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Asymptotic expansions of the nonlinear field solutions are set up near the singular wave-vector
values for which the usual single-mode expansion in powers of the amplitude is impossible. In
this case one either has to solve the nonlinear one-dimensional equation for the principal mode
or, what is simpler, to employ several harmonic modes. Two-dimensional solutions that are
close to the exact nonlinear periodic one-dimensional waves are set up. Regions of permissible

values of the wave vectors are determined.

1. INTRODUCTION

A.S was already shown by us earlierm, a productive
method in the theory of nonlinear electromagnetic waves
for two-dimensional (and three-dimensional) problems
is that of solving the equations of nonlinear electro-
dynamics with the aid of asymptotic expansions in
terms of a small nonlinearity. This has made it possi-
ble to construct a number of wave solutions of the non-
linear field equations, both for the case of small elec-
tric field amplitudes and for the case of a strong field,
when the asymptotic expansions are constructed near
the exact one-dimensional solutions. The theory of
nonlinear waves developed inl*) was connected with
power-law expansions of the solutions in terms of
small amplitudes. In analogy with the ordinary oscilla-
tion theory'®), the elimination of the secularities called
for the introduction of a dependence of the wave vec-
tors on the wave amplitudes. The nonlinear waves in-
vestigated in*! were characterized by asymptotic
power expansions of the equations that determine the
dependence of the wave vectors on the amplitudes. At
the same time, it was observed in many cases that for
certain expansion coefficients, singularities arise near
definite values of the wave vectors (the so-called small
divisors). This indicates that the simple power-law
expansions used for the construction of the nonlinear
waves in'*) cannot be used in the vicinity of such singu-
lar values of the wave vectors.

The present communication is devoted to the devel-
opment of a theory of nonlinear electromagnetic waves,
which makes it possible to construct asymptotic ex-
pansions of the solutions of the nonlinear field equa-
tions near the singular values of the wave vectors. As
will be shown below, this affords two possibilities.
First, the systems of linear equations obtained for the
field amplitudes in the simple expansions in powers of
the amplitudes give way, even for the fundamental
amplitude of the harmonic expansion of the wave in
terms of any particular variable, to a nonlinear differ-
ential equation with respect to another variable. In
other words, the harmonic expansion of the fields in
terms of all the variables is not productive near the
singular values of the wave vectors. In the second

case, to the contrary, the effectiveness of such har-
monic expansions is retained, but the amplitudes of
two (or more) modes become commensurate, and this
is to some degree analogous to the situation character-
istic of the intersection of molecular terms.

Just as in!")] we shall focus our attention on the
study of wave solutions for an electric field in the form

E(r, t) = E(r)sin[ot + ¥ (r)], 1.1)

which are described by the equations!*®
AE + [ko? — (V¥)2 — %> + w2(E* | EZ) ] E = 0, (1.2)
div[E2V¥] = 0. (1.3)

Here k2, = (w/c)?, Ec is an electric field value char-
acteristic of the nonlinear properties of the medium,
and

2
= ‘C"T[i—e(m)], (1.4)
where €(w) is the ordinary linear dielectric constant,
Just as in!*!) we confine ourselves in the discussion to
two-dimensional solutions, which make it possible to
understand many essential features of three-dimen-
sional solutions, too.

2. STANDING WEAKLY-LINEAR WAVES

The simplest case of deviation from the power-law
expansions occurs in the case of small-amplitude
standing waves (¥ = const), when E = aEce(x, z), and
a can be regarded as a small quantity. Then Eq. (1.2)
makes it possible to represent the first terms of the
asymptotic expansion obtained in in the following
form:

(au)zl: 3

e(x, z) = cos kx cos kyz + T8 Lkz cos 3k x cos kyz
L

3 1
+ HZ— cos kyx cos 3kyz + s cos 3k, cos 3k||z] +... (2.1)
The longitudinal and the transverse components of the
wave vectors are connected by the relation

3(au)’*[ 1 9 9

9 .
it b= o g b
2.2)

As was already indicated in''), the appearance of
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small divisors (when k| — 0 or kj; — 0) signifies that
the parameter a loses the meaning of the amplitude of
the fundamental two-dimensional mode, since, for ex-
ample when k; — 0, not only cos k; x cos k;z, but
also the higher modes of the type cos nkjz cos k; x
reduce to the fundamental two-dimensional mode. This
statement actually means that at small values of k) the
field distributions in the medium must be sought in the
form of one-dimensional harmonic expansions

e(z, 2) = D) eans1(2)cos(2n + 1) k.
n=0

2.3)

Equation (1.2) yields for the functions ezn., an infinite
system of one-dimensional nonlinear diffraction equa-
tions, which can be solved under the assumption that
e, is much larger than the remaining amplitudes of the
expansion (2.3). Namely, ex., ~ a®. With this, in the
region of small k|, which is of interest to us now, we
have k* ~ k§, - k2. Using this fact, we can obtain a
system of successive-approximation equations.

In the first approximation we obtained for the am-
plitude e,

e +(ka® —n— k2 es = —;1,’—‘(a><)ze3 (2.4)
Retention of the nonlinear terms becomes necessary
in the case of a slow z-dependence of the solutions, as
is the case under the conditions when the coefficient
preceding e, in the left side of (2.4) is small.

In the next approximation, the amplitude e; becomes

different from zero, and the equation for it is

es” + (ko? — x? — 9k 2) €3 = — 1/, (ax)2e,3. (2.5)
such linear inhomogeneous equations determine the
amplitudes of the higher harmonics.

The first-approximation equation (2.4) can be
readily seen to have the following solution
ey = cn(z2Vko? — %2 — k124 3s(an)? ky), ko®—x2— k2> —3[g(ax)2
2.6)
e = dn(}/%mz, Ry, —3g(an)? > ko —u* — k2 > —34(an)2
2.7)

Here dn®(y, k)= 1 - k®sn®(y, k), where sn(y, k) and
cn(y, k) are the Jacobi elliptic sine and cosine. The
modulus of the elliptic functions is determined by the
formula

by = V3lsa [Vka? — %2 — k1% + 34 (ax)2 2.8)
Periodic solutions of (2.6) and (2.7) correspond to
longitudinal components of the wave vector
k11
ky =K (k) Vho? — %2 — ki 24 3/u(an)? 2.9)
Fy = ay3ax | 2K (ky™), (2.10)

where K is a complete elliptic integral of the first
kind.

In the region of the small divisor k2, - k® - k%

S (ak )2 and the z-dependence of the fundamental mode
el(z) is slow, while k; ~ ak. When k2 - «® - ki
- - 3/f,)(afc)zi 0, the solutions (2.6) and (2.7) go over
into a bounded non-periodic solution

(2.11)

The solution of the second-approximation equation
(2.5) can be readily obtained and, for example for the
case of (2.7) at small values of k;, we get

ei(z) = ch~1(Y3axz/2).
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es3(z) ~ (@%)* e cn3( zv kmz—-u2+:ﬁ?‘-—)z—\ .(2.12)

4(9k 2 4 w2 — ko)

The higher amplitudes of the asymptotic expansion
are determined in similar fashion. It should be noted
that the transition from the asymptotic expansions of
the type (2.1), based on the use of the principal mode
of the linear approximation, to the asymptotic expan-
sions using the principal mode (2.6) and (2.7), actually
correspond to separation of the terms that deviate from
the expansion (2.1) at small values of k; in the summa-
tion of the most important infinite sequence in this
expansion.

3. WAVE IN A MEDIUM WITH A NONLINEAR PLANE
WAVE

The problem of small divisors was raised in!*! also
in a construction of solutions that are close to the
exact solution, with constant amplitude of the electric
field. Here

E(z, 2) = Loy T Rt — k[ 4 ae(z, )} G.1)
W(z, 2) = —koz + ap(z, 2).

To construct a weakly-nonlinear non-one-dimensional
field distribution that is suitable in the region of the
small divisors (seef!] ), we represent the sought am-
plitude and phase in the form

e(z, z) = cosy & cos xit + ay cos 2x1& + aycos 25 + a(§, ), (3.2)
Y(z, z) = beos i Esiny L + bysin 2yC + B(E, ),
where

£ =202+ bt — ko?)z, § = V2(* + k2 — ko?)z, 2 1, ay, @y, b, by
and 1, aj, a;, b, and b, are the total amplitudes of the
separated modes, while the functions a and 8 are
orthogonal to the separated modes. Substitution of
(3.1) and (3.2) in (1.2) and (1.3) leads to a system of
equations for the separated amplitudes and for the
functions @ and B. In the first approximation, the
system determining the amplitudes of the separated
modes leads to

. _3 a 16 (xooxix)®
S B &7 s i L)
.3 a 4, 16 (ex®)?
LR S v v I X Sy s A
o iy
by ~ ;[ a +< EE T ) a}. (3.5)
Using (3.3)—(3.5), we obtain an equation for the con-

nection between the projections of the wave vector:

16 (gwxixs)? ]

3 (x2+xP)?
16 (xeoxn)? 4

2 1 — g2
3 m + xP ][ *

(XeoXi1) 2

1—x2—xr+4
+ X2+

16 {7—7{[

3

32 (%eokn)® ., 2/1 P \?
+ 3 x 2+ P ]}+ e +XL +x”(>

1
S, [ S
1 +4xw2—4xui 5 3~
_ 16 (xeomi®)®
3 (x2+xP)?

We note that in the derivation of (3.6) we did not use
the assumption that the amplitudes a; and a) of the
separated modes are small compared with unity, i.e.,
compared with the amplitude of the fundamental one-
dimensional mode. To determine the result of such a
procedure, we shall investigate further, at x, =0, the
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region of the small divisor X_L 2 X”

/4. Let xi
=% + Ay, | A | <1, Then (3.6) leads to

(0P + = Ys{l — oAy = VA 2+ 9/64a2} (3.7)
and to the following expression for the amplitude:
3 a
(@) =~ T AT AT (3.8)

Let us consider one of the branches, for example the
one corresponding to ()(”)+ , (2g)s. Outs1de the region
of the small divisor we have | A | > a® and when

A <0 relations (3.7) and (3.8) lead to

)+ ~ Ys(4 — A1), (a)+ ~ 3a/8A,. (3 .9)

When A >0, the amplitude (a). increases on going
through the region of the small divisor, and (x”)

— Y,. In the vicinity of the small d1v1sor under the
condition that | A | < a? relations (3.7) and (3.8)
lead to

)+ ~ Ya(1 4+ %za), ()4~ 1 (3.10)

For the other branch, relations similar to (3.9) and
(3.10), are of the form

() - ~ Ye(1 —Ay),
for AL >0, |AL]| >a
(a)~ ~ —1

We note that the considered branches lie on opposite
sides of the straight line Xi + xﬁ =1, which character-
izes the linearized problem, and that the amplitudes
grow in opposite directions.

The curve corresponding to the implicit function
(3.6) at x,, =0 is shown in Fig. 1. Outside the region
of the small divisors, only one of the branches of the
curve (3 6) is close to the straight line XJ. + X|| 1
when a? < 1, whereas in the region of the small
divisors a pa1r of branches of the curve (3.2) is simul-
taneously close to the aforementioned line. The curves
shown in Fig. 1 indicates that, on passing through the
region of the small divisor, the branch corresponding
to x3 +x3 2 1 moves away from the straight line

(a)- ~ —3a/8AL
(uR) - ~ Y4 (1 — 3sa),
for |AL]<1.

(3.11)

xi +x} =1 and approaches the asymptotes x% = 7,

and x3 = 7a. Such a behavior of this branch shows that
on passing through the region of the small divisor the
two-dimensional field distribution goes over into a
distribution close to the exact one-dimensional periodic
solution. The latter, of course, is determined far away
from the region of the small divisor by the exact non-
linear equation (see below).

We present an expression for the first-approxima-
tion correction a(f, ) to the distribution of three

2
/(" 1

iyt
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modes (¥, - 0):

1 a aj? 1 cos 2y Ecos 2
w0 (g0 = —dafg o+ ST (Lt o) PE
1 cos 4x & 1 cos 45
a2 It
R 16;(3'*' AL Tow
1 cos 3% .E cos x5 1 cos 1 E cos 3yt
— g2 A L gp—2—= 22 % (3.12
+ 2 gy 2 o 1 — 30— 9P ( )

From this we can readily determine the values of the
wave vectors at which new small divisors appear.
However, even for these, the solutions can be analyzed
in the manner indicated above, the only difference being
that the approach of other modes must be considered.

4. WAVES CLOSE TO A STANDING PERIODIC WAVE
OF A STRONG FIELD

We now turn to non-one-dimensional field distribu-
tions close to the exact one-dimensional solutions of
the nonlinear field equations. Accordingly, the one-
dimensional solution satisfies the equation

el +e+3odie 2+ 2A %% = 4.1)

where A; can be called the amplitude of the exact one-
dimensional distribution.

For the amplitudes A; = V2 - 1, the solution of
(4.1) is given by

er(§) = (1+A4)dn["2(1+41)8 k1] -1, 4.2)

where the modulus of the elliptic function k; and the
wave number x, characterizing the fundamental period
of the field are determined by the expressions

_A.@e+4) L lt4 4.3)
+ 1+4, M K (k)

In particular, when A| < 1, relations (4.2) and (4.3)
yield
e (8) L ~14+A4,. (4.4)

In the limit as A— V2 — 1 - 0, when the modulus of
the elliptic function tends to unity, we have K(k;)

~ In (4/V1 - k2) and x; — 0. Then the solution (4.2)
degenerates mto an aperiodic solution

V2ch-1(g/}2) — 1. 4.5)

For the amplitudes A; > v2 - 1, the solution of (4.1)
is

~ cos §,

er(®)=(1+4,) cn[ SyarAy—te~] @)

and when A; — V2 -1 +0 it also goes over into (4.5).
To construct non-one-dimensiona field solutions
close to the one-dimensional solutions (4.2) and (4.6),

we put

e(§ t) = er(8) +ae(E ¥) 4.7)
In the linear approximation we get a solution of the type

e(& §) = E(&, x)cosyg, 4.8)

where E(£, x)) is an eigenfunction of the equation
a 3
[t 1= wi+34ues(®) + 3 42%,2®) |EG W) =0. 4.9)

Of direct interest for our purposes are only those
eigenfunctions of (4.9) which lead to non-negative
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values of the proper parameter xﬁ. Assume for con-
creteness that A; < V2 - 1. Then, using the explicit
form of the one-dimensional distribution (5.2) and going
over to a new independent variable y = (1 + A} )£/2,

we transform (4.9) to the Jacobi form for the Lame
equation(*]

[ Geti—sbosmk) |Emy =0  @.10)
Here y/2= 3 - (1 +2x%)/(1 + A;)?, and the condition
that x be non-negative leads to the inequality y =< 4

+ k%, which determines that part of the spectrum of

the eigenvalues of the Lame operator which leads to
bounded solutions of the linearized problem in terms

of the variable &.

Let us investigate the periodic solutions of (4.10).
On the basis of the theory of the Lame equation!*] we
reach the conclusion that equation (4.10) admits of
five periodic solutions represented by polynomials of
elliptic functions. Out of the five Lame polynomials,
four satisfy the condition that Xﬁ be non-negative.
Using the recurrence relations given in[‘*], we obtain
the explicit form of the Lame polynomials:
-g_;J-;-}_I]{C_:_zsnz(y’ k.l.)’
Es-=cn(y, k.)dn(y, ki),

Es® =sn(y, ky)en(y, k1),
Ec® =sn(y, ky)dn(y, k1),

Ec-=1—
(4.11)

where
H [2=2—F2—V(2 —k. %24 3k,%

Further, it can be shown that when A} > V2 - 1,
the periodic solutions represented by Lame polynomials
coincide with the polynomials (4.11), but the modulus of
the elliptic functions becomes in this case kl‘. The
eigenvalues of the longitudinal wave number, corre-
sponding to the eigenfunctions (4.11), are given by

xR (Be) = 1o{l+ [4—6(1 4+ A41)2+3(1+ A1)}, A =721,
W (Es™) = 3(1+A41)% AL Z= V2 — 1, x2(Es®) = 0, 4, <2 —1,
_ (4.12)
xP(E) =0, 4, > 712 —1, xP(Ec®) = 3[2 — (14 4,)?],

Ay <y2—1.

In the plane (xi, A}), the curves corresponding to (4.12)
break up this plane into regions in which bounded solu-
tions of (4.10) exist or do not exist. Besides the finite
number of periodic eigenfunctions represented by the
Lame polynomials, there exists, as is well known["],

VZ-1 yA,
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an infinite sequence of periodic transcendental Lame
functions. However, the eigenvalues for the transcen-
dental Lame functions are such that xﬁ < 0. In the
plane (xf, A;) there appear two allowed bands of the
continuous spectrum of longitudinal wave numbers. In
Fig. 2, one of the allowed bands lies between the curves
Ec™ and Es’, and the other lies between the curves
Es® and Ec’. Periodic solutions are realized on the
boundaries of the allowed bands, and inside the bands
we get bounded but non-periodic solutions.

We call attention to the fact that the degeneracy of
the upper allowed bands when A| — V2 — 1 £+ 0 into
a point region (the point of tangency of the curves Ec~
and Es”) reflects the appearance in the medium of a
localized distribution—a plane waveguide layer. When
A} — V2 - 110 the Lame polynomials (4.11) degen-
erate into the eigenfunctions that appeared earlier!! in
the investigation of non-one-dimensional distributions
close to a plane waveguide layer. When A; <1 and
a < 1, the first terms of the asymptotic expansion of
the non-one-dimensional field distribution correspond-
ing to the choice of Es™(y)cos yx;§ as the principal
non-one-dimensional mode, are given by

E(z, z) = A {e1(§) +aBs (y)cos b+ ...} =
= A, {cos2y &+ acosy i Ecosyt+ ...},

where x3 ~ 74, x5~ %, and the quantity aA| should be
regarded as the amplitude of the principal non-one-
dimensional mode. The obtained expression indicates
that one of the non-one-dimensional field distributions
close to the exact one-dimensional periodic field dis-
tribution is produced in the vicinity of the previously
investigated small divisor xi ~ 74, x2 ~ Ya.

(4.13)

5. WAVES IN A MEDIUM WITH A TRAVELING
PERIODIC NONLINEAR WAVE

Let us consider the solution of the system of equa-
tions for the field phase and amplitude, determining
the steady-state non-one-dimensional distributions of
the field in the presence of an energy flux. The system
of equations (1.2) and (1.3) admits of an exact one-
dimensional periodic solution in the form

E|/E.=¢e,(x), Y = —kos. (5.1)
Here e;(x) satisfies the equation
e1” -+ [ko? — %% — koo + x%e 2], = 0, (5.2)

and ke determines the longitudinal energy flux in the
medium. Putting

e(z, z) = ey (z) + aE(z)cos kyz, 5.3)

5.3

§(2) sin &z
e ()
and k2 - k? - k2 >0, we find that a non-one-dimen-
sional steady-state field distribution close to the ex-
act one-dimensional periodic distribution (5.1) is de-
termined in the linear approximation by the solution of
the problem for the eigenvalues of the longitudinal
wave number Kk

Y(z,2)=—koz +a

4z
[+ 1=+ 3viest ]| B+ 28 =0, 6.4

dZ
ZXmXIIE+[ 7§§+1—X\[2+’Y28J_2] S§=0.
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We have used here the notation

kﬁ,oo ) %2
—_ o=
Fo? — %2 — kot ko? — %2 — koo

and the one-dimensional distribution is given by

ei(8) = Ayjen(EV1 4 (vAL)? k), (5.5)
kL= vyAL[72(1T+ (vA1)?). (5.5")
Putting ¢ = £V1 + (yA[)? and making the substitu-
tion sn ¢ =cos 71, which is used to go over to the

trigonometric form of the Lame equation["], we rewrite
(5.4) in the form

N R —
Koo = £ = 2Vko® — %% — ko,

&’E dE
[1—Fk 2cos?n]——+ ki2cosmsinm—
dn? dn

1—xf

2% _
+[5 F(AL):

1+(vAa):

azs
- kﬁcoszn]&?]-z-—l— kﬁcosnsinnﬁ

+6kﬁsin2-r|] E+
(5.6)

250X
XKl g
14(v4,.)?

The eigenfunctions of the system (5.6), and consequently
also the fundamental non-one-dimensional mode of the
linear approximation to the exact one-dimensional
periodic field distribution with an energy flux can be
represented when ki <1 in the form of a series in
powers of ki:

E=EO(n)+k2EO(m)+..., S=389n)+k250(q)+...,
wm=x+ ke + ... (5.7)

For the functions E‘® and $'?, the system (5.7) leads
to

1 —_— 2
LN sinzn] S+ 0.

+[3 FvAD)

EO 11—l )1BO + 251 SO =0,

. 5.8
el BO + 1 — (11”)2) S® 4 0 = 0. e
One of the solutions of (5.8) is
E® = g cos 2nn, S§O = +acos 2nn. (5.9)

The latter corresponds to the eigenvalues of the longi-
tudinal wave number

(0) T L o ©
W = Xeo = VA2 +1—(20)%

= — %o &= Ve + 1 —(2n)2
(5.10)
Here n is an integer determining the number of oscil-
lations of the eigenfunctions within an interval corre-
sponding to the period 2w, and satisfies the obvious

inequality

(2n)2 < 1 4+ 3o (5.11)

Consequently, the number of oscillations characterizing
the field distribution in the transverse dimension is
determined by the magnitude of the longitudinal energy
flux.
The system of equations for E‘®(n) and S‘¥(n) has
a solution in the form
EN = Ag(n+1) Ccos 2(71 + 1)1’] 'Jr Ag(n_i) Ccos 2(7L —_ 1)1’],
(5.12)
SO = agniyycos 2(n + 1)M + agn-neos 2(n — 1)1,

if xh” is determined from the condition that there be
no secular terms in such a system of equations. The
exclusion of the secular terms causes the asymptotic
expansion of the eigenvalue of the longitudinal wave
number x (n, ki), corresponding to n-fold oscillations

and V. P. SILIN

in terms of the transverse variables within the interval
of the fundamental period, to assume at small values
of ki the form

w(r, k)= (n) 4+ —— 3

_ 5.13
X (7) = %o ( )

k24 0(k,Y).
the amplitudes Azn+1 and azn+i, are determined by
a simple system of algebraic equations, the determinant
of which differs from zero at any integer value of n.
The solution of the latter raises no difficulty.

The asymptotic expansion (5.13) shows that four
points x{”(n) are located in the plane (x, k;) on the
axis k® = 0, symmetrically to the axis x; =0, for any
specified number of oscillations n satisfying the in-
equality (5.11) and for ki — 0. When ki <1, each of
these points is the starting point of two diverging
curves (‘‘whiskers’’), on which (Fig. 3) periodic solu-
tions are realized.

In the absence of an energy flux (ke =0, k2, - «?
> 0), the Lame equation, into which the equation for
the field amplitude of the system (5.6) degenerates, can
be investigated in greater detail. Namely, it is possi-
ble to ascertain that this equation admits of three
periodic solutions represented by Lame polynomials.
The latter coincide with the polynomials Ec”, Es™, and
Ec’®, with the obviously replacement of the modulus of
the elliptic functions by the quantity determined by re-
lation (5.5'). On the other hand, the admissible values
of the longitudinal wave numbers are determined by
the expressions

x2(Bem) = —1+ [4+ 6(yAL)2 + 3(yAL)!]"%,
3 (5.14)
0P (BsT) = 5-(vAL)% it (Be’) = 0

These three solutions account for all the periodic Lame
eigenfunctions that lead to the linearized-problem field
distributions bounded in terms of the longitudinal
variable. The curves shown in Fig. 4 delineate in the
plane (xﬁ, A, ) regions in which bounded solutions
exist or do not exist. The regions bounded by the
curves Ec™ and Es™ correspond to the only band al-
lowed in this case, that of the continuous spectrum of
the eigenvalues of the longitudinal wave numbers y .

We note that the solutions (5.3) can serve as the
basis for the construction of asymptotic expansions. In
this case, in particular, when ., =0, and y is deter-
mined by relations (5.14), it turns out that if the prin-
cipal four-dimensional mode corresponds to the upper
limit of the allowed band of the continuous spectrum
x”(Ec'l), then there are no divisors in the asymptotic
expansion of the two-dimensional distribution in the
field in terms of integer powers of the principal-mode

x, xlf

N~
<

2
kl

-
L

FIG. 3

g 1/V2V3+1
FIG. 4

Iz
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amplitude. To the contrary, in the case of the lower
limit of the allowed band of the continuous spectrum,
there exist discrete values of the amplitudes of the
one-dimensional distribution of the field A, for which
small divisors arise in the asymptotic expansion. The
corresponding values of the amplitudes are given by the
formula

(5.15)

2 [(m2— 2)2+ 3mt — 4 — m? 4 2
A= —— ,

where m = 2 is an integer. It follows from this, in
particular, that small divisors likewise do not arise
when Aj > (A])m=2. In the vicinity of the points (5.15),
the construction of two-dimensional solutions can be
carried out in accordance with the exposition in the
second and third sections.

In conclusion it must be emphasized that in the
more general case, when, unlike in our case, the non-
linear one-dimensional periodic wave solutions cannot
be written in explicit form, a medium with such a
periodic wave becomes nevertheless effectively in-
homogeneous, owing to the nonlinear polarization. In

this connection, bands of admissible values of wave
vectors of waves close to the strong nonlinear wave
will arise. The regions of existence and nonexistence
of small divisors corresponding to intersection of
terms can be revealed there in the same manner.
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