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The dielectric constant of a gas at the quadrupole transition frequency is determined in the pair colli­
sion approximation. The transition between states with momentum 0 (ground state) and 2 (excited state) 
is considered. The combined effect of collision and Doppler broadening on the line shape is discussed. 

THE problem of the absorption line shape in dense 
gaseous media (the density of atoms n satisfying the 
condition nl\. 3 » 1,-;\. = c/wo, where wo is the frequency 
of the atomic transition under consideration) was re­
cently considered in a number of papersl1- 41 • Under 
these conditions, the line shape is determined by colli­
sions of excited and nonexcited atoms with resonant en­
ergy transfer. In the papers mentioned it was assumed 
that the ground state and the excited levels of the atom 
are related by an optical dipole transition, and conse­
quently the interaction leading to the resonant transfer 
of the excitation is the dipole-dipole interaction. 

In this paper the dielectric constant of a gas at the 
quadrupole transition frequency is determined for the 
case when the momentum of the ground state of the atom 
is J 0 = 0 and the momentum of the atom in the excited 
state is J = 2. In this case the dielectric constant is de­
termined, within certain limitations which will be noted 
below, by pair collisions of excited and nonexcited atomE 
with resonant energy transfer due to quadrupole-quad­
rupole interaction. The energy of this interaction 
depends on the interatomic distance R like K 5 , there­
fore such an interaction should contribute, in our case, 
to the collision line width more than the Van der Waals 
interaction, which is proportional to R-6• 

To obtain the dielectric constant we use here the 
method of temperature-dependent Green's functions, 
which was used to obtain the optical characteristics of 
a system inl3 J and in a number of other papersl2 ' 51 • In 
considering the collisions, the pairing condition 

(1) 

where Po is Weisskopf's radius, is assumed to be satis­
fied, since impact parameters p ~Po are important in 
collisions with resonance transfer of excitations. In 
quadrupole-quadrupole interactions (the atomic system 
of units is used) 

(2) 

where Q is the reduced matrix element of the quadru­
pole moment of the transition, connected with the proba­
bility of quadrupole radiation W for the given transition 
by the relation Q2 = 75 l\. 5 W, and v is the relative veloc­
ity of the colliding atoms. It is also assumed that the 
atomic density satisfies the condition 

n'A 3 ~ 1, (3) 

so that the collision line width is considerably larger 
than the natural line width of the quadrupole radiation. 

The population of the excited levels is assumed to be 
small, i.e., T << Wo· 

As shown inl31 , when condition (1) is satisfied the 
retarded two-particle Green's function Knm0(p, k, w) of 

the atomic gas, which determines the polarization opera­
tor and by the same token the dielectric constant, satis­
fies the following integral equation: 

Kmm,,(p,k,w)= K,~,·(p,k,w) {8m•m,- ~ dp'l':,,.m"(q,q)Km"m,(p',k,w) }, 

and the dielectric constant of the system E(w) is ex- (4) 
pressed in terms of the two-particle Green's function 
Knm0 (p, k, w) in the case under consideration, when 
quadrupole transitions at the frequency wo are possible, 
in the following manner: 

e(w)=1- ~Q2k2 2; (-1)mK_mKm'~ dpKmm'(p,k,w). (5) 
mm' 

The reduced matrix element Q of the atomic quadrupole 
moment between the states characterized by the mo­
menta 0 and 2 is determined as follows: 

2Q ) 
(Zm!Q,_,!OO) = -=bm,, (6 

l"5 
where m is the projection of the excited state momen­
tum, and Q2s is the quadrupole moment operator of the 
atom, written down in form of a second-rank irreducible 
tensor connected with the ordinary quadrupole moment 
tensor of the atom: 

(the summation is over all the electrons of the atom). 
The normalization of Q2s, like that of all second-rank 
irreducible spherical tensors used below, is performed 
so that Dzz = Q2s· The quantity Km is the second-rank 
irreducible spherical tensor corresponding to the tensor 
kakj3/k2 - %oaj3, k = w/c. The vector q in (4) is given 

by q = Yz(P- p'). 
The function K~m'(p, k, w) can be written down in 

any system of coordinates in the form 

K!m,(P, k, w) =- ncp(p) X 

{ 
1/abmm' + 2/31'/z(22m's !2m)P, + 1/3( -1)m'PmP-m' 

X 
w- wo- l:2(p)- pk/M 

, 2/, bmm'- 2/a yi(;'(22m's !2m)P,- 4/a(- 1)m' PmP -m' 
' w-wo-l:!(p)-pk/111 ---·----

(-1)"'' PmP-m' } 
+\ w- Wo- l:o(p)- pk/M ' 

(7) 

524 
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where q7{p) is the Maxwell distribution, jdpq7{p) = 1, Pro 
is the irreducible spherical tensor corresponding to the 
tensor %PO!Pj3/P2 - %oO!J3, (22msl2m') is a Clebsch­
Gordan coefficient, and M is the atomic mass. 

The mass operators ~ m = ~ _ m are expressed in 
terms of the non-exchange four-pole rmm'(p, p'), sim­
ilar to that introduced inl3 l. The four-pole rmm'(p, p') 
in the integral term of Eq. (4) is an exchange one. The 
four-poles r and r' play the role of an effective reson­
ance interaction potential of the atoms in the medium, 
and are expressed in the pair collision approximation in 
terms of the zero-angle scattering amplitude of two 
atoms fmm'(p, p') at zero angle: 

i 
rmm•(P, p) = M Im/mon•(p, p), 

' 1 
fmm•(p,p)= M Re/mm•(p,p). 

(8) 

The non-exchange four-pole r describes the interaction 
of excited and nonexcited atoms, not resulting in excita­
tion transfer from one atom to another, and the exchange 
one r' describes the interaction with nonradiative exci­
tation exchange between the atoms. These expressions 
for the four-poles r and r' are valid in the frequency 
range 

(9) 

In order to find the scattering amplitude of two atoms 
we use the quasiclassical method, assuming that the 
change of the internal states of the atoms (in particular, 
the change of the momentum projection of the excited 
atom or the excitation transfer without change of the 
internal energy) affects weakly the relative motion of 
the atoms, and this motion can be considered to be along 
a straight classical trajectory. Such an approximation 
was used in[3 ' 4' 6-aJ. 

The scattering amplitude fmm'(q, p) of two atoms is 

/mm•(q,p)=M• dRe-iqRVmm•(R)'l'm'm,(R,p). (10) 

The definition (10) differs from the ordinary one by the 
factor -1/ 41T. The matrix elements V rom' (R) are those 
of the quadrupole-quadrupole interaction operator taken 
between atomic wave functions and are the first non­
vanishing matrix elements generated by expanding the 
Coulorob interaction potential of two neutral atoms in 
powers of 1/R for the transitions 0 ~ 2. These matrix 
elements are of the form 

Vmm•(R)= ~5 (- i: llmm•+ V ~ (22msj2m')Y.+ ~f. (-f.)m'YmY-m), 

where Ym is the irreducible spherical tensor corre-(ll) 
sponding to the tensor RO!RJ3/R2 - ~oO!J3' The wave 
function '11tmmo(R, p) describes the relative motion of 
atoms with momentum p and polarization mo of the ex­
cited atom prior to scattering. If a wave function in the 
form 

'l'mm,(R, p) = e<PRSmm,(R, p) 

is looked for, we obtain for the functions Smmo the 
equation: 

(12) 

In deriving Eqs. (12) from Schrooinger's equation we 
neglected the second derivatives of the functions Smmo• 

which can be done if the relative velocity of atoms v 
satisfies the condition 

M-'lo~ v~ f. (13) 

If this condition is satisfied, it can be also assumed 
that the relative motion of the atoms is along the straight 
line 

formula R2 = (l- + v2t2, 

where p is the impact parameter. In this case Eqs. (12) 
reduce to a system of linear differential equations. 
Their solution and the calculation of the integrals (10) 
was performed on an electronic computer and gave the 
following expression for the zero- angle scattering am­
plitude: 

/mm•(P, p) = mQf'/2J1M{a2['/a6mm' + 2/af'/•(22m'sj2m)P. 
+'fa(-f)m'PmP-m•] +a,[2/s0mm•- 2/afi.(22m'sj2m) P. (14) 

-'/a( -1)m'PmP-m•] + ao(-1)m'PmP-m•· 

Here 0! 2, 0!1, and O!o are constants, obtained by numer­
ical integration of the system (12), and equal 

a2 = -2.30 + 0.484i; a1 = -1.66-0,072 i; 

ao = -1.30-0.018 i. 
(15) 

we turn now to Eqs. (4) for the two-particle Green's 
function of the atoms of the medium. They are too 
cumbersome to solve in the general case, and therefore 
we use the four-poles rmm'(p, p) and r~m'(p, p), aver­
aged over the direction of the vector p, which we deno­
ted by r: 

- 1 s fmm•(p)= 4n d!Hmm•(p,p) 

and similarly for r~m'(p). The thus averaged four­
poles depend only on the absolute value of p: 

where 

r mm•(P) = 6mm• inQ v 2~ a', 

a' = Rea = Re (2/,a• + •;,a, + 1/ 5ao) = -1.84, 
a" = Im a = 0.160. 

(16) 

(17) 

The accuracy of this approximation will be discussed 
below. 

In the general case the mass operator ~ m is ex­
pressed in terms of the non-exchange four-poles r rom' 
in the following manner, as shown inl3 J: 

~mllmm• =in~ dp'<p(p')fmm•(q,q), 

where q = % (p- p'). The explicit expressions for the 
mass operator are the following: 

~2 (p) = z)'nunQ(-1.60.71-0.75/2 + 0.06/s), 
~ 1 (p) = il'::ill' nQ(-1.98/1 + 0.54/2- 0.22/s), 
~o(p) = il'nunQ(-2.05!, + 0.42h + 0.33!,), 

where u = (2T/M) 112, x2 = p2/2MT, 

lt{z)= _!_ 1 (z- Y) lz- Yl'l•e-Y'dy, 
2x_.., 

/ 2 (:r)= (1 +~)/1 (x)-_2_ ~ jx- yj't.e-Y'dy, 
x2 2x2~~ 

J3 (x)= (1- ~-~)/,(x)-~( 1 +~.)r jx- yj'l•e-•'dy. 
x2 xt.. x2 x2 ~oo 

(18) 
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When the four-pole r mm'(p) averaged over the direc­
tions of the vector p is used, the mass operator is inde­
pendent of the index m: 

~mbmm' = ~t'lmm' = 6mm'i)'minQa'II(x). (19) 

We consider the case when the Doppler width is much 
smaller than the collision width 

(20) 

which is valid for the temperature range 

M(w0 / c) 8 ~ T~ wo. 

In the denominator of Eq. (7) one can then neglect the 
terms p · k/M, which lead to the Doppler broadening, 
and therefore the Green's function depends only on p and 
w: Kmm'(p, w). The integral equations (4) can be re­
duced to a system of three equations for the functions 
Ko(p, w), K1(p, w), and K2(p, w), and the angular depen­
dence on the direction of the vector p is similar to (7). 
If the function F(x, s) is introduced in the following 
manner: 

? 2 1 e-•' 
~K2(p,w)+-Kt(p,w)+-Ko(p,w)=- F(x,s), 
5 5 5 (2nMT)'I•l'nuQ (21) 

where s = (w- w0)/(1TU) 112nQ, we obtain for this function 
the following equation: 

Fix, s) (s- ia'lt(x)) = 

2 "' 'I 'I] (22) 
=1-5a"x'l•~ye-•'dy[(1+~)'-!1-!l' F(y,s). 

0 

The dielectric constant (5) can be expressed directly in 
terms of the solution of Eq. (22): 

16 Q 16 Q r 
s(w)=1+ 45 u'"X2 x(s)=1+ 45 u'I•X• .Jx"e-•'F(:z:,s)dx. (23) 

0 

The solution of Eq. (22) and the calculation of x(s) 
were performed with an electronic computer. There­
sult of the numerical solution is that this function can be 
approximated with an accuracy of 1% by 

11; 
x(s) = ~;(s + 0.170+ i1.98)-i, (24) 

As well known, under certain conditions the imagin­
ary part of the dielectric constant determines the ab­
sorption line shape in a gas. As seen from (23) and (24), 
in our case and in the frequency range w - wo 
« Q-112v514 the absorption line is described sufficiently 
accurately by a dispersion distribution, the line shift 
a is 

ll = 0.170 l'nunQ (25) 

and the width r is larger by about one order of magni­
tude: 

r = 1.98fnunQ. (26) 

To estimate the accuracy of replacing the four-poles 
rmm' and r{nm' by their averaged values (17), the solu­
tion of Eq. (4) was obtained in both cases by the method 
of successive approximations. The results enable us to 
conclude that the expression for the dielectric constant 
e(w) , given by Eqs. (23) and (24), is valid within 2% in 
the gas temperature and density ranges, determined by 
the inequalities (2), (3), and (20). 

Consider now the case corresponding to a transition 

between excited states, where the lower state has mo­
mentum 2 and is related to the ground state of the atom 
(momentum 0) by a quadrupole transition. The upper 
state is characterized by a total momentum j and can 
be related to the lower excited one by a dipole transi­
tion, but the transition from it to the ground state is 
forbidden. Then, if the population of the excited states 
is small, the integral term of Eq. (4) can be neglected 
and the dielectric constant can be obtained for any ratio 
of the Doppler and collision widths. The main contribu­
tion to the line broadening is from collisions between 
atoms in the state with momentum 2 and non-excited 
atoms. 

The dielectric constant is then of the form 

4nd·2 

e(w)=1+ (2 .+~)k•~ (12vmljM)(12vomoljM)(-1)vk_.,kv, 
J 'VVo 

mm, 

X~ dpK~m,(P, k, w), 
(27) 

where wo is the frequency of the transition j - 2, dj is 
the reduced matrix element of the transition j - 2, and 
the mass operator ~m and K~mo are given by Eqs. (18) 
and (7) with the replacement of n in (7) by n2 /5, where 
n2 is the density of atoms in states with momentum 2. 

If Eq. (19) is used for~, which, as noted, gives an 
error of the order of 2%, the dielectric constant can be 
written in the form 

4l'n n.d·2 r { (28) e(•o)= 1-----' J xe-•'dx ln[(s +xll) 2 + a'2/ 12 (x)] 
15 ku -oo 

s+:z:ll} 
+2iarctga'J,(x) . 

Here o = ku/(1TU) 112nQ. 
The computer calculations show that in this case the 

function J1(x) can also be replaced, accurately within 
2%, by the constant J1(xo) = 1.076, and the line shape is 
described by the ordinary convolution of Doppler and 
dispersion distributions: 

4nn2d·2 

e(ro)= 1+ tSk: Z(s,'IJ), (29) 

where Z(~, 17) are tabulated functionsl 91 : 

1,98l'nu nQ 
'!]=----. 

ku 

The foregoing discussion gives grounds for assuming 
that for any ratio between the Doppler and collision 
widths the dielectric constant can be represented to the 
same accuracy by 

16 Q 1 [ 0,170 ]-I 
e(ro)= 1-----Z(s 'I]) 1---Z(s 'IJ) 

45 u'I•X2 6 ' II ' 
(30) 

for transitions between the ground and excited states of 
atoms with momenta 0 and 2, respectively. 

In conclusion the author is grateful to Yu. A. Vdovin 
for his constant interest in this work. 
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