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A strongly non-ideal nondegenerate plasma is considered. The partition function is reduced to the form 
of a classical configuration integral in which the interaction energy for each pair of particles is expressed 
by means of a pseudopotential determined from the quantum mechanical analysis of a two-particle sys­
tem. This enables one to take into account quantum effects in the dense plasma and at the same time to 
utilize for the calculation of thermodynamic quantities the Monte Carlo method developed in the theory 
of strongly imperfect classical fluids. In carrying out the calculations the electrons and the ions are not 
segregated into free and bound ones. The form of the pseudopotential is discussed. Calculations are per­
formed for a hydrogen plasma at T equal to 10,000 and 30,000°K. The results for a plasma close to an 
ideal one are in satisfactory agreement with the results of other calculations. The degrees of ionization 
in a dense plasma are found and its equation state is discussed. The limits of applicability of the method 
proposed for the investigation of a dense plasma due to extreme concentrations of atoms and electrons, 
to the effect of microfields and to the possibility of molecule formation are discussed. 

CoNSIDERABLE attention has been devoted to the exclude the possibility of the breaking up of a dense 
equation of state of a real plasma. [1- 9J The principal plasma into two phases. c7J 

results for a weakly imperfect (De bye) plasma were In this paper we investigate a dense nondegenerate 
obtained by Vedenov and Larkin. c1 J In a number of sub- plasma (as we shall see, such a plasma exists at T 
sequent papers (cf., for example, ca-4J and the references ~ 105 oK and below). In the absence of degeneracy con­
contained therein) the results of c1J were made somewhat figurations in which three or more particles are situ-
more precise. ated within the limits of a single de Broglie electron 

Deviation from ideal behavior is characterized by the wavelength A are less probable than two-particle con­
parameter y = {3e~1 13, where {3 = (kTr\ T is the temper- figurations. In this case in taking quantum effects into 
ature, n = ne + ni, ne and ni are the densities of the free account it is possible to restrict oneself to the pair ap-
electrons and of the ions (for the sake of simplicity we proximation. Then the partition function of the system 
restrict ourselves to singly charged ions, ne = ni). The reduces to the configuration integral in which the inter-
results of c1- 4J are valid for y « 1.11 In c5• 6J an attempt action between the particles is described by an effective 
is made to consider a strongly non-ideal (dense) plasma, potential-a pseudopotential. [ll' 2 ' 3J At distances r >> A 
i.e., the case y ;c 1, but in c7J it was shown that the equa- the pseudopotential coincides with the Coulomb potential, 
tions of state obtained in c5• 6J do not satisfy the conditions while at smaller distances it is determined from the 
of thermodynamic stability.21 quantum-mechanical consideration of a system of two 

The discussion in c5• 6J was very approximate. Of particles. 
greater interest are ca-1oJ, but only models of Coulomb The pseudopotential introduced in this manner takes 
systems were investigated in those references: charges quantum effects into account and formally allows us to 
of one sign on a neutralizing background cal and charged reduce the determination of the different thermodynam-
hard spheres. c9• 10J Therefore the possibility of applying ical quantities to the evaluation of the classical configu-
the results of these references to a dense plasma is ration integral. The methods of calculationUl•3 • 12J de-
doubtful. All the more so since in ca-1oJ, and also in cs, 6J, veloped for a weakly imperfect plasma become invalid 
the discussion is carried out only within the framework for a dense plasma in view of the absence of a small 
of classical statistics, while, as shown in c7l, in deter- parameter in terms of which one can carry out an ex-
mining the interaction energy in a dense plasma (even pansion. Therefore we have utilized the Monte Carlo 
a nondegenerate one) it is necessary to take quantum method which is not associated with an expansion in 
effects into account. The quantum effects in a dense terms of a small parameter. The Monte Carlo method 
plasma play a role significant in principle: thermody- in classical statistical physics has been developed for 
namic stability is guaranteed by them; but this does not one-component systemsc13- 15' 8J and for electrolytesc1oJ 

1>Krasnikov [4 ], by summing certain classes of diagrams, obtained 
an expression in a rather complex integral form for the thermodynamic 
potential. It is shown only that in limiting cases it yields previously 
known results. The question of the limits of applicability of this ex­
pression is not discussed. 

2>The possibility of thermodynamic instability of a dense plasma 
has already been indicated in (6 ], but excessively weak conditions of 
stability were utilized in that reference. 

459 

and can be extended to our problem. Since one cannot 
exclude the appearance of phase transitions in a dense 
one should utilize the Monte Carlo method for a grand 
canonical ensemble (MCMGCA)[15J which anticipates 
the possibility of investigating them. 

In this paper we consider the principal relations 
for the pseudopotential, we present the required modi­
fication of the MCMGCA, we discuss the results of cal­
culations for weakly and strongly non-ideal hydrogen 



460 VOROB'EV, NORMAN, and FILINOV 

plasma, and we consider the limits of applicability of 
the method proposed for the investigation of a dense 
plasma. 

THE PSEUDOPOTENTIAL 

General relations. The pseudopotential <l>ab(r, {:3) is 
determined from the expression in which the quantity 
Sab(r)-the quantum statistical probability density for 
finding two particles (of a and b kinds) at a distance r 
-is formally represented in the form of the classical 
probability density for the same event: 

Sa,(r)= 8n'1•1.-,,3 L: l'i'~(r) l 2 exp(-~E~)== exp[- ~lllab(r,~)j, (1) 

where E£ll and l/J£ll(r) are the relative energy and the wave 
function for two particles in the state £ll, Aab = th1(:3j2mab, 
mab = mamb/ma + mb), rna and mb are the masses of the 
particles. In this paper we consider only two kinds of 
particles: electrons (e) and single charged ions (i). 

Expression (1) is written for a system consisting of 
two particles. We utilize the pseudopotential defined in 
this manner for writing down the partition function (the 
configuration integral Z) for Ne electrons and Ni ions 
(Ne = Ni = N/2) situated in a volume V: 

N 

Z =} ... } exp[- ~U(N, ~)] dq1 •.• dqN, U(N, ~) = ~ 
v 

where q1 , ••• , qN are the coordinates of the particles; 
qj = I qi - qj 1. We emphasize that in evaluating Z, and 
also the thermodynamic quantities discussed below we 
do not segregate the particles into free and bound ones. 
The number N includes all the electrons and ions situ­
ated in the volume V: both those which have united into 
atoms, and the free ones. Consequently, U(N, {:3) includes 
within it the following interactions: those of the free 
charges among themselves, of the electrons and the ions 
inside atoms, of free charges with atoms and of atoms 
among themselves. 31 

Expression (2) differs from the classical configura­
tion integral by the fact that the pseudopotential <l>ab 
depends on the temperature. Therefore, the thermody­
namic quantities should be calculated in accordance with 
the general rules of thermodynamics, starting directly 
with (2). The expressions so obtained can be repre­
sented in the form 

F = Z-1 ~ ••• ~ F(q1, ••• , qN, ~)exp[- ~U(N, ~)]dq1 ••• dqN. (3) 
v 

The form of the functions F(ql> ... , qN, {:3) can differ 
from the corresponding classical expressions. Thus, 
for the energy (F = E) we have 

N 

E(qt, ... , qN, ~) = SfzkTN + ~ [lllab(rij, ~)+ ~81llab(r;;, ~)18~]. 
a,b;i<j 

3>We note that in the theory of dense (non-ionized) gases difficulties 
arise frequently due to insufficient information concerning the law of 
interaction between atoms. The evaluation of pseudopotentials is asso­
ciated with considerably smaller difficulties than the determination of 
the atom-atom interaction. Therefore it is possible that the expression 
(2) will turn out to be useful not only in plasma theory, but also in the 
theory of dense gases and liquids. 

Determination of the pseudopotential. The summation 
in (1) is carried out over all the possible states of two 
interacting particles. Therefore, in the calculation of 
<l>ei. <l>ee and <l>ii we must carry out the integration over 
all the states of the continuous spectrum, while in the 
evaluation of <~>ei we must also carry out the summation 
over all the discrete states. Even for the case of an 
electron and a proton when the functions l/J£ll(r) are known 
exactly, the expressions for Sab(r) cannot be represented 
in a form useful for practical utilization. [121 Therefore, 
for our purposes it is necessary to obtain for Sab(r) 
simple approximate expressions. In this paper we shall 
restrict ourselves to electrons and protons. 

At large distances the quantum effects in the Coulomb 
interaction are not essential and expression (1) must co­
incide with the classical one: 

Sab(r) = exp(-~eaeb I r) = exp(-~ab I x), 

Sab = ~eaeb I 1cab = Cabe'h-1f2~mab = 2Cabf~lmab I me, (4) 

where ea and eb are the charges of the particles, x 
= r /Aab. Cab = eaeb/e2, I = Ry. 

We consider another limiting case-that of very small 
r, when 1/JQI(r) = 1/JQI(O) + 1/J(i(O)r + ?'2 1/J&(O)r2 • Then[12141 

Sab(r) =Sab(O, Sab) (1 + SabX + 1/zsabx' + ... ) ~ Sab(O, Sab)exp(\;abX), 
(5) 

Sab(O, sab) = (1-llab)Sd(O, sab) + S,(O, sab) [1 + 1>ab(-1)2'(2s + 1}-1], 

(6) 

n=t .. 
S,(O, Sab) = -4n''•w ~ x exp( -x2)[1- exp(nS.blx)]-1 dx, 

(7) 

(8) 

where s is the particle spin, Sd(O, ~ei) is the contribu­
tion of the bound states, n is the principal quantum num­
ber, Sc(O, ~ab) is the contribution of the states of the 
continuous spectrum. Numerical values of Sd(O, ~ei) 
and of Sc(O, ~ab) are given in [121 • We emphasize that 
expression (5) is obtained from exact wave functions 
for the two-particle problem taking both free and bound 
states and also exchange effects into account. 

For the region of interest to us ~ab > 1 and expres­
sions (7) and (8) can be simplified: 

Sd(O, se;) ~n'1•ls.;l 3 exp (~/), 

8 0 ""' { - 2n'1•Se; for particles of opposite sign, 
c( 'Sab)- (4n I 3'")6aa(TCSaa /2) .,, exp r -3(n(; •• /2)'1•] 

for particles of the same sign. 
In the temperature range under investigation we have 

Sd » Sc, and the form of <l>ei in the neighborhood of r 
= 0 is practically determined by the contribution of the 
ground state. In contrast to the Coulomb expression the 
pseudopotential has a finite value at r = 0, the value of 
which depends on {:3 and on the kind of particles, for ex­
ample 

One can say that the quantum mechanical effects lead to 
an effective repulsion of an electron and an ion at small 
distances. 

In order to determine the form of <~>ei(r, {:3) for arbi-

4lThe next terms in the expansion in terms of r have also been ob­
tained in [ 12 ]. 
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trary values of r we segregate in the sum in (1) the first 
few terms (Ea < E') and evaluate them exactly in terms 
of the known l/Ja(r), while the remaining terms (E' < Ea 
< oo) are taken into account in the classical approxima­
tion. [121 We then have 

I exp (- £,;x-1), if f:liE'Ix ~ j£,;1 

, [1- y(-y'fiE'- £,;x-1)]exp(- £-,x-1)+ 
S,;(x,E >E)= + 2n-'l•(f1E' -£,._.;X-1)'1•exp(-fl£'),if f:liE'Ix,;;; l£ed-
where (9) 

y(z) = 2n-'1• ~ exp(- t2 )dt. 
0 

The curve 5 in Fig. 1 is calculated by separating out the 
first three states (with the principal quantum numbers 
n = 1, 2, 3}. The result practically changes very little 
if we separate out only the ground state (curve 6). In 
order to illustrate the role played by the individual 
terms in the sum (1) we have constructed curves 1-4. 
Curve 1 is obtained if we restrict ourselves in (1) only 
to the first term, 2 if we restrict ourselves to the first 
two terms, 3 if we restrict ourselves to the first three 
terms, 4 if we restrict ourselves to the discrete states 
with n =::4 and to the continuous spectrum (curve 4 is 
constructed in accordance with formula (9)). We note 
that the contribution of the ground state (line 1) coin­
cides with formula (5). The excited states begin to give 
a contribution to Sei(r) for x ~ 2.5 leading to the transi­
tion from curve 1 to the Coulomb dependence-curve. 7. 
Approximately one can consider that the pseudopotential 
differs from the Coulomb potential for x <f x0, where x0 

corresponds to the point of intersection of the lines 1 
and 7 (this intersection occurs for T <f {31/2, then x0 

~ ({3I)1/'l2. 
In Fig. 2 we have given examples of the pseudopoten­

tial 4>ee(r). In this case the transition from (5) to (4) 
occurs at x ~ 1. 

In the case {31 << 1 in order to determine the bounda­
ries of the quantum region we use the expansion of the 
thermodynamic quantities in powers of Ii: [161 

Sab(r) = exp (-eaebf:l / r) [1 + li2fi3e4 I 24mr4 -li2 f:l2e2 I 6mr"]. (10) 

The terms quadratic in Ii become essential at x 
~ ({3I/3)1 / 4 or x ~ (4{31/9)116, i.e., for x ~ 1. 

Knowing the limiting expressions for Sab(r) and the 
limits for their applicability, one can construct for con­
crete calculations interpolation formulas valid for all r. 

THE MONTE CARLO METHOD FOR THE GRAND 
CANONICAL ENSEMBLE 

The MCMGCA for a cone-component system has been 
considered in [151 • We dwell on the special features as­
sociated with our problem. Expressions (2) and (3) have 
been written down for a canonical ensemble. In a grand 
canonical ensemble for a two-component system we have 

:o Ni Ne r r 
F = Q-1 ~ N;o N,0 (N1!N;!)-1V-N J ... J F(q., ... , qN, f:l) 

N- V 
xexp[-~JU(N, (:l)]dq1 .. . dqN, (11} 

where Ns 0 = V>-..83 exp (1311-s), s = e, i; IJ.s is the chemical 
potential; "As = (27Tii 2{3/ms)112, Q is a normalizing factor. 
Breaking up the volume V into a large number B 
= V(Aqr3 of elementary cells of equal size (Aq)3 and 

replacing the configuration integrals by sums we obtain 

P = Q-1 ~ F(A;)u;, (12) 
A, 

where F(Aj) = F(q10 ••• , qN, {3), Aj is the state of the sys­
tem in which it has N particles with these particles be­
ing distributed in a definite manner among the elemen­
tary cells, 

u; = Q-1NiON<N,oN•(N;!N,!)-1B-Nexp [-IJU(A;)]. (13} 

We consider in a set of events Aj a Markov chain (MC} 
with a limiting distribution of probabilities Uj. Then the 
average over the MC of F(Aj) is the desired F 

M 

p = M-1 ~ F(A;). (14) 
j=i 

The single-step probabilities Pkj of the required MC can 
be obtained from the known Uj by using the usual system 
of equations:[141 

(15) 

Specifying the values of T, V, IJ.e + IJ.i and the pseu­
dopotentials 4>ab it is possible to obtain the Pkj, to con­
struct the MC and to determine with the aid of (14} 51 the 
densities ni = ne = Ne/V, the pressure P and other quan­
tities, and also the correlation functions. Periodic 
boundary conditions are introduced in the usual manner 
so that the volume V is interpreted as being the volume 
of a Monte-Carlo cell. 

In the system (15) the number of unknowns exceeds 
the number of equations. Therefore, for a specific 
choice of Pkj one can take into account the require­
ments of the reduction of the nonequilibrium portion 
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FIG. I. The pseudopotential for the interaction between an elec­
tron and a proton forT= 10,000°K. 

FIG. 2. The pseudopotential for the electron-electron interaction 
forT equal to I 0,000 and 30,000°K. I - according to formula (5), 
2 - according to formula ( 4), 3-intermediate segment. 

z .r 

5>In the case of practical calculations it is more convenient to utilize 
a different form of writing down the expression 

M-1 

F = F(AM)- M- 1 ~ j(F(AH 1)-F(A;)], 

J=l 

by carrying out calculations not of the quantities F(Aj), but of changes 
in these quantities. 
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of the MC, of the possibility of determining Fin terms 
of a minimum number of steps M etc. [13-15l 

In our MC two types of steps have been realized: 
1) steps characterized by a change in the position of a 
single randomly selected particle, with the total num­
ber of particles in the volume V being conserved, and 
2) steps characterized by a change in the number of 
particles in the volume V by two (one electron and one 
ion-in order to preserve electric neutrality) for a fixed 
position of all the remaining particles. The realization 
of steps of the first type was a standard one (the maxi­
mum displacement was determined by Aei). We now ex­
plain the realization of steps of the second kind. Let the 
state Aj have two particles more than Ak, i.e., (Ne)j 
= (Ne)k + 1, (Ni)j = (Ni)k + 1. The single-step probabili­
ties were taken in the form 

P•; = a+u; I B2[ (!\';)• + 1][ (Ne)k + 1] (ilk+ II;), 
P;• = CLUk I (N,);(Ne);(u• +II;), 

which is a natural generalization of the expressions for 
Pkj considered in [151 ; a+(a_) are the probabilities of 
steps with an increase (decrease) of the number of par­
ticles Uj = BNuj. We denote by a 0 the probability of a 
step without a change in the number of particles, and 
we obtain from the condition of normalization that a 0 

+ a+ + a_ = 1. 
The concrete construction of the steps consists of the 

following. Mter a random choice of the nature of the 
step in the case when the number of particles increases, 
a new electron and a new ion were placed in two ran­
domly selected points, while in the case of a decrease 
in the number of particles a randomly selected electron 
and ion were removed from a Monte Carlo cell. In con­
clusion a random selection is made of the probability 
Uj/(Uk + 'Uj) or uk/(Uk + Uj). 

The quantities a+, a_ and a 0 were varied within wide 
limits. For the calculation of the state of a gas close 
to an ideal gas the values a± = 0 turn out to be optional, 
and, thus, the calculation was carried out in a canonical 
ensemble. In the calculation of a strongly imperfect 
plasma a 0 was varied from 1h to /'8 • At first a MC was 
constructed which is optimal for finding the densities 
for a given /1, and then, a MC which is optimal for find­
ing other thermodynamic quantities, with the average 
density here now remaining practically constant. 

In order to have the possibility of carrying out cal­
culations for values of N contained within the specified 
limits the possibility was anticipated in the MCMGCA 
algorithm of having discontinuous changes in the volume 
V of the Monte Carlo cell when the MC tends to equilib­
rium. u 51 

The energy of the system was calculated by the 
method of the nearest image, [13 • 81 since it was shown 
in [Bl that this method gives reliable results for values 
of y considered in this paper. 

INVESTIGATION OF THE HYDROGEN PLASMA 

Plasma close to ideal. The temperature T = 10,000°K 
was selected and two cases were considered in which the 
combined density of the heavy particles ni + na was equal 
to 1013 and 1019 cm-3 • Calculation by means of the Saha 
formula shows that in the former case complete ioniza­
tion occurs and the plasma is a mixture of ideal electron 

and ion gases; the pressure of such a plasma is P 
= 2nikT, while the energy of interaction U0 evaluated 
per single heavy particle is much smaller than kT. 6> In 
the case when ni + na = 1019 the degree of ionization 
turns out to be small and we are dealing with an ideal 
gas of hydrogen atoms; the pressure of such a gas is 
nakT, while the energy U0 is equal to the ionization po­
tential of the hydrogen atom. Below we give the results 
of our calculations according to MCMGCA for hydrogen 
at 10,000°K while in parenthesis are given numbers cor­
responding to the estimates quoted above. 

P/(n. + ni)kT 
2.0 (2) 
1.3 (I) 

l""o/kT 
0.011 (< l) 
lG ( 15.8) 

It should be explained that the initial density in the 
MC in both cases was given arbitrarily. When the MC 
approaches equilibrium in the former case the distri­
bution of the electrons and of the ions over the volume 
turns out to be uniform on the average. But in the latter 
case when the MC approaches equilibrium the electrons 
and the ions approach each other pairwise, forming 
atoms. This is supported both by the results quoted 
above and by a direct analysis of the coordinates of the 
particles in equilibrium configurations. 

In the present paper we have considered relatively 
short MC (104 steps) and the number of particles in a 
Monte Carlo cell amounted to only Ni + Ne = 30-40. 
Taking this into account one should acknowledge that 
the results obtained are satisfactory and give a correct 
idea of the state of the plasma under investigation. 7 > 

Strongly non-ideal plasma. Calculations have been 
carried out of several states of plasma in the region 
y ;? 1 for T = 30,000°K. Such a choice of the tempera­
ture is explained by the fact that the conditions corre­
sponding to y;? 1 are attained for T = 30,000°K for a 
minimum value of ni + na and, thus, the errors asso­
ciated with taking quantum effects into account pairwise 
turned out to be least. For T < 25,000-30,000°K there 
is a sharp increase in the density of atoms correspond­
ing to the value of ni which guarantees y ~ 1, while for 
greater values of T the values of ni increase (ni ~ lT3 ). 

The correlation functions obtained with the aid of the 
MCMGCA enable us to analyze the microstructure of 
the plasma. Figure 3 shows graphs of the quantity Ll.N(r) 
which characterizes the relative situation of opposite 
charges (for the sake of definiteness we shall speak of 
the distribution of the electrons around the ions) and 
which is defined in the following manner. For each ion 
the space around this ion is divided into spherical lay­
ers of thickness Ll.r and the number of electrons in each 
layer is calculated. The values obtained for all the ions 

6lWe cannot make an estimate of this energy in the De bye approxi­
mation since the interaction energy also contains the energy of the non­
ionized atoms, and in spite of the smallness of the density of the latter 
the value of this energy turns out to be much larger than the De bye 
value. We point out that the calculation according to the MCMGCA car­
ried out in [ 15 ] in which in evaluating the energy only the free charges 
were taken into account gave good agreement for the energy obtained 
with the value obtained according to the Debye-HUckel formula. 

7lWe intend to consider longer MC, to determine the dependence of 
the results on the number of particles and on the degree of exactness of 
the approximation to the pseudopotential. 
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FIG. 3. The functions ~N(r) in the cases: a-T= I0,000°K, ni ~ 
ni + na = 1013 cm-3; b- T = 30,000°K, ni + na = 6 X 1021 cm-3• 

of a given configuration in a Monte Carlo cell are added, 
and the value so obtained is averaged over all the con­
figurations of the stationary segment of the MC; the re­
sult of this is ~N(r). Since ~r is a finite quantity, it is 
convenient to represent ~N(r) by a stepped graph with 
a step of magnitude ~r. 

The relative variation of ~N(r) in the immediate 
neighborhood of the ion reproduces the distribution of 
the charge in a hydrogen atom. As can be seen from 
Fig. 3b the shape of ~N(r) for small r is close to the 
charge distribution in the ground state of the hydrogen 
atom, in which the maximum of the distribution is situ­
ated at r ~ 0.5 A. But for large r we have ~N(r) ~ r 2 • 

The radius of the electron cloud in the yround state 
of the hydrogen atom amounts to ~2.5a0 • [ 7 Therefore, 
if we take the sum of the values of ~N(r) for r < 2.5a0, 

then in the case of total ionization we shall obtain zero, 
while in the case of the absence of ionization we obtain 
a number which is equal to the average number of elec­
trons in a Monte Carlo cell which in this case coincides 

,,,,em ·3 
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FIG. 4 FIG. 5 

FIG. 4. The relation na = na(ne) for hydrogen forT= 30,000°K. 
Circles are our calculations according to MCMGCA. The curves are con­
structed according to several formulas obtained utilizing different ap­
proximations for ~F: I -it is equal to zero (Saha formula); 2- ac­
cording to (1•2 ]; 3- according to [18 ]; 4- according to Debye-Hlickel. 
Arrows indicate values of ne for which "f is equal to I and 2. 

FIG. 5. Diagram elucidating the region of the values of the electron 
density and of the temperature where the approximation is applicable 
which is considered in the present paper. The lines correspond to: I -
neAee3 = I; 2- "Y = I; 3 - na = d-3 (the dotted line is constructed in 
accordance with the Saha formula, i.e., for ideal gases; the solid line 
takes imperfection into account; three atoms are considered); 4- EH = 
E0 ; 5 - see the text. 

with the number of atoms. These results were obtained 
in the two examples for T = 10,000°K. We shall utilize 
this method of evaluating the number of bound electrons, 
i.e., of the number of atoms Na, in a Monte-Carlo cell 
also in the arbitrary case 

Na= ~ t..N(r), na=Na/V. 
r<2,5ao 

The quantity Ne - Na gives the number of free electrons, 
ne = (Ne- Na)/V. Such a "spatial" division of the 
charges into bound and free charges is to a large extent 
arbitrary, but it enables us to make an estimate of the 
microstructure of the plasma in usual terms. 

In Fig. 4 results are presented obtained by us for 
na(ne) in a dense plasma with the aid of the MCMGCA. 
We have also plotted there: a line constructed according 
to the Saha formula, and three curves obtained on the 
assumption that the atoms are an ideal gas, and utilizing 
different approximations for ~F-the change in the free 
energy due to the interaction of free charges. Curves 2 
and 4 are sensible approximations only for y « 1 and 
their extrapolation into the region y ;c 1 has no theoret­
ical foundation whatsoever. Curve 3 corresponds to 
papers [5• 61 devoted in particular to the case y > 1. a> But 
when y ;c 1 curve 3 has (ana/Bne)T < 0. In [?J it is shown 
that this is evidence of thermodynamic instability of the 
corresponding equation of state. 

Thermodynamic stability of a dense plasma is guar­
anteed by quantum effects in the interaction between 
charged particles. The method of calculation proposed 
in the present paper takes these effects into account, 
and the results of the MCMGCA give values of na(ne) 
which lie on a curve for which everywhere (ana/Bne)T 
> 0. We note that ~ F[1' 21 differs from the Debye-Hiickel 
expression just by taking into account the quantum ef­
fects in a rarified plasma and correspondingly curve 2 
has a positive derivative everywhere, while curve 4 
differs little from curve 3. We note that the expression 
~F[1• 21 has been obtained for a high-temperature plasma 
(T » 160,000°K) and its utilization for T = 30,000° (and 
also for y ;c 1) is, generally speaking, completely unjus­
tified. However, as can be seen from Fig. 4, curve 2 
has turned out to be the nearest to MCMGCA even though 
the existing difference is still significant. 

As can be seen from Fig. 4, the degree of ionization 
in a strongly imperfect plasma is relatively low (0.4 for 
y = 1 and less than 0.2 for y = 2). This leads to the fact 
that under the conditions being considered the principal 
contribution to the pressure is made by atoms which 
under our conditions do not yet differ appreciably from 
a perfect gas. This has been confirmed in the case of 
pressure also by the results of the MCMGCA. Unfortu­
nately, the insufficient accuracy of the results obtained 
does not allow us to determine confidently the difference 
between the equation of state obtained above and the 
ideal one. 

As we can see, the densities na and ne introduced in 

8lThe formulas in [5 ] and [6 ] differ numerically somewhat from each 
other, but this difference, as has been pointed out in [7 ], is not essential 
and the resultant relations I·or na (ne) are very similar. Of these formu­
las that one is the more convenient in which ~F is taken in the form ob­
tained in [ 18 ] since in such a case a smooth transition to the Debye­
Htickel expression is guaranteed for "Y;::: l. 
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the discussion of the microstructure of a dense plasma 
have also turned out to be useful for the interpretation 
of results obtained for the equation of state. The con­
cepts na and ne in the statistical theory of a dense 
plasma are auxiliary ones, and their introduction is not 
at all obligatory, since in calculating thermodynamic 
quantities by the MCMGCA method it is not necessary 
to segregate the charges in any manner into bound and 
free ones. 

LIMITS OF APPLICABILITY 

In view of the absence of degeneracy electrons which 
are not bound inside atoms are situated on the average 
at distances greater than a de Broglie wavelength: 

(16) 

This condition can also be written in the form y < Ymax 
~ 2,ttiT 0 

The atoms can be satisfactorily described with the 
aid of a pseudopotential if the volume calculated per 
single atom is greater than the proper volume of the 
atom d3 : 

na < d-3• (1 7) 

For hydrogen d-3 = 1024 cm-3 , while for atoms with the 
greatest and the least ionization potentials (He and Cs) 
d-3 is equal to 1025 and 1022 cm-3 9> 

In the ne-T diagram (Fig. 5) we draw lines along 
which na which corresponds to the given ne and T is 
equal to d-3• Such lines can be easily drawn in the re­
gion where the Saha formula is valid, and they can be 
tentatively extrapolated into the strongly imperfect re­
gion by utilizing the results of the present paper. Since 
the magnitudes of na and ne in a dense plasma are not 
known in advance, then in doubtful cases the fact that 
(16) and (17) are satisfied should be checked after the 
calculations have been carried out. Moreover, the free 
charges must not perturb the atoms too strongly. The 
reduction of the barrier in an atom under the action of 
a homogeneous field E is equal to 2eveE. We make an 
estimate of the destructive microfield E0 by setting 
2e../ eE0 = 10, where 10 is the ionization potential of an 
isolated atom. Utilizing the relation between the most 
probable intensity of the microfield EH, ne and T which 
is known for y < 0.2, [19J we plot in Fig. 5 the lines EH 
= E0. One could expect that the corresponding values of 
ne(T) will increase even more strongly with a decrease 
in T when we go over into the strongly imperfect do­
main.10> 

In dense media molecules, molecular ions and other 
complexes can be formed the validity of describing 
which with the aid of a pair pseudopotential is doubtful. 
In addition to (16) and (17) we write 

(18) 

where nM, n+ and n_ are the densities of molecules, of 
positive molecular ions and of negative ions. For ex-

9lThis size is in fact determined by the ground state. The excited 
atoms give no appreciable contribution to the partition function even 
of a weakly imperfect plasma [3• 12 ]. 

10lThe distribution of the microfields in a dense plasma, which is 
independently of interest, can be investigated by the methods of the 
present paper. 

ample, in a hydrogen plasma the formation of H2, H;, 
and H-is possible. 11> Curve 5 in Fig. 5 bounds the re­
gion where at least one of the conditions (18) is violated. 
This line is constructed on the assumption that the re­
actions proceed as in an ideal gas. Under this assump­
tion for T <,:; 7 ,000°K the most restrictive is the condi­
tion for H2, for 7,000 <,:; T <,:; 30,000°K the most restric­
tive is the condition for W, and for T :G 30,000°K the 
most restrictive is the condition for H;. If we construct 
an analogous line for Cs, it will lie considerably closer 
to curve 3. Taking the deviation from ideal behavior 
into account in determining chemical equilibrium can 
significantly reduce the fraction of molecular compo­
nents. Thus, negative ions with a low energy of affinity 
are in general not formed in a dense plasma. [ZOJ 

All the effects considered above are partially taken 
into account also within the framework of the pair ap­
proximation. Therefore, the method for investigating a 
dense plasma developed in the present paper possibly 
yields fairly good results also in certain cases when 
the restrictions introduced above are violated. 

In this paper calculations have been carried out for 
a hydrogen plasma. By altering the form of the pseudo­
potential one can carry out an investigation of a plasma 
of different chemical composition. 
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