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Formulas defining the magnetic-film energy levels of a conduction electron in an oblique field are 
derived for weak magnetic field strengths H, when the Larmor radius is much greater than the film 
thickness. The oscillating part of the thermodynamic potential n and the magnetic moment in weak 
oblique fields are calculated. It is shown that the oscillation period is defined by the area of the 
Fermi surface projections onto a plane parallel to the film. In contrast with oscillations in the bulky 
metal, a polynomial Pn(H) appears in the oscillation phase in films. The coefficients of the poly
nomial are determined by the shape of the Fermi surface near the line with zero projection of the 
velocity on the normal to the film. The region of sharp transition from magnetic-film oscillations to 
the ordinary de Haas-van Alphen oscillations is analyzed. 

INTRODUCTION 

THE de Haas-van Alphen effect in metallic films has 
been studied by Kosevich and I. Lifshitz for an arbi
trary dispersion law _Pl For the case of a parallel 
magnetic field, they computed the quasiclassical energy 
levels of the conduction electrons, and investigated the 
dependence of the oscillating part of the magnetic mo
ment on the magnetic field and on the film dimensions. 
The oscillations of the thermodynamic quantities were 
studied in[2 l in the range of weak fields, when the ob
servation of the quantum effect of the dimensions is 
possible without changing the film thickness. 

In the present work, the de Haas-van Alphen effect 
is studied in films in an oblique magnetic field. Formu
las are obtained which define the magnetic-film energy 
levels of an electron with an arbitrary dispersion law 
0(p) in the weak-field region 

(1) 

where HL = CPF / eL is the field intensity at which the 
Larmor radius is equal to the film thickness L. 

It is shown that in the range of fields (1 ), the oscil
lating part of the magnetic moment is perpendicular to 
the film for any angle of inclination of H, excluding 
parallel fields. The period of the oscillations is deter
mined by the area of the Fermi surface projection onto 
a plane parallel to the film. In the oscillation phase, 
along with a term inversely proportional to H, there is, 
in contrast to oscillations in the bulky metal, a poly
nomial Pn(H) whose coefficients are determined by the 
shape of the Fermi surface near the line with zero pro
jection of the velocity on the normal to the film. 

In the range of fields H ~ HL, the formulas obtained 
for the energy levels lose their applicability, and fur
ther analysis is carried out for the special case of a 
quadratic isotropic dispersion law and a perpendicular 
magnetic field. This case was previously considered 
by Gurevich and Shik. [3 1 It is shown in the present 
paper that in fields H < 1THL, in addition to the ordi
nary de Haas-van Alphen oscillations, oscillations ap
pear with different periods, and this guarantees a 
sharp transition in the vicinity of H = 1THL at not very 

low temperatures, when the first harmonics are sig
nificant. In the considered region of magnetic fields 
and temperatures, the inhomogeneity of the magnetic 
field can be neglected. 

In the experimental study of oscillations in weak 
fields, rather thin films are required. For films of 
thickness L ~ 10-6 em, fields at which the de Haas-
van Alphen effect is observed satisfy condition (1) with 
HL ~ 105 Oe. For thicker films, smaller fields and 
correspondingly lower temperatures are required. 
Measurements of the period and phase of the oscilla
tions in the given case allow us to obtain additional in
formation on the Fermi surface. One can find the area 
of the Fermi surface projection and certain integral 
quantities which characterize the shape of the Fermi 
surface in the vicinity of the line with Vz = 0. More
over, by determining the area of the Fermi surface 
projections and the corresponding effective mass from 
measurements of the period and amr.litude of the oscil
lations according to the formulas in 4 1, one can find the 
shift in the Fermi level caused by the boundaries of the 
specimen, and the surface part of the number and 
density of states with energy equal to the Fermi energy. 

MAGNETIC-FILM ENERGY LEVELS OF THE CON
DUCTION ELECTRONS IN WEAK FIELDS 

The quantum energy levels can be found from a 
solution of the effective Schrodinger equation for the 
conduction electrons[sJ in the film with a magnetic 
field 

i8'J!(x,y,z) =e'J!(x,y,z), 'J!(x,y,O) ='l'(x,y,L) =0 (2) 

with the Hamiltonian :1&, which is symmetrized1> with 
accuracy up to terms of order (tieH/ c )2 

- (- - eH - eH ~ 
d6 = /!l Px, p, - x ~-cos 9, p, + x-;;- sin 6~ 

fzeH ( iJ2 02 ) +i-- cos9----sin9---
2c iJpxaPv ap,ap, 

( , , eH - eH ) 
X /!l Px, Pv - X -c- cos e, p, + X~ sin 9 ' 

1lThe necessity of symmetrization was shown in [6 ). 

(3) 

495 



496 S. S. NEDOREZOV 

where p = rna jar and the operator Px no longer acts 
on x in the argument of the function 'ti, acting at the 
same time as the ordinary differentiation operator 
relative to the functions to which the Hamiltonian f& is 
applied; e is the angle between the field H and the z 
axis, which is directed along the normal to the film; 
the x axis is perpendicular to H. It follows from (2) 
and (3) that Py = const. 

Limiting ourselves to the quasiclassical approxima
tion in the magnetic field, we seek the solution of Eq. 
(2) in the form 

'l'(r) = exp(ili-1pyy + ili-1o(x))<p(z,x) 

with the boundary condition 

<Jl(O, x) = <Jl(L, x) = 0. 

(3') 

(3") 

To obtain the energy levels, it is sufficient to find the 
first two terms in the expansion 

o(x)= \ .9''x(x)dx+.!:_o<1l(x)+ ... (4) 
. ' 

In first approximation in quasi-classical form, we 
have, from (2), (3) and (3'), 

- ( , eH ) J l/!J .9',(x),.9'y,Pz+x·-~-ein{) -e q;(z,x)=O, 

where .9'y = Py - x( eH/ c) cos e. 
(5) 

A solution of Eq. (5) satisfying the boundary condi
tion (3") is 

with p(k) = g>(k) - x( eH/ c) sin e k = 1 2 where the 
z z ' ' ' 

functions .9'~k) satisfy the relations 

1.9';') (.9' x, :7' "' E) - .9';2) (.9'x, .9' y, f) I = 2nlin/ L, 

/!J (.9' x, g> Y• g>;l)) = /!J (.9' x, g> y, g>f)) = E, 

n = 1, 2,3, ... 

(5') 

(6) 

Equations (6) determine the double-valued function 

.1), I -+----1-'c~-, - 'f.y 

FIG. I. 

y J -

FIG. 2. 

!J>x(.9'y) which describes a certain closed curve in the 
( .9'x, .'l'y) plane, a curve which is isochordic, (a] at the 
points of which the given constant energy surface has 
a chord equal to 21Tlin/L. We denote the upper part of 
the curve (Fig. 1) by .'f'x1 ( !J>y) and the lower by .9'xz( ?y ). 

In the second quasiclassical approximation, we suc
ceeded in obtaining an explicit equation for a< 1>, with
out making any assumptions on the dispersion law, only 
in the vicinity of the line on the constant energy surface 
with Vz = 0 (Fig. 2): 

o{'l(x) = - __1_ln 11-0-/!J (.9'"' :JJ,, :JJ,) I +InC, (7) 
2 fj.'f' X 

where C is the constant of integration. In the next sec
tion, it will be shown that the principal contribution to 
the oscillations in the weak field region (1) is made by 
the energy levels in the neighborhood of the line with 
Vz = 0. 

Joining together the solution in the classically al
lowed region :Py1 < !J>y < :Py 2 (see Fig. 1) with a solu
tion in the classically forbidden region !J>y < .9'y1 and 
!J>y > :Pyz, we obtain 

where 

( i i 0 > <•> ) . nnz 'P" (r) = C exp r; PvY + 21i (Pz + Pz ) z sm ---y;--
8' 

>< [1 Vxll-'" exp (-- neHi~os 9 J .<:Px,(s) ds + i:) 
<ifyt 

{!' 

+lvx,[-'i•exp(- ne;~ose ~ Px2 (6)d6- ~n)]· (8) 
.tl"yl -

The wave function -.J! determined by Eq. (8) is a 
solution of Eq. (2) for condition (1) since in this case, 
one can neglect the derivative of cp with respect to x. 

The quantum energy levels are determined by the 
implicit relation 

JP 

'>( 2n1in)= t(fP _ ,,,, )dP =2n1ieHcose (v-+ y}, (10) ... e, L - j xt .J x2 .v c 
€1'-111 

where S( E, d) is the area bounded by the isochord 
corresponding to chord length d. 

Near the line of points with Vz = 0 on the constant 
energy surface, y = Y 2 and Eq. (1 0) is identical with 
(9 ). In the general case, in the determination of an 
explicit equation for y, it is necessary to compute 
a< 1> in the expansion (4). 

In the case of several pairs of roots in Eq. (6 ), the 
roots that satisfy the condition of reflection of the 
quasiparticle from the potential wall [7 ' 4 l correspond to 
the given isochords, so that the roots of the correspond
ing pair are divided by a region in which the kinetic 
energy of the quasiparticle is less than some fixed 
value. Far from the singular points (such as points of 
self-intersection) the areas Si, bounded by the corre
sponding isochords, are quantized according to Eq. (10). 

The quantization condition (10) determines the en
ergy levels En,v+y in the quasiclassical approximation 
in the magnetic field cS/21TneH cos e » 1 in the weak
field region H << HL for an arbitrary anisotropic con-
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stant energy surface. a> The quasiclassical condition is 
violated near the chord maximum dmax at which 
S(E:, dmax) = 0. 

In the case of a quadratic isotropic dispersion law, 
y = ?'a, S(e, d)= 1T(2me- da/4), and Eq. (10) is iden
tical with the well-known expression 

lieH ( 1 ) n•li•n• 
En, •+'!, = ---;;:;-- 'I' + 2 + 2mL2 ' 

(11) 

which determines the energy levels of an electron in a 
magnetic field perpendicular to the film. 

In a parallel field (Hz = 0), the quantization is de
termined by the Kosevich- Lifshitz formula. [ll In this 
case the energy spectrum is quasi-discrete and is 
characterized by a magnetic-film quantum number n 
and two continuously changing parameters Px and Py· 
In the transition from parallel to oblique fields 
(Hz ;e 0), the character of the energy spectrum changes 
materially. As soon as Hz becomes different from 
zero, "compression" of the levels takes place and the 
quasi-discrete spectrum is converted to a discrete one 
with energy leyels that are degenerate in Py· The dis
tance between the levels is of the order of ~€ 
~ tieHz/mc, and for T ;S ~€ the resulting discreteness 
of the spectrum appears essentially as oscillations of 
thermodynamic quantities. 

A sharp change in the spectrum leads to a very sig
nificant dependence of the oscillating terms on the 
angle e, which defines the direction of the field H .. In 
the angular range e :$ eo, it is necessary to take into 
account the discrete character of the spectrum, while 
for 1T/2 - e << eo the discrete character of the spec
trum can be neglected. The angle eo satisfies the con
dition cos eo~ 21TacmT/etiH. In taking account of scat
tering by impurities, the temperature T should be re
placed by the effective temperature[loJ T + ti/T, where 
T is a quantity of the order of the time of free flight of 
the electron. 

A characteristic example of such an angular depend
ence is the sharp change in the direction of the oscil
lating part of the magnetic moment Mosc in the transi
tion from parallel fields (in this case, Mosc is perpen
dicular to the film; see the next Section). 

OSCILLATIONS OF THE MAGNETIC MOMENT 

According to the formulas of statistical physics, we 
have the following expression for the thermodynamic 
potential n : 

Q = _ T V eH co~ ~ ~ ~ 1n( 1 + b.- lln, •+V ~ 
2nlicL .::.., ..:::.J ..:::.J exp T ~ ' 

.s=tn=i v=G 

(12) 

eliH 
bs = ~+(-1)•--, 

2cmo 
(12') 

where the_ energy levels En,v+y are determined by Eq. 
(10); m0 1s the mass of the free electron. 

For calculation of the oscillations, we transform 
the sum in (12) by the Poisson summation formula. 

2lin the recently published work of LutskiT and Fesenko, [8 ) the 
authors generalized the quantization of energy of the free electron in a 
film in a perpendicular magnetic field to the more general case of a dis
persion law replacing, the momentum component pz in the condition of 
Lifshitz-Kosevich [9 ) by its quantized value 1Tiin/L. Such a generalization 
is not valid for an anisotropic law. 

Using (10) and setting y = ?'a for simplicity, we obtain 
from (12) 

Tv • ""s S ( b.-e )os(e,p) 
Q =- (2nli) 3 ~ dp de In 1 + exp-T- - 0-8 -

s=t 0 S(E, p);;;a.O 

1i "" Lk "" l S( ) x[ 1- ~ 6(p)+ 2 A~' cos( 7! p) ][ 1+2 1~1 (-1)1cos( li:H :::9 ) J 
(13) 

Integrating (13) over E: by parts and then computing 
the integrals asymptotically for cS/tieH cos e » 1, we 
get as a result n = no + nose• where Go is a function 
changing smoothly with changing magnetic field, 
nose = nb1~c + n~~c is the oscillating part of the 
thermodynamic potential. For G6~c• we have the 
following expression 

~ell_ TV (lieHcos!J)''•~ (-1) 1 ( nlmpr) _ ( 2n2lcmp,T) 
~' - --- .::.., ---cos --- sh 1 

2n"li3 l' I a I c 1~1 l'l• 1m0 cos !J heH cos !J 

x[ cos( lcSpr(b) +~) -( ln2 lalcli )'"cos( ZcSpr(b) )] (14) 
lieH cos !J 4 £2eH cos !J heH cos !J ' 

where mpr = (21Tf1 aSpr/at is the effective mass, cor
responding to the isochord d = 0, which limits the area 
Spr(l;). 

In the argument of the cosine, the upper sign is 
chosen when Spr is equal to the maximum area 
( 01 > 0 ), and the lower sign in the case of the minimum 
area ( 01 < 0 ). The value of 01 is determined by the 
formula 

(15) 

where the integration is carried out over the contour 
9:, which is the isochord d = 0, and R is the radius of 
curvature at points Vz = 0 of the cross section of the 
Fermi surface parallel to the film normal. 

In many and, evidently, typical cases (see, e.g., Fig. 
2 ), the value of Spr is equal to the area of the Fermi 
surface projection on a plane parallel to the film, i.e., 
it has a simple geometric meaning. 

The quantity nb~c oscillates with changing magnetic 
field, with a period in the reciprocal field 

!J. ( _!_) =. 2nlie cos e . 
H cSpr(~) 

(16) 

In the general case, Spr differs substantially from 
the extremal cross section of the Fermi surface which 
defines the oscillation period in the bulky metal, [e) with 
the exception of certain special cases (for example, the 
case of a spherical surface), when Spr is identical in 
value with the area of the extremal cross section . 

Furthermore, angular oscillations occur that are 
associated with a change in the direction of H. 31 For 
fixed H, the period of the angular oscillations ~e is 
determined by the following simple formulas: 

A _ 2nlieH cos2 !J 
o!J = ' cSpr sin 6 

e -=1= o, 
(16') 

1/ nliHe 
tJ. a ~ 2 v - 8-, e r:::: o. 

C pr 

3>The attention of the author has been turned to the possibility of 
the existence of angular oscillations by M. I. Kaganov. 
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An exact but more complicated formula for fl.(} can be 
found from (14). 

Together with nb~c• characteristic oscillations 
Ob~c arise in the film with a phase depending ma
terially on H: 

k 

g (2) _ TV ( heHcose )''• ~ ~ "' I 1_,1 (-1) 1 ( ;-clmpr \ 
osc- n2/i3 c ~ 4J .LI a ·~cos mocosBV 

l=ik=l j 

xcos [ <l>u. (~, H, L) =F "4] sh-1 [ 2n2T( ~eH + t.:J J . 
The phase 41ik is determined by the formula 

<I> (" H L) = lcS(~. p1(H, L)), ± kL ·(H L) 
lk '" ' heHcose h p, ' ' 

where Pj(H, L) satisfies the condition 

(17) 

(18) 

-~-S(6, p;)± k LeHcose O, (18 ,) 
ap; l c 

while the signs in (18) and (18') are chosen to be iden
tical, either the upper (plus) or lower (minus); kz is 
the maximum value of k for which Eq. (18') has posi
tive roots Pj (j numbers the roots for fixed values of 
k and l ). The upper sign in the argument of the cosine 
is chosen at ii = -(2/n)8 2 Sjap~ > 0, and the lower sign 
when (i < 0; mpr is the effective mass corresponding 
to the isochord d = Pj. 

z k 1 a 
--+--=--<l>lk· 
L'.ex t.eL 2n a6 

In the considered field range (1 ), one can obtain an 
explicit expression for 41zkU;, H, L), since 
PjiPF ~ H/HL « 1 for not too large k can be used in 
the neighborhood of d = 0: 

( n2 lalch )''•. ( cSpr(~) )] (~2n2cmprT) (21 ) 
- L2eH cos e Slll heH cos e exp heH c~ ' 

(2) TVSpr(b) ( he )'" ( nmpr ) M, osc = 2 --· -- --- cos ---
n•flayJ<ij eH cos fJ mo cos fJ 

~ J 8 
X ~sin [<t>1k(6, H, L) =F ~ exp(- nT 1-,-<I>,k !) , 

k=l • a~ 
(22) 

where 41lk is determined by Eq. (20) for l = 1. 
It follows from (17) and (20) that n~~c can be ap

proximately regarded in fields (1) as an oscillating 
function with periods in the reciprocal fields fl. ( 1/H) 
and in the angle fl.{} determined by Eqs. (16) and (16'). 
The characteristic feature of these oscillations is the 
presence of a factor Pn(H) of n-th degree in the phase 
where n satisfies the condition (L/AF)(H/HL)n ~ 1. 
The coefficients f<;>r powers of H in (20) are expressed 
in terms of the expansion coefficients (19) which char
acterize the dispersion law of the electron near the 
isochord d = 0. The presence in the phase of the fac
tor Pn(H) leads to a corresponding change in the 
periods of oscillations of n&~>c in comparison with the 
periods (16) and (16') of the function Oh~c· The effect 
of the factor Pn (H) on the period and the character of 
the oscillations increases with increase in the field. 

Inasmuch as the formulas obtained earlier lose 
their applicability upon reaching fields H ~ HL due to 
the approximate character of the energy levels deter
mined by Eq. (10), further analysis is carried out for 
the case of a quadratic isotropic dispersion law of the 
electron in the film in a perpendicular magnetic field, 
where the energy levels are determined by Eq. (11) for 
any H. 

(19) OSCILLATIONS OF THE MAGNETIC SUSCEPTIBILITY 

where a is obtained from Eq. (15); the remaining co
efficients have the order of magnitude I Cn I ~ p-j and 
are determined by the shape of the Fermi surface in 
the vicinity of the line of points with vz = 0. 

Substituting (19) in (18') and solving the equation by 
successive approximations, we get for 41zk from (18): 

,... _ lcSpr(6) + k 2 L [ eHL cos e 8k ( eHLcos 9 )2 
-vzk- ·-- ---+--C, 

heH cos fJ ;-cla II c (na)2l c 

16k2 ( 9 )( eHLcos 9 )a J 
+ (na)3l2 ;-ca c,•-:-cz c -:- ... +o(1), (20) 

where the expansion is carried out up to terms 
(L/AF)(H/HLf ~ 1, inclusively; AF is the Fermi 
wavelength. 

For sufficiently large k, the expansion (20) for 
41zk is not suitable, but such values of k are unimpor
tant in the range of fields and temperatures where the 
first harmonics play a principal role. 

By differentiating Oosc, we obtain corresponding 
expressions for the oscillations of the magnetic mo
ment Mosc = -8&1osc/8H. Inasmuch as Oosc depends 
only on one component of the field intensity Hz, as a 
result the oscillating part of the moment Mosc is per
pendicular to the film. At not very low temperatures 
2n~/ tl.EH >> 1, one can retain a single component in 
the sum over l with l = 1, and for Mosc = M11

0
1 s 

M (2) h z c 
+ z osc• we ave 

'·{ (1\ TVSpr(~) ( he )''• ( ;-cmpr )[ . ( _c_S..:;p,;,.;r(:..:;~)'---·., -" ) .!.r, r osc = COS --- Sill ..,-
n2fl3")'j a I cH cos e mo cos e helf cos e 4 

By computing n from Eq. (13) in the case of quan
tum energy levels (11 ), we get for the oscillating part 
of the thermodynamic potential Oosc = ngJc + Ob~c• 

I'> VT(heH)''• 00 (-1) 1 ( m) ( meT) !Jose=-- -- ~--cos ;-cl- sh-1 2n•l--
2n2h3 c l=l l'l• m0 heH 

X f cos ( 2nlmc6 _ ~) _ ~v l ch cos ( 2;-clmc6 )] (2 3 ) 
L heH 4 L eH heH ' 

where n&~c is identical with the known expression (ll] 

for the oscillating part of the potential in the case of 
the bulky metal ( m = mo) with the exception of the 
second component, which is proportional to the area of 
the film and oscillating with the same period 

t. ( .!..' = !!!__ 
0 H em6 ' 

(23') 

c21 VT(IleH)"'""(-1)1 ( m) ( meT\ Q osc = -- -- ~ --cos nl- sh-1 2n2l--
2n2h3 c . l=l [% m0 heH) 

k, 

"' { ( 2nlmc6 k2L2eH ;r ) l'- f ( 2nlmc6 X.LJ cos ---+----- + 2 cos ---
k=l heH nleh 4 L , heH 

+ k2L2eH) c( v 2;-clmc~ _ 1/ k•VeH) 
nlch . heH Y nleh 

--1-- oin ( 2nlmc6 --1-- k 2L2eH ) S ( 1/ 2nlmc6 _ • I k2L2eH )]} (24 ) 
heH nlch Y heH nlch ' 

where C(x) and S(x) are the Fresnel integrals and 
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kz satisfies the condition 
nlcl'Imf 1i v~ 1 k 2 nlcl'2mi; 

LeH +y; lieH- ~ 1~ £iH· (24') 

In the region of fields 

').F~ fcli/~H< L (25) 

the condition (24') is simplified, and we have for kz 
kz = [ l L;; j2m?; ], (2 51

) 

where [x] is the integral part of the number x. 
For not very low temperatures 21T 2 mcT >> tieH, 

only a single component will be retained in Eqs. (23) 
and (24) with l = 1. 

We have xgJc + x~~c for the oscillating part of the 
magnetic susceptibility xosc = -a2nosc/8H 2 from (23) 
and (24), where 

(t) _ _ Vl' (~ ) 2(_c )% ( ~) ( _ 2n2mc1' ) 
Xosc- 4 ~ ~ H cos n exp li H 

· " c "e . m0 e 

xfcos( 2nmc~ _ _it_)_!!._l/ eli cos(2nmc\; )l· (26) 
L lieH 4 L V eH lieH 

In the range of fields 

(27) 

where HL = c..f2iii17eL, one component remains 
(k1 = 1) in the sum over k in (24) and, excluding, for 
simplification of the formulas, the immediate vicinity 
of the point H = 1TH L• outside of which one can set 
C = S = 7'a in (24), we obtain the following expression 
for x6~c= 

<2l VT ( em\; ) 2( c )'" ( m) ( 2n2mcT ) Xosc =-8-- -- -- cos n- exp ----n c lieH mo lieH 

[ ( H ) 2] ( 2nmc\; £2eH n ) X 1- -- cos---+----- . 
nHL lieH nc!i 4 

(28) 

The period of oscillations Ai of the function xh~c 
differs appreciably from the period A 0 of the oscilla
tions of xg~c' and when 1 - (H/1THL)2 » tieH/cml; it 
is determmed by the following simple expression when 
k = 1: 

(29) 

In the region of fields Y41THL < H < Ya1THL, another 
oscillating function arises along with (28 ), with period 
A 2 (see Eq. (29) for k = 2) and so forth. With decrease 
of the field, the number of oscillations increases jump
wise at the points4> H =1THL/n, n = 1, 2, 3, ..• 

The interference of these oscillations leads to the 
appearance at the points 

H = nHo, n = 1, 2, 3, ... , (30) 

where H0 = 21T 2cti/eL2 , of peaks with an amplitude of 
the order of 1THL/nH0 , as follows from Eq. (24) if we 
limit our consideration to a single harmonic with 
l = 1 (S = C = Ya ). The amplitude of the peaks decreases 
linearly with increase in field H. 

4>The presence of singularities in the thermodynamic quantities at 
the points 'II'HL/n was noted by Gogadze and Kulik.[l2 ] However, the 
numerical analysis performed by them, based on the use of the equa
tions of the research of Gurevich and Shik [ 3 ) does not allow us to 
clarify the analytic character of these singularities. 

In the region of fields H > 1THL, the oscillations of 
xgJc disappear, and the magnetic susceptibility has 
the usual de Haas-van Alphen form (26) with the oscil
lation period the same as the period for the bulky 
metal. 

The physical meaning of the condition H < 1TH L for 
the appearance of oscillations with different periods 
can be made clear by noting that it is equivalent to the 
condition 

'tL<'tn, 

where TL = L/vz is the mean time of flight of the 
electron from one side of the film to the other, Vz 

(31) 

= YavF, VF is the Fermi velocity and TH = 21Tmc/eH 
is the period of revolution of the electron in the mag
netic field. Under the condition (31 ), an electron mov
ing along a helical trajectory in the mean does not 
have time to make a complete loop before collision 
with the film boundaries. Such electrons make the 
same contribution to the oscillations as electrons on 
the extremal cross section with Vz = 0, but, in con
trast to the latter, the role of the boundaries is essen
tial here, and this also leads, as follows from the cal
culations made above, to the generation of oscillations 
with different periods. In the opposite case TL > TH, 
the electron manages to make one or more loops, and 
such electrons, as also in the case of the bulky metal, 
make a smaller contribution to the oscillations in com
parison with the contribution of electrons with Vz = 0. 

Thus, in films in perpendicular magnetic fields, at 
not very low temperatures 21T'lncT >> lieH, where only 
the first harmonic with l = 1 is important, a unique 
transition takes place in the vicinity of the point 
H = 1THL from the ordinary de Haas-van Alphen oscil
lations to magnetic-film oscillations with different 
periods. At sufficiently low temperatures, when higher 
harmonics with l >> 1 also become important, such a 
sharp transition does not take place. The transition 
considered in this case differs from the transition in a 
parallel magnetic field, r1 l when the amplitude changes 
materially upon reaching a field H = 2HL, and the 
period of the oscillations is temperature independent. 

In conclusion, I consider it my pleasant duty to 
thank M. I. Kaganov for useful discussions. 
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