
SOVIET PHYSICS JETP VOLUME 30, NUMBER 3 MARCH, 1970 

INTENSITY AND POLARIZATION OF RADIATION MULTIPLY SCATTERED BY FREELY 

ORIENTED PARTICLES OR MEDIUM FLUCTUATIONS 

Yu. N. GNEDIN, A. Z. DOLGINOV, and N. A~ SILANT'EV 

A. F. Ioffe Physico-technical Institute, USSR Academy of Sciences 

Submitted April 14, 1969 

Zh. Eksp. Teor. Fiz. 57, 988-1001 (September, 1969) 

Multiple scattering of light by freely-oriented particles (electrons, atoms, molecules, macroscopic 
particles) and medium fluctuations are considered. The intensity and polarization of radiation from 
a point isotropic or anisotropic source in an infinite medium, and the polarization of radiation 
scattered by a layer of large optical thickness are considered. 

1. INTRODUCTION 

THE problem of the propagation of light in a medium 
consisting of individual scatterers (electrons, atoms, 
molecules, macroscopic particles) whose dimensions 
are much less than the wavelength of the incident radi­
ation has great value in physics and astrophysics. The 
problem of the passage of light through such a medium 
with small optical thickness has been considered fre­
quently. [l,a] The problem of the light intensity passing 
through an optically thick medium was also consid­
ered. r3 ' 4 l The problem of the polarization of light in 
such a medium, as the result of multiple scattering, 
has been investigated in much less detail. The problem 
of the polarization of an unbounded light beam in multi­
ple scattering by free electrons in a plane layer of 
material has been studied most fully by Chandrase­
khar Y 1 He obtained equations which give a practical 
possibility of carrying out numerical calculations only 
fo~ the case of not very large optical thickness, 
T ~ 3. For optical thicknesses T ~ 1, a similar prob­
lem has also been solved numerically by Germogen­
ova. (sJ It may seem that the problem of light polariza­
tion in the passage through a thick layer of material 
is not of interest, since the polarization becomes very 
small as the result of diffusion of the radiation, even 
in the case when it is large for a single scattering act. 
Actually, inside the medium and far from its bound­
aries, at points where radiation enters from all direc­
tions, the polarization is averaged and become small. 
Such an averaging does not take place close to the 
boundaries of the medium or near inhomogeneities. At 
the boundary of a homogeneous medium, the polariza­
tion is essentially determined by the last scattering 
acts. Therefore the polarization of the outgoing radia­
tion can achieve an appreciable value even in the case 
of great optical thickness of the target. For example, 
polarization of light scattered by electrons and mole­
cules in optically thick atmospheres of certain stars 
has been observed. This made it possible to obtain im­
portant information on the physical conditions in these 
atmospheres. ra-aJ 

The problem of light scattering on fluctuations of 
density and anisotropy in liquids and amorphous solids 
is also very important. Investigation of the polariza­
tion of scattered radiation gives necessary information 

on many properties of solid and liquid bodies. rs,lOJ 
In the present research, the problem of multiple 

scattering of light on freely-oriented systems (in 
correspondence with the terminology ofr11 l) i.e., on 
electrons, atoms, molecules or macroscopic particles 
not present in the external field, has been considered 
in detail. Analytic expressions will be found for the 
polarization and the intensity of radiation in multiple 
scattering. The resultant formulas are suitable for the 
description of scattering by free electrons, atoms and 
molecules of gases, and in a number of cases, also by 
fluctuations in liquids and amorphous solids. We shall 
also consider scattering of collimated beam of light 
passing through a thick layer of material. We shall 
limit ourselves here to the Rayleigh scattering law. 
The case of scattering by particles with dimensions of 
the order of and greater than the wavelength of the 
incident radiation (dust particles, fog particles, colloi­
dal particles) will be considered in a separate work. 

2. THE TRANSPORT EQUATION FOR THE PHOTON 
DENSITY MATRIX 

Let us consider the passage through a medium of a 
plane electromagnetic wave with length A much greater 
than the dimensions of the scattering particles. We 
shall not assume that the particles possess special 
symmetry properties (including in our consideration, 
for example, extended dust particles, molecules with 
spin, etc.), but shall limit ourselves to the case in 
which they are randomly oriented in space, so that the 
medium is in the mean homogeneous and isotropic. If 
the average concentration of particles No is such that 
there are many particles in a region with dimensions 
~A, then the scattering is determined by the fluctua­
tions of the dielectric susceptibility €ik = EOik + ~Eik, 
which are caused by the fluctuations of density and an 
isotropy in the volume element. For rarefied media 
(No A 3 « 1) the scattering takes place on the individual 
particles which, as also the fluctuations of the medium, 
can be characterized by the polarizibility tensor 
<lik· We shall neglect the change of frequency of the 
photons in the scattering process. This is admissible 
if the total width of the excited layer of particles (in­
cluding the Doppler shift) is much less than the energy 
of the photon fiw and less than the resolving width of 
the detector. For a dense medium, the analogous con-
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clition is wt >> 1, where t is the mean lifetime of the 
fluctuations in the medium. 

We represent the fluctuation of the tensor of the die­
lectric susceptibility AEik in the form of a sum of 
scalar, symmetric and antisymmetric components: 

L\e;h = L\eli;, + L\e~~ + L\e~';! , Sp 11e<•J = 0. 

The scalar AE: determines the fluctuation of E:ik asso­
ciated with the fluctuations of density and temperature. 
The components Ac:lkm = Ac:<S> and Ac:!a> = - Ac:<a> 1 ki 1k ki 
describe anisotropy fluctuations which disappear for 

isotropic scattering particles (~AE: ~!'> = 0). The 
i 11 

anisotropy fluctuations in a volume Vo containing N 
scattering particles are represented in terms of the 
symmetric and antisymmetric components of the 
polarizability tensor of the individual particle: 

N N 

VoL\ei~= 4:rt ~ aW (n), Vo11el~l = 4:rt ~ 'l~~l (n). 
11=1 n=1 

Summation in (1) is carried out over all the particles 
in the volume V0 • All discussions remain valid if 
there is only a single particle on the average in the 
volume Va. 

The transport equation for the radiation density 
matrix 

Pa~(n1r) = (c/8:rt)Ea(n1r)E~"(n1r}, 

for radiation propagating along the direction ni has 
the form[ 121 

(ntV)pa~(ntr)= -Xc{>a~(ntr) 

>< ~0 ~ dnx (tav(n,nx) Pvv(nxr) tv~+(n,n,) )v, + Ra~(n1r). 

(1) 

(2) 

Here Ko is the extinction coefficient of radiation asso­
ciated with the imaginary part of the index of refrac­
tion n by the relation Ks = 2(w/c) Im n, ta{) (nino) 
= V0 1TA.-2Mai(noni)Aq{3 is the light scattering matrix 
due to the fluctuations in the volume V0 ; the matrix 
Mik(non1) = ei<I> e~0 > connects the components of the 
vector in the set of coordinates with the z axis along 
no and unit vectors ek0 > with its components in the set 
of coordinates with the z axis along n1 and unit vec­
tors e! 1>; the brackets ( ) v denote statistical a verag-

1 0 

ing of the quantities inside them over the volume V0 

and also averaging over the orientations of the parti­
cles; RaJ3 ( n1 r) is a function describing the radiation 
sources. Greek indices can take on two values, a = x, 
y and Latin, three, i = x, y, z. Summation is under­
stood over all repeated indices. 

We shall henceforth denote the integral term in (2) 
by Ba(3 ( n1 r ). The sum of the diagonal elements of the 
matrix BaJ:l ( n1 r) determines the radiation density 
8'0(n1r) (erg-cm-3 sec-1-sr-1 at the point r. An inte­
gral equation can be written for this matrix if the 
Green's function of the transport equation is used: 

[(n1V) +xo]G(r-r'; n!) = o(r--r'). (3) 

For a homogeneous, unbounded medium, the Green's 
function has the form 

G(r; n) = 6(n-n,)r-2 exp (-xolri). 

With its help, we obtain the following integral transport 
equation: 

(4) 

B(lh ( n1 r) is obtained from the integral term if we re­
pl~ce Ryv in it for Byv· Equation (4) is applicable 
for homogeneous media of volume V with convex 
boundaries. 

It is easier mathematically to solve not Eq. (4) for 
Ba(3 ( n1 r) but the equation for the Fourier transform 
of this matrix in the variable r, for which we have 

Ka~(n1u)= ~ drexp(-inr)Ba~(n1r); F(q)= ~ drexp(-iqr), 
(V) 

<tl 1 1 1 F(u-w) 
Ka~(lltU)=Kadntu)+Vo(2n)3 JdwJ dnxxo+inxw 

(5) 

~< (tav(n,nx) Kvv(nxw) tvrl+(ntnx) )y,. 

To date, we have not specified that system of ortho­
gonal unit vectors in which the amplitude Ea ( n1 · r) is 
calculated, and consequently, the density matrices 
p a{3 ( n1 · r) and BaJ:l ( n1 · r ). However, the coupling of 
the elements of the density matrix PaJ3(n1•r) or 
BaJ3 ( n1 · r) with the Stokes parameters Ii ( n1 · r) or 
:9'i ( n1 · r) ( i = 0, 1, 2, 3) observed experimentally de­
pends on the specific choice of the set of unit vectors. 
Only the intensity Ia( n1 · r) and the radiation density 
[§a( n1 · r) are always sums of the diagonal elements of 
the matrices p a{3 ( n1 · r) and Bafj ( n1 · r ), regardless of 
the specific choice of unit vectors. We recall that 
Ia( :tJa) describes circularly polarized light, and h and 
h( YJ1 and ;t;3), linear polarization. [1, 11 , 131 The parame­
ters Ia and Ia( YJ0 and ;t12 ) are invariant under rota­
tions of the unit vectors ex and ey, in contrast with 
h and Is( :tJ1 and ;t;3), which in this case transform into 
one another (for more details, see[1, 13 l ). 

One can write down directly transport equations 
similar to Eqs. (2) and (4) for the Stokes parameters 
Ii and 21i> which has been done, for example, in[ll. 
Here we obtain very complicated systems of interlock­
ing equations, in which it is difficult to find any sym­
metry properties which permit us to simplify the solu­
tion. It is much more convenient to use the cyclic unit 
vectors ffK-1 = -ex - iey, Ko = ez, [2K. 1 = ex - iey, 
and to solve Eqs. (2), (4), (5) for the density matrices 
Paf3, Baf3> Kafj, using here the powerful tool of rota­
tional functions (Wigner functions) D(l) (a{) y ). [11 , 141 

mn 
The connection of the Stokes parameters with the ele-
ments PaJ3 and Bafj is the following: 

_ 1 (10 +12 , -J3 +il1 ). B =~(So+Sz, -S3+iSt). 
pa~-2 -13-ih ! 0-!2 ' aB 2 -Ss-iSI> So-:9'2 (6) 

As is known,t 11, 14 l the cyclic components of the vector, 
in the transition to a new (primed) set of coordinates, 
having relative initial Euler angles a, J:l, y are trans­
formed with the help of the matrix 

where 
D~~(a~y) = exp [i(ma + nv)l d~n (B), 

The elements of the tensor of second rank aik are 
transformed similar to the product of components of 
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the vector AiAk. In what follows, our Latin indices 
take on the values 0, +1, and the Greek, only +1. More­
over, for brevity, we shall denote by Uo1 the set of 
Euler angles for the transition from the set of coordi­
nates with z axis along n0 to the set of coordinates 
with the z axis along n1. 

In cyclic coordinates, we have ta/3 (n1no) 
= 1T;\ -2 D~r ( Oor)t.qj3, and for the value of 
V(/( tay(n1nx)tv13(n1nx))v0 entering into (2) and (5), we 
have 

1 
Aavv~(ntnx) ==- (tav (nlnx) t,~+(n1nx) )v, 

Vo 

( 
ffi )' (1)-t [ 1 ) ( (s) (s)+ ) = - Da; (Qxt) -- Vo(L'ie2 v, .S;v.Svk +No a;v Uvk 
c 16n2 

X No(a)~l aS~>+)] D~~ (Qx1) 

= D~\l+ (Qxi)[.S;vllvk(a<0>- a<•l/15) + llikllvv(a<•>/10 + a<al/6) 

)<. <piv<P'/k (a<•l/10- a<a>/6) ]D!~ (Qxt) o 

Here;we have used the notation 

(8) 

a<•>= Vow•(!ie')v =~[(!!:__)2 (~) pT+~'( iJe) ] 
16rr2c4 " 16n2c4 iJp T iJp T pcv iJT ' 

a<•I=No(7)"~ ja)~j 2, a<a>=No(7)'~ ja;<:1 j2, 

i,k i,k 

(9) 

p, p, T are the density, pressure and temperature of 
the medium, cy the specific heat per unit mass of the 
medium, cp_11 = 'P1-1 = -cp00 = -1, while the remaining 
'Pik are equal to zero. Equation (9) is obtained upon 
completion of the averaging ( )y0 • 

Using Eq. (8), it is not difficult to write Eqs. (2) and 
(5) in cyclic coordinates: 

(n1 V )pa~ (n1r) = - Xo(la~(n1r) + ~ dn.A~vv~ (n1nx) Pvv(nxr) + Ra~(n1r\ 
(10) 

Ka~(n1s) = K~~ (n1s) + --1 - ~ dq ~ dnxF(s- q) (1 + inxq)-1 
(2n)"xo 

)( Aavv~(nlnx)Kvv(n.q)o (11) 

In (11 ), we have introduced the dimensionless variables 
s = u/Ko, q = w/Ko. 

For the quantity :9'2( n1 · s) = K-1-1 ( n1 · s) - K11 ( n1 · s ), 
a separate equation is obtained from (11 ): 

(1) bo s s 0 (1) S'2(n1s) = :9'2 (n1s) + --3 dq dn,F(s-q) (1+Lqnx)-1D0o (Qxl)!9'2 (n.q), 
(2n) (12) 

where Kobo =a< 0> + ('i'a)(a<a>- a<S>). Thus if sources of 
circular polarization are absent, then it does not arise 
even in the process of multiple scattering. We note 
that the first separate equation for h( n1 · r) was 
evidently written by Chandrasekhar. [11 

Inasmuch as a separate simple equation (12) has 
been isolated for 3'2 ( n1 s ), then we shall also solve 
just this equation for determination of the circular 
polarization. The quantities ~Y'o, ~Y1 and :?2 will be de­
determined from the solution of the matrix equation 
(11) in which we shall now formally assume ~ 2 

= K_1_1 - K11 = 0, because the parameters S'o, S'1 and 
S'3 are not interconnected with S'2 in this equation. 
Here Eq. (11) is greatly simplified, since for K-1-1 
= K11 the term with 'Piv 'Py k is joined with the first 
term in Eq. (8): 

Ka~(n1s) = K~~ (n1s) +(2n)-3 ~ dq ~ dnxF(s- q) (1 + inxq)-1 

X [b,.Sa~Kvv(nxq) + b1D~V+ (Qx1)Kvv(n.q)D~~ (Qxi) ], (13) 
where 

Xob1 = a<01 + 1/,o (a<•l- 5a(al), xob2 = 1/1oa<•> + 1/sa(alo 

Thus, to find :92(n1·s), it is necessary to solve Eq. 
(12), and to find Z'0, 3'1 and :<J3, Eq. (13), in the free 
term of which there is no 8'~1 > ( n1 · s ). 

When b2 = 0, Eq. (13) describes the scattering by a 
spherical particle. The term with b2 leads to depolari­
zation of the radiation, associated with averaging over 
the orientations of the scattering particles. Thus, it is 
seen from Eq. (13) that the set of freely oriented parti­
cles does not scatter light in the same way as a system 
of spherical particles, no matter what their radius 
might be: Attention is called to the fact that in the solu­
tion of the problem of light scattering by dust particles, 
formulas describing the scattering by spherical parti­
cles (corresponding to b2 =0) are often used invalidly. 
At the same time, for particles of greatly elongated 
shape and particles of flattened shape, the ratio b1/b 2 

is equal to two and seven, respectively. 
Equations (12) and (13) describe scattering by free, 

anisotropic molecules which form a strongly rarefied 
gaseous medium. In this case we denote by a< 01 the 
quantity No(w/c)4 l3-1 ~a!ii 12 ((%)~aii is the mean 

i 
polarizability of the molecule). 

3. POINT ANISOTROPIC SOURCE OF POLARIZED 
RADIATION IN AN UNBOUNDED MEDIUM 

The advantages of Eq. (13) for the matrix 
Kaj3 ( n1 · s) over the similar equation for the quantities 
:'iii ( n1 · s) are clearly evident already in the solution of 
a very simple problem in the theory of scattering-the 
problem of the scattering of radiation emitted by a 
point source which is located in an unbounded homo­
geneous medium. To solve the equations for :9i ( n1 • s) 
is practically impossible because of their complexity 
(one must compute the determinants of high order). At 
the same time, as we shall see, Eqs. (12) and (13) are 
very simply solved in this case. In the case of scat­
tering of radiation by a flat layer, Eqs. (12) and (13) 
are also comparatively simple. 

In the case of a point anisotropic source, the matrix 
Raf3 ( n1 · r) in (2) has the form 

Ra~ (ntr) == B~~ (n1r) = .S (r)p~~ (ntlo 

As a free term of Eq. (4) we then have the density 
matrix B~h ( n1 · r) of the radiation, which reaches a 
depth r and is first scattered there: 

B~6 (n1r) = xor-2 exp(- xor)[b1D~V+ (Qrl) p~~ (nr )D,~~(Qr1) + b2.SapP~~(n,) ]o 

(14) 
In order to obtain the free term of Eq. (13), it is 
necessary to calculate the Fourier transform in r of 
(14). Taking also into account the fact that for an un­
bounded medium, F( u - w) = ( 21T )3 5 ( u - w ), we obtain 
the following expression for Kaf3(n1 · s ): 

Kaa (n1s) = [(,(~) (n1s) + S dnx [b1D~~ (Qx1) Kvv(nxs)D~1J (Qx1) (15 ) 
X b,.Sa~Kvv(n.s)](1 + isnx)-t, 

where K~~ ( n1 · s) is determined by an expression 
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similar to the integral term of the right hand side of 
(15), if we replace Kyv by p~~ in it. 

Using the group property of D functions, we separate 
the angular dependence in Ka(3 ( n1 · s) on the vector n1: 

K,.~(n1s)= b1D~~ (Q,,)D~~(Qsi)Hmn(s)+ bz/l,.pH(s). (16} 

Here 

Hmn(s) = f~~(s)+ fmn(s); H(s) = r<9>(s) + r(s), 

where 
r~CI).(s)= ~ dnxD~Z (n.x)~ (nx)D~~ (n.x) (1 + tsnx)-1, 

f<Dl(s) = ) dnxp~ (nx) (1 + isnx)-1; (17} 

rmn(s) and r(s} are expressed by the formulas (17), 
in which we must substitute KyvCnx·s) and KyyCnx·s) 

in place of p~~(nx) and p~> (nx). According to Eqs. 
(15) and (16}, we obtain in the following algebraic equa­
tions for the matrices Hmn(s) and H(s}: 

HA1(s) = r~~>(s) + b,Bntkm(s2)Hmn(s) + bzNzllAzH(s), (18) 
H(s) = r<0>(s) + b1N,.(s)H,.,.(s) +B:rtDo(s2)bzH(s), 

No(s) =4n[Do(s2) -Dz(s2)]; 
N1 (s) =N-t{s) =2n[Do(s2) +Dz(s2)]. 

The functions Dn ( s 2) have the following explicit form: 

' 
Dn(s2)= S d.x.x"(1+s2.x2)-1, D0(s2)=s-1arctgs, (19} 

1[1 1 1 ] D2 (s2)=s--2-s-3arctgs, D4 (s2)=S2 3 - 82 - 83 arctgs . 

The matrix Bmlkm(s2) possesses a high degree of 
symmetry and is equal to 

Bn!Am(s2)=) dnxDzg> (Qsx)Da~>+ (Qsx)D~~(Qsx)D~~+ (~~sx) (1 + isnx)-1, 

The symmetric matrices B~~(s2) and B}:k(s2) have 
the following form: 

(20} 

B~~=n[D0 +2D2 +D,], m,n=-1,1; (21} 

B~~ = 2n[Do-DJ} m = -1, 1, n = 0 or m =0, n =-1, 1; 

B~~ = 2n [D2- DJ 
<1> !2> B!2> '/ , <ll 1 1 Boo = 4n [Do- 2Dz + DJ, Bnn = 0, mn = <"00 , m, n = - , · 

Substituting (20} in (18}, we immediately obtain the 
solution for the nondiagonal elements of the matrix 
Hmn: 

H () r (O) (I) 
mn S = mn(s)[1- btBmn(s2 )]-', m =1= n. (22) 

According to what was pointed out at the end of 
Sec. 2, one can assume that p~~~ 1 = p~~> in the solution 
of Eq. (15). This leads to the equality H11 =H-1-1- For 
the elements H00, H11 and H, a set of three equations 
is obtained whose solution is of the form 

Hu = H_,_, = Ll1A-1, Hoo = Ll21'.-1, H = Hoo + 2HII, (23) 

where the corresponding determinants of the system 
are equal to 

Ll(s2) = 1- 2nb1 [3D0 - 4D2 +3D,]- 8rrb2D0 

3n(1- p) b1 [Do2- D22 - 2DoD2 + 2DoD,), 

dt(s) = r,<~> (s)[1- lutbt(Do- 2Dz +D,)- 4nbz(Do-Dz)J 

X 2nrJg> (s)[bt(D2- D,) + bz(Do + Dz)], 

dz(s) = !utrlf' (s)[b1(D2 - D,)+ 2(D0 -D2)] 

X r:(s)£1- 2nb1(Do +D,)- 4nb2 (D0 + D2)]. 

Here we have introduced the new quantity p, which is 
the degree of actual quantum absorption in the scatter­
ing; it is determined by the ratio of the scattering 
extinction coefficient K 0 : 

1-p=lo<slo<o-1 = 8/a:It{b,+3bz). (25} 
The equation H(s) = H00(s) + 2H11 (s) is obtained from 
Eq. (18)under assumption of the equality r< 0>(s) 
= r~g> ( s) + 2r~~> ( s ), which is not difficult to obtain by 
starting out from (17). The function t.(s2) behaves in 
the following manner for small s and p: 

A(s2) ~ (s2+3p)(b1 +10b2)4n/15, s2~1,p~1. (26) 

Equations (16}, (22) and (23) give an exact solution 
of the problem for the functions !Y0(n1·s), !Y1(n1 ·s) 
and !?3(n1 ·s). To determine S2(n1·s) we use Eq. (12). 
The solution of this equation by a similar method leads 
to the following result: 

~z(n,s)= boD2~(Q,1 )f~~ (s)[1- boCm(s2)]-t, 

Co= 4:rtDz, C1 = C-1 = 2n[Do -Dz), 

f ~0>(s) = s dnxD~ (Qsx)~iO) (nx) (1 -:- isnx)-1, 

~J0>(n) = p~l-t{n)- p\~ (n). 

(27) 

The desired density matrix Ba(3( n1 r) is obtained after 
carrying out the inverse Fourier transformation of 
Kaf3(nl·s): 

(28} 

In taking the integrals (28), the behavior of the de­
nominators in the formulas for the coefficients 
Hmn(s}, H(s) and also the behavior of the function 
[ 1 - b0Cm(s2)] in (27} are important. It is easy to show 
that for small s only function t. ( s 2) has roots. Their 
approximate values, in accord with (26}, are equal to 
s 1,2K ±i ffp, where we assume p << 1. These are the 
so-called diffusion roots. Radiation becomes evidently 
diffuse far away from the source Kor >> 1, but in this 
case important contributions to the integral (28) are 
made only by terms containing t. ( s 2) (small s are 
essential). Therefore, in the diffusion approximation, 
we can assume the matrix Hmn(s) to be diagonal. 
Furthermore, in this approximation the functions 
H11 ( s) and H00 ( s) are almost equal to one another. 
Actually, we get from (24) for the difference t-1- t-2 
the expression 

A,- l'iz = r,<~>[1- '/z(1- p) (Do- Dz)J- r:[1- 3/.(1- p) (Do+ Dz)], 

which, for small s, is of the order (p + s 2) ~ p 
+ (Korr2 « 1. To this accuracy, the density matrix 
Ba(3( n1 r) is diagonal in the diffusion approximation. 
The polarization of the radiation, which is determined 
by the nondiagonal elements of Baf:i(nlr), is therefore 
small. The degree of linear polarization ~3 
= ~3(n1r) !Yo1(nlr) is of the order of p + (Korr2. In 
the diffusion approximation, the circular polarization 
is practically absent. Thus, for purely Rayleigh 
(scalar) scattering, in the case !9'~0> ( nx) = const only a 
single term remains in (27) with m =0, and its de­
nominator [1- (%)(1- p}D2(s2)] has roots s1,2 
Rj ± i0.85(1 - e%s) p}. The contribution from 
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these roots is of the order r-1 exp ( -0.85 Kor) and is 
much smaller than the contribution from the diffusion 
roots in the intensity :iJ0 ( n1 r ), which is of the order 
r-1 exp (- K 0 r f3P). 

All these qualitative conclusions will be confirmed 
in the subsequent sections by specific quantitative cal­
culations. 

4. POINT ISOTROPIC SOURCE IN AN UNBOUNDED 
MEDIUM 

We apply the formulas obtained in the previous sec­
tion to the analysis of a series of specific cases. As a 
first example, we calculate the intensity and polariza­
tion of radiation from a point isotropic source in an 
infinite medium. In this case, the density matrix of 
the initial radiation has the form p ~b ( n1) = Y 2 o a{3 2!~ OJ. 

The diagonality of the matrix r~Jn ( s) then follows from 
equation (17 ), and therefore, according to (22 ), the 
matrix Hmn(s) will also be diagonal: Hmn(s) 
= 6mnHn(s). Here the expression (16) for Kajj(n1 ·s) 
takes the form 

K"rt(nls) = o"rd(bl + 2b2)H,(s')+ b2/Io(s2)] 

)( bi[Ho (s2)- Hi(s2)] D~;;+ (Qs1)Do(~\Q,i). 
(29) 

The desired density matrix Baj3 ( n1 · r) is obtained 
from (29) after carrying out the inverse Fourier trans­
formation (28 ). Substituting (29) in (28 ), and carrying 
out integration over the angles, we get the following 
expression for Ba{3 ( n1 · r): 

+ OaB i r ds s' [io ( xors) + j,( Xol's) ][Ho( s2)- H, ( s2) l 
c 

"' 
- b 1 D~:J+(Q,.1 )D~~ (Q, 1) ~ rlss2j 2 (xors)[Ho(s2)-If1(s2)]}, (30) 

. 0 

where j 0 and hare spherical Bessel functions: in(x) 
= /1i72xJn+ 112(x), and the explicit form of H1(s 2) and 
H(s 2) is the following 

H1 (s') = :rr'!l~Ol £'. 1!'1-1, Ho(s2)- JI1 (s2) = :rr'!l~0J [Do- 3D,]L'c1, ( 31 ) 
L'.t(s2) =Do+ D2 - 4nb 1 [D02 - Dz2 - 2D0Dz + 2DoD,]. 

The dependence of the density matrix Ba{3 ( n1 · r) on 
the angles is included in the matrix 

D~~!+ (Rc~)DJ~l (Rc~) = 'hnYta' (Yrt: ~c~) Y1dYr1: ~rt). 

Comparing it with (6 ), one can write out the expres­
sions for ;g 1 ( n1 · r) and ~'3 ( n1 · r ). The dependence of 
this matrix on Yrl assures the law of transformation 
of the Stokes parameters S', and :.93 into one another 
under rotation of the system of coordinates of the re­
cording apparatus (polarimeter). Usually, one uses a 
system for which Yrl = 0. In this system, according 
to (6 ), the parameter ~~ 1 ( n1 · r) is equal to zero. 

Under the condition K 0 r » 1 (diffusion approxima­
tion), analytic expressions can be found for the density 
matrix Baj3(n1 ·r). Here it is necessary to integrate 
over a contour in the upper half plane in (30 ); in this 
calculation, one must take into account only the residue 
from the diffusion pole s = i ffp, discarding the inte­
grals around the cut from the branch point s = i of the 

integrand. The discarded terms are ~(K0 rf2 exp ( -K0 r) 
and can be neglected when Ko r >> 1, since the diffusion 
terms are of the order ( Ko r f 1. We shall also neglect 
terms ~p fP, p2, which corresponds to the physically 
interesting case in which the actual absorption in the 
medium is small. As a result, we obtain the following 
expressions for :!Jo( n1 · r) and S'3 ( n1 · r) in the frame 
of reference with Yrl = 0, where :Y1(n1·r) =0: 

(0) 3Xo2 - { bj [ 34 2 
'!l0 (n1r) = '!1 0 4n/xp(- xor13p) 1 + b

1 
+ 10b2 21 p + 3(xor)-2 

X ~-13P (xor) -I- sin2 ~ri (p + (xor) -z + 13p (xor) -I) ]} , 

(32) 

X j3p ( xor) - 1] b1 ( b1 + 10b2 ) -I. 

For the degree of linear polarization of the radiation 
.; 3 , we have, from (32) 

£a= 3'a(ntr)3'o-1 (ntr) =- b1 [ p + - 1 - + '@L] sin2 ~,1 • (33) 
b1 +10b2 (x0r) 2 x0r 

The integrals over the cut discarded in obtaining 
(32) are easily computed on an electronic computer. 
Such a calculation was carried out for the case of 
Rayleigh scattering (b2= 0, b1 = 3(1- p)/8rr) for 
p = 0, when actual absorption of photons is absent. In 
this case the exact formulas for :'70 (n1 ·r) and Z'3 (n1·r) 
have the form 

'!lo(ntr)='!l~'J!~~[ti(xor) +tz(xor)( ~ -~in2 ~.~)], (34) 

The functions f1(Kor) and f2(K 0 r) are shown graphically 
in the range of Kor from 0.25 to 4 in Fig. 1. Figures 
1 and 2 also show the graphs of Z' 0 ( n 1 • r) and 
:9 3( n1 · r) for the angles f3rz = 0°, 90°, and also the 

degree of linear polarization .; 3 for f3rl = 90°. For 
comparison, the corresponding graphs are also given, 
computed from the analytic formulas (32) and (33 ). 
From these graphs may be seen that (32 are satisfac-

FIG. I. Graphs of tabulated functions from 0.25 to 4K 0 r: a-f1(K0 r), 
b- f2 (K 0 r), c-degree of linear polarization ~ 3 (n 1 • r) for l3rl = 90°, calcu­
lated on an electronic computer, d-degree of linear polarization of 
~ 3 (n 1 • r) for l3rl = 90°, calculated according to the asympotic formula 
(33). 
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"'!1 
z.' f a 

:·: ~-~-'~_',_-=-:;:--~~=== 
0,8 d ---

FIG. 2. Dependence of :90 (nr) (3K0 2 /47rr :9"0 <0 >r' on K 0 r: a and b­
exact values of :9"0 (n 1 • r), for /3rJ = 0° and 90°, c and d-the correspond­
ing values of ~0 (n 1 • r) calculated from the asymptotic formula (32). 

torily accurate when Kor = 2 for :9"0 (n1 • r) and when 
Kor =3 for :Ya(n,·r). 

We now discuss the results. First of all, it is evi­
dent that in the diffusion approximation (i.e., at large 
distances from the sources and boundaries) the value 
of the polarization is insignificant. In the case of pure 
scattering p = 0, the polarization is a quantity of the 
order of ( Kor f 2. Such a dependence is explained by 
the fact that the polarization is proportional to the 
gradient of the density (current), which in our case 
is directed from the source and which changes with 
distance as ( Ko r f 2. The current creates a distinct 
direction in the medium, which is necessary for the 
appearance of polarization. 

In the expressions (32) and (33 ), it is easy to pro­
ceed to the case of Rayleigh scattering by fluctuations 
of the density and temperature. Here b2 = 0 and b, 
= 3(1 - p)/81T, as follows from Eq. (25). We note that 
in this case, the degree of linear polarization ~3 is 
maximum, since the factor b1 (b, + 10b2t' = 1. This 
factor characterizes the decrease of the degree of 
polarization of the radiation under the action of the 
depolarizing effect of scattering by anisotropy fluctua­
tions. Depending on the relative contribution of the 
different types of scattering (scalar, symmetric and 
antisymmetric) to the cross section, it can take on 
different values, but the modulus does not exceed unity. 
Thus, for scalar (Rayleigh) scattering (a<S) = a<a) = O) 
this factor is equal to unity, for purely symmetric 
scattering (a< 0 ) = a<a) = 0) it has the value }'s,, and 
for antisymmetric scattering (a<o) = a<S) = 0) it be­
comes negative and is equal to -1/g. Thus, measure­
ment of ~ 3 can serve as a means of obtaining informa­
tion on the presence of one type of scattering or 
another in the medium. 

5. POINT COLLIMATED SOURCE OF POLARIZED 
RADIATION IN AN UNBOUNDED MEDIUM 

We now consider the problem of scattering in an 
unbounded medium of an infinitely thin beam of 
polarized photons radiated from a point source. The 
consideration is made on the basis of the general 
formulas of Sec. 3. A practical case is that of the 
scattering of a light ray with small optical diameter 
( Ko d « 1) where d is the geometric diameter of the 
ray. The source is given in this case in the following 
way: 

B~0J(n1r) = ll(r)ll (n,- no)/~~(n0), 
I~b(no)is the matrix of the source radiation density in 
the frame of reference connected with the unit vector 
no. 

We limit ourselves here to the case Kor >> 1 (dif­
fusion approximation), when it is possible to obtain 
asymptotic formulas. For simplicity, we consider 
purely Rayleigh (scalar) scattering b2 = 0, b1 

3(1- p)/81T. In the diffusion approximation, 

Hmn (sno) = 6mnHn (sno) (1 + isno)-1• 

We obtain the expression Hn ( s ·no) from the general 
formulas (17) and (2 3 ). Just as in the previous section, 
we shall take into account in the calculation of the 
Fourier transform of K 01p ( n, · s) only the contribution 
of the diffusion root, neglecting the integrals over the 
cut. As a result, we obtain the following asymptotic 
formulas in the frame of reference with yrl = 0, where 
:9"1 (n1 ·rno) = 0: 

3xo2 - { (O) [ 20 :9"o(n,rno)= 16112r exp(-xoq'3p) I,, 1+2IP 

X ( ~or+l'3p) cos~ro] + ~( P+ (:or)' +l'3p(xor)-1) 

X[/~~ (4P.(cos ~or)+ Pz(cos B")) + 3 sin2 ~or Re(Z~l1e-2ia,,)]}, 
3xo2 - (O) -g-3(n1rno) =- -1 . 2 exp(- xory3p)lyy (p +(xor)-2 + y3p(x0r)-l]sin2 ~,1 . 611 r 

If (35) is integrated over all directions of the vector 
n0 , formula (32) is obtained (for the Rayleigh case), 
which describes the radiation from an isotropic point 
source. To obtain (35), we discarded terms 
~p,[p, p2; p(Korr', (Korf4 and so forth. 

As follows from (35 ), the dependence on the initial 
direction of the source of radiation decreases sharply 
with increase in the distance from the source if the 
absorption in the medium is small. Actually, the cor­
relation coefficient between the directions of the radius 
vectors r and n0 is proportional to the quantity 
( Kor r' + -.f3p for the radiation density. The depend­
ence of the radiation density on the linear polarization 
of the source is also weak and is characterized by the 
quantity p + (Korf 2 + ffp(Korr'. In this approxima­
tion, the polarization of :9"3 is completely independent 
of the direction n0 of the source of the radiation. This 
phenomenon is easily understood physically, since the 
diffusion of the radiation, on the one hand, leads to the 
isotropization of the flow of photons at great distances 
from the source, and on the other, to an equilibrium 
distribution of the scattered photons and to equaliza­
tion of the gradient of the flow. 

In conclusion, we shall write out the formula for the 
radiation density :Y0 ( n1 • r n0 ), obtained from the same 
assumptions as (35), from the ordinary non-matrix 
transport equation with Rayleigh scattering indicatrix 
K ( n, · no ) = 3[ 1 + ( n, ·no )2 J/ 161T: 

~o(n,rno)= 136x~: exp(-xory3p)I~Z){ 1-~p+cos~rl( .!_+l'3p) 
:rt r 21 xor 

2 1 1'3] (36) 
X 3 [p + (xor)2 + Xo: [4Pz(cos ~or)+ P2 (cos ~,1 )] }. 

It follows from a comparison of Eqs. (35) and (36) that 
for p = 0 the difference between them lies in the ab­
sence of a term with polarizations of the source I~~~ 
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in (36 ), i.e., the non-matrix transport equation gives 
the correct result with accuracy up to terms of the 
order ( Ko r f 2, 

6. PHOTON SCATTERING FROM A FLAT LAYER OF 
MATTER 

The equations obtained in the previous sections are 
easily generalized to the case of scattering by a flat 
layer of matter. Let an unbounded beam of polarized 
photons be incident on a flat layer of thickness 2 L in 
the direction n0 • The state of this beam is described 
by the density matrix I ~b· The density matrix of the 
photons which reach a depth z and are first scattered 
there in the direction n1, is equal to 

B~~) (n1r) == Bd~l (n1z) = xo [b1D~t (Qo!)l~ (no)DW (Qo!) (37) 

X b2ba~I ~Z) (no)] exp {- xoz sec tio}. 

Here cos J o = no · nz. Since, for a flat layer, 

F(q)= 8:-t'li(qx)li(qy)exp{-iq,L}j(q:), where j(x)= x-1 sinxL, 

then Eq. (13) in this case takes the following form: 

Ka~(n 1 u) = 8:rt26(ux)li(uy) exp [ -i(u,- ixo sec tio)L]Kap(n!uJ, 

Ka~(n1 s) = f(s- i sec ti 0)[b1D~~+ (Qo!) I~~ (no)Dv~) (Qo!) + b2ba~l~ (no)] 

~ (38) 
+ ~ ~ dr ~ dnxf(s- r) (1 + irnxn,)-1 [b1D~r (Qxi)Kvv(nxr) 

:rt -00 

(39) 

Equation (39) possesses the same symmetry properties 
as the equation for an unbounded medium (15). We note 
that Eq. (39) is not more complicated than the ordinary 
transport equation except for the intensity with indi­
catrix, containing the zeroth and second Legendre poly­
nomials. The desired density matrix B0 {3(n1·r) is found 
after satisfying the inverse Fourier transform 
K0 (3(nl·U) and :9'2(n1 ·u). 

In the work of the authors of,P2l a set of integral 
equations is solved for the observed values of the 
Stokes parameters Si, similar to the equation for the 
case of Thomson and Compton scattering. Here the 
authors start out from the following physical picture 
of the process of multiple scattering. As is seen from 
the results of the present paper (see, for example, Eqs. 
(32), (33)), the Stokes parameters of the scattered 
radiation, which describe the polarization, are small 
in comparison with the scattering intensity :'/0 at great 
distances from the source. This effect is easily ex­
plained by the diffusion radiation which decreases the 
anisotropy of the radiation flux at large distances. 
Therefore, it should be expected that, inside the flat 
layer, at distances from the boundaries of the medium 
greater than the total free path, that is, where the 
photon motion is diffusive in character, the polariza­
tion of the radiation is small ( 0 3 ::::: 0). The fundamental 
polarization of the outgoing radiation arises in a single 
scattering process close to the boundaries of the layer. 

The physical considerations set forth above allow us 
to suggest the following method for the solution of 
Eqs. (39) or (10). As the zeroth approximation, we 
choose :93 = 0, !9'0 = I(n1z) where I(n1z) is determined 
by the solution of (39 ), if we neglect the polarization 
terms in it. After substituting the zeroth approximation 

in (39 ), we determine the Stokes parameters in first 
approximation. Substituting these results again in (39 ), 
we obtain the values of the stokes parameters in second 
approximation, and so on. Thus, the problem reduces to 
the solution of Eq. (39 ), if the polarization terms (the 
non-matrix transport equation for the scattering inten­
sity) in the latter are neglected. Solution of such an 
equation is obtained in the previous work of the 
authors. [151 The substance of the method of solution is 
the following. As is known, photons can go from one 
point of the medium to another either directly, without 
scattering (direct "flight"), or as a result of a certain 
number of collisions, i.e., diffusion. 

In[15J the authors transformed the usual transport 
equation to integral form, in which the processes of 
diffusion and direct "flight" without scattering are de­
scribed by different kernels of the integral equation. In 
this case, it was shown that the process of diffusion can 
be taken into account exactly, and the process of direct 
"flight" can be taken into account by the method of 
successive approximations. The advantage of the re­
sultant integral equation is that it automatically takes 
into account the correct boundary conditions of the dif­
fusion equation and allows us to obtain a practical solu­
tion with the necessary accuracy. The intensity thus 
calculated is substituted in Eq. (39) and the polarization 
of scattered radiation in optically thick layers of 
matter is calculated (see [121 for details). 

Inr 2•16 l the linear polarization is calculated by a 
numerical method for Rayleigh scattering for different 
optical thicknesses of the scatterer. The results of the 
calculations of the polarization for this case by the 
method given by us lead to a simple analytical formula, 
and in first approximation, better agreement is ob­
tained with the numerical calculation (see Fig. 3). We 
note that this method does not depend on the specific 
angular dependence of the cross section. Moreover, 
for thick layers, the polarization of the scattered radi­
ation does not depend on the angle of incidence of the 
initial ray, since the initial direction is completely 
"forgotten," in the diffusion process, and the polariza­
tion is determined by the subsequent acts of photon 
collisions. 

We express our gratitude to Yu. A. Shibanov for 
carrying out the numerical computations on an elec­
tronic computer. 

FIG. 3. Degree of linear polari­
zation of radiation coming out of a 
thick flat layer of matter under 
Rayleigh scattering: a-result of 
numerical solution, b-result of 
analytic solution in first approxi­
mation. 
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