the contour 
C0 and at large values of arg ~ the contour C0 passes 
between this point and the boundary of the sector T 2• In 
this case the path of integration in (12) can be extended, 
passing around the saddle point in such a way that the 
quantity Re (~t- e/3) falls off monotonically along the 
path. As a result 

eznar(i- io) w2- n+.S<arg£,;2n. (18) 
- ;;1-·ia ' 

It is immediately clear that the expression in (15) de
scribes plasma waves while the integral in (14) de
scribes the "cold" part of the solution. It should be 
emphasized that on the positive real axis the expres
sions in (18) and (16) are equal so that the cold part 
asymptotically becomes a continuous function of arg ~ 
over the entire sector bounded by the rays -1T - 0 
< arg ~ < 'TT/3 + 0, that is to say including the entire 
real axis. It will be shown below that this circumstance 
implies that the cold part asymptotically represents the 
solution of the cold equation (3) both on the left and on 
the right of the mode interaction region. The asymptotic 
representation of the functions wl and w3 can be ob
tained by means of (13). 

2. ASYMPTOTIC REPRESENTATION OF THE 
SOLUTIONS 

The system of equations (10)-(11) is equivalent to a 
sixth-order equation. Hence, the total array of charac
teristic functions of equations (1) must include six solu
tions for which the weak dispersion approximation is 
valid in the interaction region. The functions Wk con
sidered above can be used to construct asymptotic rep
resentations of the form in (2) for all six normal waves. 

In order to establish these asymptotic representa
tions we must determine the limiting form of the solu
tions of equations (3) and (4) as x - Xo· 

We first consider (4). The geometric-optics approxi
mation is valid for the plasma waves and in (6), which 
holds near the interaction region, the dispersion equa
tion assumes the form 

The plasma waves describe the roots of this equation 

which are largest in absolute value: 

k± = + ~ 1/ £.., + Cil ky(£v:r + e:ry) + k,(e,x +ex,) 
- C Y f3 C 2exx 

In the region lx- Xol <<a the x component of the ap
propriate solutions can be written in the form 

i fC { 2 , io n } Ep:r±= exp ±-£1•--ln£--o , 
}' wa £'1-vt-ia 3 2 2 

(19) 

where the constant multiplier is chosen in such a way 
that the energy flux carried by the wave is equal to the 
Poynting vector of an electromagnetic wave of unit am
plitude in vacuum. Obviously the expression in (19) rep
resents the limiting value as x- Xo of the solutions of 
(4). We now consider the solutions Ec for the cold 
equation (3). When x- Xo[ 10 l 

( a )t-ia k a ( a \ -icr 
Ecx =A -- + Bx, Ecu., = - .....!!.:!__ --; + Bv. ,, 

Xo-X 0 Xo-X ( 20) 

where A and Bx y z are constants so that Xo it is a 
' ' branching point of these solutions. In order to remove 

the ambiguity it is necessary to make a cut from the 
point Xo; depending on the position of this cut in the up
per or lower half-plane of x we shall denote these so
lutions respectively by E<U> and E<l >. The difference 
between these solutions lies in the fact that E<U> de
scribes absorption while E<l > describes generation of 
energy at the singular point Xo· Actually, if one consid
ers real x and requires that the solutions be continu
ous one obtains the branch E<U> if it is assumed that Xo 
has a positive imaginary part iOa. In accordance with 
(8), the presence of this imaginary part corresponds to 
a positive antihermitian part ill in Exx, which leads to 
energy absorption. Owing to the peculiarities of the 
field, when 0 << 1 this absorption is independent of 0 
and does not vanish in the limit 0 - 0. [ 41 In the general 
case in which (j * 0 the power absorbed per unit area of 
surface at x = Xo is given by 

(21) 

where A <U> is the value of the constant A for the solu
tion E<U>. In completely analogous fashion it can be 
shown that the solution E<l > represents generation of 
energy. 

It will be evident that the solution E<u> is continuous 
in the lower half plane while E<Z > is continuous in the 
upper half plane. 

Having determined these properties of the solutions 
of (3), we can determine the coefficients in the asymp
totic expression (2). We first consider the solutions in 
which no incident plasma waves are present. As will be 
evident from (17), the x component of this solution in 
the interaction region is of the form 

(22) 

where C1 and C2 are constants. 
Since the cold part of the asymptotic form of W 2 is 

continuous in the lower half plane (22) can be only 
matched with Eiu> so that outside the interaction region 

(23) 

Now, making use of (19), (20), (22) and (23) we find 
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C, =B., c.=_ A<u>exp[-nu], a,.=_ y~A<u>exp[-nu/21. 
f(1- iu)yl-ia c f(1- iu) 

Substituting the four independent solutions Ell > in these 

expressions we obtain four solutions Ei (i = 1, 2, 3, 4) 
which describe the transformation of the electromag
netic waves into plasma waves. It is convenient to clas
sify these solutions in terms of the direction of inci
dence (from the right or from the left of Xo) of the inci
dent waves. Each direction of incidence corresponds to 
two independent polarizations one of which can always 
be chosen in such a way that A<U> = 0. The correspond
ing waves do not experience transformation while the 
waves polarized in the orthogonal direction are subject 
to maximum transformation. The energy carried by the 
plasma wave c I a 12 1 2 /8rr is exactly equal to the quantity 
Q in (21). If the plasma wave is damped in the plasma 
layer the quantity I a 12 12 can be regarded as the effec
tive absorption coefficient. It is determined completely 
by the cold solution E<u>. The conclusion reached here 
is a proof of this result, which has been noted in the lit
erature[ 3• 4 • 73 for various particular cases. 

In the derivation of (22) and (23) we have not actually 
made use of the hermiticity of Eik; hence these results 
remain valid when collisions are taken into account, 
and in an unstable plasma. It should be emphasized that 
the proper choice of the branch of the cold solution, 
which asymptotically represents Ei, is independent of 
the sign of the imaginary corrections to Exx, that is to 
say, the sign of the imaginary part of Xo· The asymp
totic representation that has been obtained can also be 
used to take the limit T- 0, that is to say, y- 0. 
When y- 0 the function W2 approaches infinity in the 
sector rr/3 < arg ~ < rr and the cold limit in the re
maining part of the complex plane (except for the rays 
arg ~ = rr, arg ~ = rr/3); it is then clear that in the pres
ence of any arbitrary weak absorption Ei- Eiu> over 

the entire lower half-plane including the entire real 
axis of x. On the other hand, if it is assumed at the out
set that T = 0 then the only physically meaningful solu
tions are the cold solutions of the equation Elu>, which 

are analytic in the lower half-plane. 
In completely analogous fashion we can construct the 

solution that describes the transformation of plasma 
waves into electromagnetic waves. Outside of the mode 
interaction region 

E5 = Ep+ + a22Ep- + «21(E<1>- E<u>), x < Xo, 

E5 = a21(E<lJ- E<~>), x > xo, (24) 

where E<u> and E<l > are any nonregular (with kt O) 
solutions that satisfy the same boundary condition 

A(u) =-ill c .r(f-iu)exp[-nu/2] 
<lei V nwa A(l> ' 

<l22 = -i- e-ms A<l) • 

In the interaction region I Xo -xI << a 

Eex= l'c _ {exp[-_!__ni(1-iu)W1 -iA<u> exp[-~nu]w.} 
l'nwayl-ia 6 A<I> 2 

(25) 
It will be evident that the function E5 does not have a 
cold limit. Finally, the last sixth solution of equation (1) 
contains the exponentially diverging function W3 when 
x > Xo· This solution will not be considered here. 

Up to this point it has been assumed that (3 > 0. 

When (3 < 0 the ~ plane is rotated with respect to the 
x plane by an angle rr/3. Along the ray arg ~ = -rr/3, 
the diverging wave is described by the function W1 while 
the incident wave is described by W3• Making use of 
(13) we can show that (22)-(25) remain valid when the 
following substitutions are made: y - I y I , ~ - ~ ', and 
e = (Xo-x)/alyl. 

It has been assumed above that within the transition 
layer the density varies monotonically so that the quan
tity Exx vanishes at only one point in the plasma. The 
generalization to the case of an arbitrary density pro
file does not introduce any difficulty so long as the dis
tance between the zeroes is large enough so that the in
teraction regions for the modes do not overlap. Under 
these conditions an expression such as (25) holds in the 
neighborhood of each such point. 

Equation (7) is equivalent to a sixth-order equation 
with a small parameter multiplying the highest deriv
ative. Hence, it is reasonable that there will be a sig
nificant similarity between the present results and the 
theory of asymptotic solutions of fourth-order equa
tions given by Wasow.[l1J In his case, however, the 
rapidly oscillating term (the analog of the plasma wave) 
appears at the boundaries of sectors with a small factor 
and hence is neglected. 

In applying the analysis given above it is required, 
first of all, that the following condition be satisfied: 

y~1. (26) 

which was used in the derivation of (10) and (11); sec
ondly, we require the validity of the weak-dispersion 
approximation (6) in the mode-interaction region. It can 
be shown that the second condition is automatically 
satisfied when y << 1 everywhere with the exception 
of frequencies close to the second harmonic of the elec
tron-cyclotron frequency WBe, where the more strin
gent requirement 

(27) 

must be satisfied. The second inequality in (26) guaran
tees that (20) is valid over a region that is broader than 
the mode -interaction region so that the solutions can be 
matched. The parameter (3, which determines the value 
of y in accordance with (9), is given by the following 
expression in a collisionless plasma: 

v2wo2 [ 3w2 sin• a p - ~ - -:--::---::-:-::------c:--:-:--
- "'-~ c2 (w2 - WB2) (w2 - 4wa") 

6w• - 3w•wB2 + wB• 3 co#- a J + sin2 acos2a+--
(w"-wB•)a w2 

where the summation is taken over particle species and 
the plasma frequency w~e is determined from the con
dition Exx(Xo) = 0: 

(28) 

Wave conversion is possible at frequencies for which 
the left side of (28) lies between the limits 0 and w~m 
= 4rrnoe2/me where no is the maximum density in the 
layer. For a given angle a these frequencies form 
three isolated bands 



WAVE CONVERSION IN AN INHOMOGENEOUS MAGNETOACTIVE PLASMA 657 

Exact expressions for Qi can be found, for example, in 
l12l (in this case it is necessary to take W0e = Worn). 

The parameter a = -(dExx/dx)~1=Xo can also be 
written in the form 

( 1 dn )-' a---
- ndx.x=xo. 

The conditions in (26) and (27) apply for this parameter 
and, consequently, the plasma dimensions are bounded 
from above and from below. An analysis of these condi
tions shows that these limitations are extremely strin
gent in the low-frequency region w ::, wm. In general, 
when w ~ -J wbi WBe and a* rr/2 the parameter a must 
be large compared with the ion Larmor radius Pi (cal
culated for the electron temperature). When w2 >> wm 
x WBe (and also when w2 ~ wmwBe and a = rr/2) it is 
necessary that a>> Pe; finally, when w >> WBe the pa
rameter a must be large compared with the Debye ra
dius. It should be noted that in a layer with a maximum 
in the density the quantity a varies from zero to infin
ity as the frequency changes in the limits of the trans
formation band so that the analysis given here does not 
apply near the boundaries of these bands. 

3. SOLUTION OF THE COLD EQUATION FOR A 
HIGHLY INHOMOGENEOUS PLASMA 

We have shown in the preceding sections that when 
the conditions (26) and (27) are satisfied the problem of 
wave conversion reduces to the solution of the cold 
equation (3). In the general case, that is to say, for an 
arbitrary angle a, these equations represent a system 
of two coupled second-order equations; because of math
ematical difficulties, the solutions have been obtained 
only in the geometric-optics approximation.l 41 We now 
consider the opposite limiting case, in which the thick
ness of the layer l satisfies the condition 

wl 
-N<r;;;1, 
c 

where N is the refractive index for the wave and does 
not have a singularity; N is computed for the charac
teristic density of the layer being considered. The prob
lem has been solved in l71 a = rr/2. Since the compo
nents of the tensor Eik(x) are linear functions of n, 
these components can be written in the form 

Bik = llik + aik(1- e(x)), 

where E (x) = Exx and aik is a constant (independent of 
x) tensor. Then, choosing the coordinate system so that 
ky = 0 we can convert (3) to the form 

1 i(e-x2) ix(ex11Ey+ex,E,) 
E, =- Dx (29) 

xe 

1 1 i(1-x2)azx . E 
Dx = -a,xEz - Dx- zx(azxExy + Bzy) u. 

X 

- ix(a,xexz + e,)E,, (30) 

11 [ ByxExy] [ EyxBxz l Eyx D (31) E 11 = x•-e1111 +-8-.- Ey+ - 8--e11,JE,--8- x, 

where 

(32) 

Here, we have introduced the dimensionless quantities 

s = wx/c and K = kzc/w and the primes denote differ
entiation with respect to s. It is easy to show that (29)
(31) are equivalent to (3) if one notes that elimination of 
Dx from (29) -(31) leads to the same system of equa
tions for Ey and Ez as is obtained by eliminating Ex 

from (3). 
We will solve the system in (29)-(31) assuming for

mally that the thickness of the layer l is the small pa
rameter. According to (20) the field components Ey and 
Ez as well as Ey remain finite (or have logarithmlc 
singularities for a = 0) at the singular points Xoi at 
which E = 0. It follows from (32) that the quantity Dx 
also remains finite at these points. Now, integrating 
the right and left parts of (30) from the boundary of the 
layer s1 (to be definite we assume that this is the inter
face between the plasma and the vacuum) to an arbi
trary point s, within the layer, we see that if l is small 
the integral of the last three terms will converge and be 
small so that 

(33) 

where E~1 = E~(s1) and Ez1 = Ez(S1). 

Substituting (33) in (29), to the same accuracy, we 
have 

1-e 1-e i(1-x2 )a,x 
Ez' -E,{ + icr0-- (E,-E,1 ) = ixA-- + (E, -E,,), 

where 

e e x 

ix I .. E . E A= --Ext -z,xaxy yt- lXaxz z1, 
1-x2 

1
1 dn ~-i 

a- --- ~ n dx x:=:.=oi. 
i 

c 
0"6=-a, 

wa 

(34) 

(35) 

We will solve (34) regarding the right side as an inho
mogeneous term. Then, if I s 1 - s I is small the contri
bution from the last two terms on the right side of (34) 
will be small, and to a first approximation 

E, = E,1 + xAj(s), (36) 

where 

1 [ · r 1- e )] f(s)= Go 1- exp( -icr0 J - 8-ds' , 
,, 

(37) 

and the singular points must be traversed from below 
or from above depending on which type of solution 
(E<u> or E<l >) is desired. 

It is easy to show that in this same approximation 

Ex= Ex, +A [ 1 ~e -( 0': -Mxz )f(s)], Ey= Ey,. (38) 

The power Q absorbed by the plasma (for the E<u> solu
tion) is determined from (21), where A is given by (35). 

In case of a thin layer, greatest interest attaches to 
the representation of the solution of the external prob
lem, that is to say, the determination of the fields out
side the layer. Equations (31), (34), (36) and (38) can be 
used to relate the values of the fields and their deriva
tives to boundary layers s1 and s 2 , that is to say, they 
can be used to obtain in the boundary conditions which 
determine the field in the external region. For the case 
in which the point s1 is the interface between a vacuum 
and the plasma and in which the density n2 * 0 at the 
second boundary, these boundary conditions can be 
written 
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E,, = E,, + x/~, 
E,'=E,'+iA[x(f-ooh)(f-ez) +fz(1-x2azx)], (39) 

2 I E'2 

E112 =Ev., 

Eu,' = Eu,' + iayx/2A, 

where the subscript "2" denotes quantities at s = sa. 
In the frequency region w >> wBb when w~<xo)/wBe 

>> me/mi we have 

axu = CllBe {CllBe sin a cos asincp + iC!l sin a cos cp], 
WBe2 cos2 a -l- ClJBeCOBi - w2 

axz = CllBe {IDBe sin a cos a coscp- iC!l sin a sin cp], 
CllBe2 cos2 a+ CllBeC!lBi- (1)2 

where cp is the angle between the xH and xz planes. In 
the same approximation in which (39) holds, the layer at 
hand can be replaced, in solving the external problem, by 
a plane (located at any point in the interval sa - s1) at 
which these same boundary conditions must be satisfied. 
If l - 0 then when fa- 0 (39) becomes the usual 

' 0 boundary conditions at a sharp vacuum-plasma mter-
face. [ 131 Obviously (39) also applies when na = 0. 

An estimate of the terms that have been neglected in 
the derivations of (33), (36), and (39) shows that these 
terms are small when 

Clll 
laxvl-<iii;1, 

c 
(40) 

Using the explicit form of the dielectric tensor it is 
a simple matter to write the limitations on the thickness 
of the layer l in explicit form. These are found to be 
very stringent at low frequencies w ~ wBi. When 
w >> WBi we must have l << c/wBe and when w >> WBe 
we must have l << c/w. If the condition in (40) is satis
fied the real part of the integral in (37) is always small 
and we can write 

1- exp{-O()l"[Clla/c] 
/z= 0 

oo 

In general, dn/dx ~ n/l and the parameter a and con
sequently also fa is small. In this case terms that con
tain fa in (39) need be considered only in computing the 
absorption coefficient, which is a linear function of fa 
when fa is small. However, in a layer with a density 
peak a- oo when w- g 1, a and the parameter fa must 
also be large under these conditions. (When a0 :s; 0, 
f2 - oo when a- oo,) Equation (39) applies for arbi
trarily large values of fa because, as can easily be 
shown, the higher approximations do not give rise to 
terms which contain higher powers of fa. This circum
stance derives from the fact that even in the first ap
proximation the field singularity is proper. In the fre
quency region in which la0wa/c I ~ 1 it is natural to ex
pect a strong deviation from the case of a sharp bound
ary a= 0. 

As an illustration we now compute, using (39), the 
absorption coefficient Ao for a thin plasma layer which 
is bounded by vacuum on both sides: 

4/zaocos e 
Ao = leeol 2[2 cos 6 + t.ao]2 ' 

where e is the unit polarization vector of the incident 
wave and e0 is a unit vector with components 

eo.:= ~sin6(sin6 +au cosO), 
iao 

eov = -aux/'1~ eOz = -eo.: ctg e, 
where 0 is the angle between the wave vector of the in
cident wave and the x axis 

ao = iaxul 2 + I sine+ azx cos Bl 2
o 

If a0 :s; 0, the parameter fa varies from 0 to 00 within 
the limits of the absorption band. In this case the quan
tity 4f;aa0 cos 6 [2 cos 0 + faaol-a reaches a maximum 
value of 0.5 when fa= 2 cos o/aa. When a0 > 0 the pa
rameter fa varies within the limits 0 :s; fa :s; 1/a0 and 
for large values of a0 the maximum absorption occurs 
at the boundary of the absorption band. For a layer with 
a single density maximum (at x = 0) the parameter a 
close to the upper boundary is 

2 1 
Qt,2 = Z {(CllBe2 + Cllom2)=F 

=F [(IDB.' + Cllom2) 2 + 4IDOm2 (IDB.'cos2 a+ CllBeC!lBi sin2 a)J'I•} 

where 
1 d2n 

lo-2=-
n dx' 

when X = 0. In this case the quantity aa can be re
garded as being independent of frequency (taking w 
= g 1 a>· The maximum absorption occurs at a frequen-

' cy 

By hypotheses waba/ca << 1 so that the :rraximum ab
sorption occurs near the boundary of the absorption re
gion. Attention is directed to the strong dependence of 
the position of the maximum on the angle a near the 
frequency of the lower hybrid resonance. 

The authors are indebted to V. E. Golant for useful 
discussion. 
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