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A theory is developed for linear low-frequency electromagnetic waves and instabilities in a turbulent 
plasma and it is shown that the electromagnetic properties of such a plasma are modified substan­
tially in the low-frequency region i.e., at frequencies much lower than the effective frequencies that 
characterize the turbulence collisions. An approach is developed that is based on the expansion of 
the particle collision integrals and the turbulence fluctuation collision integrals in terms of the 
turbulence energy. Within the framework of this analysis it is shown that in an isothermal plasma 
in which the turbulence energy W exceeds a critical value Wcr, (Wcr « nT), it is possible to have 
propagation of waves that are similar to acoustic waves, the velocity of these waves depending on 
the turbulence energy. A criterion for the applicability of this approach is developed. This criterion 
is based on the expansion of the turbulence collision integrals in terms of the turbulence energy. 
These criteria impose stringent conditions on possibility of appearance of electrostatic instabilities 
in the turbulent plasma. A new approach is also developed for computing the particle collision inte­
grals and the turbulence fluctuation integrals, this approach being based on the weak correlation of 
the turbulent fluctuations between themselves and with perturbations of the turbulence fluctuations. 
An integral equation is derived and solved which makes it possible to sum the series in terms of 
turbulence energy in the collision integrals indicated above. It is shown that the result is the renor­
malization of the plasmon Green's function and the particle charge; this renormalization is related 
to the nonlinear modification of the dispersion properties of the plasma by the turbulence fluctuations. 
The dielectric constant obtained in this way is used to investigate new electrostatic instabilities in the 
turbulent plasma. 

1. FORMULATION OF THE PROBLEM 

1. The present work is devoted to the analysis of the 
properties of weak linear electromagnetic perturba­
tions and waves in a turbulent plasma. In recent years 
many of the conclusions that follow from the theory of 
electromagnetic properties of a plasma in the absence 
of turbulenceP-Jl have received experimental verifica­
tion (cf. for example the review inf4 l). The development 
of some of the general ideas as to the nature of plasma 
turbulencefs,sJ makes it possible, at the present time, 
to formulate various linear electromagnetic properties 
of the turbulent plasma and to indicate how these prop­
erties can be distinguished from the properties of a 
non-turbulent plasma (attention has been directed to 
this problem inf71). Physical arguments leading to this 
conclusion can be understood easily if one considers 
the propagation of a low-frequency linear perturbation 
in a plasma in which strong high-frequency fluctuations 
are excited. 

Let us assume that the high-frequency turbulence is 
stationary. As in the case of fluids, the stationarity of 
the turbulence arises as a result of a balance between 
the generation of fluctuations in one region of wave 
numbers and the spectral transfer to another region, 
with subsequent dissipation of the fluctuations in this 
latter region. [ a,sJ The field associated with the linear 
low-frequency perturbation not only modifies (weakly) 
the particle distribution in the plasma (electrons and 
ions), but also modifies the flow of turbulence fluctua­
tions. For example, if the frequency of the perturba-
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tion is much lower than a frequency given by the re­
ciprocal time for the transfer of energy from the gen­
eration region to the absorption region, the perturba­
tion can have a marked effect on such flows. 

It is convenient to introduce the idea of an effective 
turbulence collision frequency llturb which is defined 
as the effective frequency of collisions of fluctuations 
between themselves and with plasma particles. These 
frequencies depend on the turbulence energy. In the 
case of weak turbulence, which is the only case that 
will be considered in the following analysis, the effec­
tive turbulence collision frequencies are proportional 
to higher powers of the turbulence energy and are 
characterized by low-frequencies .ll The highest fre­
quency is characteristic of turbulence collisions that 
are proportional to the first power of the turbulence 
energy. The corresponding terms in the collision inte­
gral describe quasi-linear relaxation processess, the 
decay interaction, and induced scattering. rsJ In the 
region of perturbation frequencies that are smaller 
than the effective turbulence frequencies the dielectric 
tensor cannot be expanded in the effective turbulence 
frequencies i.e., the turbulence energy. Perturbations 
of low frequency in the turbulent plasma cannot be re­
garded as nonlinear interactions between various modes 
and one must then speak of the actual modification of 
the mode, in particular, the dissappearance of higher 
modes and the appearance of new modes. 

I) Specific expressions for the effective frequency of turbulence col­
lisions (nonlinear growth rates) are given, for example, in [ 6 ). 
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We note that the modification of the low-frequency 
properties of a plasma in the presence of turbulence is 
of special interest in view of the fact that the low­
frequency regions represent the greatest danger for 
the confinement of plasma (in view of the hydrodynamic 
instabilities and the drift instabilities). By changing the 
conditions for excitation and dissipation of high-fre­
quency turbulence, for instance the intensity and class 
of turbulence fluctuations, it should be possible to regu­
late the low-frequency properties and instabilities of 
the plasma. 

2. The problems developed in the theory given below 
are the determination of the analytic form of the low­
frequency dielectric tensor for the plasma €ij(w, k, 
Wk1) and the functional dependence on the spectral en­
ergy density of the turbulence Wk1 

W= S wk,dkf. 

Here, W is the energy associated with the turbulence 
(per cm3 ), w is the frequency, and k is the wave vector 
of the perturbation. In formulating the theory we shall 
make use of ideas similar to those which appear in the 
method of collective perturbations that describe weak 
turbulen~eY 1 The basis of this method lies in the 
truncation of the nonlinear equations and the expansion 
in terms of the number of plasmons in the plasmon­
particle collision integral. Thus, the expansion is 
carried out in terms of the turbulence energy in the 
kernels of the collision integrals, and account is taken 
of all processess indicated by the increasing number 
of external plasmon lines.£61 

The general scheme for the calculations of the 
theory is as follows: the particle distribution function 
fa for particles of species a and the electric field E 
are written in a sum of turbulence (cpa, e) and regular 
(cl>a, 8) components: 

F = Cll" + q>", E = lG + e, 

where (cpa) = 0, (e) = 0; the averaging is over the 
statistical ensemble. By averaging the equations of 
motion and Maxwell's equations over the statistical 
ensemble and subtracting the averaged equations from 
the original equations we can obtain a system of equa­
tions for the regular components and the turbulence 
components. Further, we separate quantities that char­
acterize the original turbulence state, which are desig­
nated below by the subscript (0): cp 101'P, c~><olcp, e10l •2l 
We then consider the perturbation of the turbulence 
field and the field related to it i<ll (the superscript (1) 
indicates the perturbation). All quantities ( e ~ cl>, cp i) 
are expanded in terms of i<1l and only the terms linear 
in i< 1l are retained. In this way we obtain two systems 
of equations for the basic turbulent state and deviations 
from this state. These equations are general and, in 
principle, can be used for strong turbulence. 

In obtaining the abbreviated equations that describe 
the weakly turbulent state it is possible, as is usually 
done, to carry out an expansion in the turbulence field 
e10l in the kernels of the integral equation for the initial 
turbulent state. One of the methods used below is the 
expansion in terms of the field e 10l in the kernels for 

..... 
2lFor simplicity, in what follows we take &(o) = 0. 

equations that describe the deviation from the turbulent 
state. Taking into consideration only a finite number of 
terms of the expansion, it is possible to take account 
of only the first turbulence collision frequencies. This 
procedure allows us to describe the electromagnetic 
properties of the plasma for frequencies that are lower 
than these turbulence frequencies but higher than the 
neglected turbulence frequencies (of higher order in the 
turbulence energy). The necessity for this approach to 
the problem is dictated by the fact that in many practi­
cal cases the effective turbulence frequencies depend 
not only on the turbulence energy, but also on w and k, 
the frequency and wave vector of the perturbation. 

In Sec. 3 we analyze the limits of applicability of 
this approach, which is based on the expansion of the 
particle collision integral and the turbulence collision 
integral in terms of the turbulence energy, and the re­
quired criteria are derived. [101 It is shown that these 
criteria are closely related to the effects of nonlinear 
modifications of the dispersion properties for the high­
frequency fluctuations. Although the changes in the 
frequencies of the high-frequency fluctuations under 
conditions of weak turbulence are always small, as we 
have indicated, the low-frequency perturbations can 
have an effect on them at frequencies which are, roughly 
speaking, lower than the nonlinear shifts. It is shown 
that the problem reduces to the renormalization of the 
propagators of the high-frequency plasmons and the 
particle charge. 

In Sec. 4 we develop a new method that allows us to 
take account of this renormalization by formulation of 
an integral equation for the kernel of the integrals for 
the particle collisions and the collisions between turbu­
lent fluctuations. These effects are found to be most 
important for the plasma oscillation turbulence. The 
instability of a turbulent plasma corresponds to the 
so-called instability of a gas of cold Langmuir plas­
mons, which was first investigated by Vedenov and 
Rudakov. [ul This feature arises in our analysis within 
the framework of the approach used for expansion of 
the collision integrals for particle collisions and turbu­
lence fluctuations in terms of the turbulence energy. 3l 

According to the criterion that is derived, this instabil­
ity is found to be possible in a narrow range of plasma 
parameters and turbulence parameters, in particular, 
only for very low plasmon phase velocities. The use of 
a dielectric constant found by summing the series in 
the perturbation theory in turbulence energy in the 
kernels of the collision integrals for the particles and 
turbulence fluctuations (Sec. 4) indicates the existence 
of new instabilities in a turbulent plasma. 

The methods that are developed also have applica­
tion in problems of stabilization of drift instabilities 
by high-frequency turbulence and stochastic radio­
frequency fields[l 3 l, spontaneous excitation of magnetic 
fields, and the skin effect and anti-skin effect in a 
turbulent plasma. [?l Solely for reasons of simplifica­
tion, the presentation is restricted to the example of 
magnetized electrons and ions. We also limit the analy­
sis of the radio-frequency turbulence to the case of 
rather high phase velocities so that the resonance 

3 lThe instability criterion [ 11 ] has also been obtained by Galli tis [ 12 ] 

by means of an energy principle. 
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particles in the plasma can be neglected as can binary 
collisions between particles. 

2. EXPANSION OF THE COLLISION INTEGRALS FOR 
THE PARTICLES AND OF THE TURBULENCE 
FLUCTUATIONS IN TERMS OF THE TURBULENCE 
ENERGY 

1. The motion of particles in a magnetized plasma 
can be described in terms of the motion of the guiding 
centers. The drift kinetic equation, which describes 
the distribution of guiding centers in the limit H -oo 

that is to say, neglecting drift effects due to inhomo­
geneities in the plasma) is given by[I4 J 

(2 .1) 

where Vz is the particle velocity while Ez is the com­
ponent of electric field along H. 4 > Using the method 
described above, from Eq. (2.1) we obtain a system of 
equations for the basic turbulent state [superscript (O ), 
8<o> = 0] and perturbations about this state [superscript 
(1 )] 

( 1 k.1_2 ) (OJ 4rti "' l (O)« 
1 T k,z _ w• ek = - k, .2.J ea J 'Ph dv,, 

" 
(2.3) 

(2 .4) 

• (I)<> e._ (I) a<ll(O)« a \ 
-z(w-k,v,)<jJk +-ek --=--·J dk1dk2 

ma avz avz 

X 6 (k- k - k )·~ [ (0) Ill (l)ct + ., (O)<X + (0) (I)C< 
1 2 ma. ek1 k., co k/Pk~ ek, Q)k2 

(2 .5) 

Here, the velocity of light cis taken equal to unity, 
Ak is the four-dimensional Fourier component for the 
quantity A, k = { k, w}, kf = k 2 - k~, dk = dk dw and the 
basic turbulent state is stationary, i.e., il>k0 > = q,<o>o(k) 
while the spectrum of stationary turbulence Uk is de­
termined from the relation 

(2 .6) 

The frequency of linear turbulence fluctuations is 
determined by the dispersion equation 

IT (k) == IT ( w, k) = eo<•l(w, k) + e~i) ( w, k)- 1 + k.1_2 0 
kl- w• ' (2.7) 

~<X) 4rte"2 l o<IJ(O)ct 1 
eo (w,k)=1+--J dv,-~ 6-++0 

makz av, ( w - k,v, + i6) ' · 

For the high-frequency fluctuations, whose phase veloc­
ities are much higher than the mean electron velocities, 

4lThe vector E can have an arbitrary orientation with respect to H; 
in particular, the turbulence in the initial state can be regarded as being 
isotropic. 

using Eq. (2.7) and neglecting spatial dispersion we have 
(w~e = 4rrn0e 2/me) 

w2 = w:., ±I = ~ [k12 + w p." ± l' ( k1' + Wp/) 2 - 4wfe2klz2], (2 .8) 

while the quantity Uk is related to the spectral density 
of the turbulence wk by the relation 

Uk, = 2n ~ (W~,1\(w- wk, ,) + W'..k,6(w + wk,s)l 
.s=±t 

[ k1 I 2kl 2 ] -I 
X 1 + ~ ' 

(k1,2 - w2 )2 
k!. s 

(2 .9) 

For the case of plasma fluctuations along H we have 
Wki = Wpe + 3kfv~e/2wpe· 

By limiting ourselves to high-frequency fluctuations 
we can treat the ions in linear fashion. We now con­
sider the integral for collisions between electrons and 
turbulent fluctuations that appears on the right side of 
Eq. (2.4). We expand this integral in terms of the tur­
bulence energy Uk or, what is the same thing, in terms 
of e<I> taking e< 0 > = 0. 

ki ki 
We first limit ourselves to linear terms in Uki· In 

accordance with the remarks given above we then find 

1 r a , ""'(l)e 
x~--,----,--,--J _____ v, ___ ~ (2 13) 

(wl-kl,v,+i8) (w +wl-(k,+klz)vz'+i8) av,', • 

D2 = _ ___::__ w P; ~ U,.,dk, ( w - k,v,) 
me' no IT(k+k,)(k,+k,)(w +w 1 -(k,+k,,)v,+i8) · 

r dv,' a 1 {) 
XJ ( I (k k ' . <P<O>•(v ') w -~- w,- z + ·,,jv, + zl\) av,' (w,- k,,v,- i6) av,' z . 

(2 .14) 

The various terms in the collision integral (2 .10) 
have a simple physical significance. The diffusion co­
efficient Do describes the change in the quasilinear ef­
fects of the relaxation of resonance particles associated 
with the deviation of the distribution of such particles 
from the equilibrium distribution q,<o>. This statement 
holds for w « WI and k « ki in which case the de­
nominator in (2 .11) can be replaced by a a-function. In 
the absence of resonance particles, which is the case 
when w <WI and k « ki, the two terms in (2.9) 
balance each other and the quantity Do is small 
( W / nT « 1) with respect to the first term on the left 
side of Eq. (2.10). The term with D in (2.10), which 
describes the change in the effects of the induced 
Compton scattering[6 J is of order W/nT and is small 
with respect to the second term on the left side of Eq. 
(2 .10 ). The diffusion coefficient D2 describes the non­
linear induced scattering while DI describes the decay 
interaction. s> If the conditions w << WI, k << ki and 
wi/ki » VTe are satisfied and, if in addition, w/k 

5 l More precisely those turbulence collisions which are decay colli­
sions when wll>vturb· 
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<< w1/k1, the diffusion coefficient D2 is small com­
pared with D1, which is given approximately by 

(2 .15) 

( a )-• ( a ) w k,' X --w,2II(k1) k-- ---; 
awi ro=lllk,.s fJk1' Wk 1,8 (2.16) 

s = ±1 corresponds to the two sides in (2 .8) while 
'1,k = awk,s/Bk1 is the group velocity for the linear 

· specha (2.8). 
Attention is directed to the presence of the small 

factor ll(k1 + k) in the denominator of (2.13). In de­
riving (2.16) we have made use of the fact that in the 
linear spectra (2.8) the quantity II(k1) =0 so that 

arr(k,) I 
II(kt + k) ~ (oo- kv8, k,)-_-

OWt oo 1=rok 1 

We first show how the decay instabilities are ob­
tained. Roughly speaking these instabilities can arise 
when w >> Vturb, in which case the turbulence colli­
sions can be treated by perturbation theory. In the 
equations 

. (t)e e ii<IJ(O)e 
-!(w -lc,v,)<ll, = -{!;,---

lne avz (2 .17) 
(l)e a a<IJ(O)e 

-l-in, d1 -.-(w --lr,v,)--
iJuz avz 

to a first approximation we can neglect the term with 
d1 and find ~{f>e which is then substituted in nku. Then, 

when kzVTi « w « kzvTe we can show quite easily 
that 

which coincides with the nonlinear dielectric constant 
that describes the decay instabilities. [Sl Equation (2 .1 7) 
allows an exact solution61 

l•l 
(k) (i) (k) + ~. (k) -1 

8 = 80 1 + wp;--iii.:,"n0d1 (e~•l(k)-1) 

2. As an example to illustrate the basic modifica­
tion of the dispersion properties of the plasma at low 
frequencies we consider uniform turbulence due to 
plasma oscillations wk1 = wpe + 3k~vTe/2wpe in the 
case in which all fluctuations are directed along H. 
We have 

W pe f ( 3vT;k,ktz )-!( iJ ) d,=---.ldk,, w-----+i6 k,--w • . 
4no•m. o· "'pc ok,, lz 

Hex;& Wk1z vanishes when k1z = 0 and k1z > k~ax; 
km « wpe/VTe· If w >> kzvg, then 

3klvr." W 
4no2m.E:Ctl2 

and when kzVTi << w « kzVTejE~i>, E~i>, E~e> >> 1 we 
have 

6>ntis can be found by the formal solution of Eq. (2.17) with re­
spect to cl>~l)e and from the linear equation for n~•>•. 

e(k) ~- Wp~z + ~P.'" ( 1 +- 3Wic,:_)-t; 
W k z UTe- \ nolneW 2 

(2 .18) 

ro2 = kz2V±t2, Vs2 = VTe2me I mi, 
1 

V±t2 = -zvs"± i'/.v.' + 3v,ZW/4n0m •. 
(2 .19) 

The solution with the minus sign is aperiodically un­
stable. This instability is similar to that which has 
been found in[u) for cold isotropic plasmons (in the 
present case the plasmons are not cold, that is to say, 
the plasmon spectrum is neither narrow nor one­
dimensional). 

If w « kzVg for the entire turbulent spectrum (i.e., 
eliminating the smallest value of vg in the spectrum) 
we have 

(2 .20) 

and for the same condition as in (2.18) we have 

2 = k 2 •(1 + ~~ l-'Vk,,dk1,) 
00 ' v, 12 n 1' '·' • · 0 e n;1z VTe 

(2 .21) 

The solution in (2 .21) indicates the possibility of 
acoustic waves in an isothermal plasma; in the absence 
of turbulence these waves would be highly damped by 
ion-Landau damping. If W/nT » 12 vTe/v2 where 
Vp = Wpe /k1z is the phase Velocity Of the ffuctuations, 
then the acoustic velocity increases w 2 = k~ v~, 

v•~-~v "~ 
s ~ 12mi 1) n0Te ' 

while the damping due to the ions becomes exponentially 
small. This effect has much in common with acoustic 
propagation in a plasma subject to a strong radio­
frequency field. [151 

The production of isothermal sound (2.21) is char­
acterized by a threshold in terms of W. By virtue of 
the inequality w « kzvg we have v~/vTe « 9mi/me 
so that 

W /noTe> 4me /3mi. (2 .22) 

This condition is satisfied when W « n0 T e. 
We note that the instability in (2 .19) also has a 

threshold. By virtue of the relation w 2 » k~ vg, when 
W/noTe » me/mi we have 

....!:!::_>108~~ VTj (2,23) 
noTe m, vv• . 

We also note that when Vp >> 3vTe/vTi the expansion 
in terms of the turbulence energy in the collision inte­
grals for the particles and turbulent fluctuations is not 
valid for plasma oscillations. 

3. NONLINEAR PLASMON DRESSING AND CRITERIA 
FOR APPLICABILITY OF THE EXPANSION OF THE 
COLLISION INTEGRALS IN TERMS OF THE 
TURBULENCE ENERGY 

1. In the equations that describe the turbulent state 
of the plasma the plasmon propagation operator II(k) 
(the Green's function 1/ll(k)) requires nonlinear cor­
rections proportional to the turbulence energy Uk in 
the first approximation; these correspond to the elec­
tromagnetic dressing of the plasmon. In contrast with 
the usual renormalization of the functional dependence 
of ll(k) on Uk, in the present case we are dealing with 
a real effect. 
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In Eqs. (2 .2) and (2 .3) we now expand all quantities 
in the turbulent field e(k) in the particle collisions and 
the turbulent fluctuations: 

2 IS 12 + __ e I U U dA dk k, "'' '' b ( k - k - k ) 
2mi J '' '' '' 211 ( -k2-k3 )' 1 2 3 ' 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

In obtaining Eq. (3.1) the average over four fields has 
been taken by pairs and we have used Eq. (2 .6 ), while 
the average over three fields is reduced to the average 
over, four fie Ids by use of the approximate relation 

(O) ie I , k II ( k1) e,, = - - 2- J dk2 dk 3Sh,. h,, •/) ( k, - k, - 'a) 
me (3.5) 

X ( e~~ t~~ - (t~~~ ei0!)). 
For nondecay turbulence, which is the case for Lang­
muir turbulence, from Eq. (3.1 ), instead of the relation 
II(ki) =0 we have 

(3.6) 

(3.7) 

In the region of spectral transfer where 1m II(k1) = Q, 

we can write 
e' I -

"'' = wk, + 2 , 11 (k ) I, I J U,, dk, Re ~.,, ,,, k, -•,· (3 .8) 
me a . 1 dwt w1=wk

1 

In contrast with Eq. (2.9), in the present case there 
is no unique relation between w and k. In a number of 
cases, however, the mean nonlinear frequency shift is 
larger than the frequency spread and as an approxima­
tion we can speak of a linear change in the plasmon 
spectrum. 

For concreteness, we introduce the example of one­
dimensional Langmuir turbulence which is treated 
above. The approximate expression for Re 25 when 
vp » VTe(mi/me )114 is 

Re~ ~ _ e~e1 (k1 -k2)f~i1 (1c,-k2)(k,,-k,,) 2 . (3 _9 ) 
k, k,, k, -k, ~ w 12w,'( e~> (k, _ k,) + 8~il (k,- k2)) 

If I w1- w2l « J k1z - k2Z I VTi then w1:::; Wk 1 

- Wpe W /2noTe. Since the correction to the frequency 
is independent of k1 and comes from w1 - w 2 the con­
dition I w 1 - w 2! « I k1z - k2Z I VTi means that Vp 
» 3vife / vTi. The effects of nonlinear dispersion can 
be highly dependent on k for inhomogeneous or non­
isotropic turbulencer161 or when binary particle colli­
sions are introducedY71 

3. We note from Eq. (3.8) 

an (k!) / II(w~,k1)~(w-wk,)- ·--. ¥=-0, 
{}(J)i W=ffikl 

and this means that the factor 1/II(k + k 1 ) does not 
exhibit resonance properties when k -0. Whence we 
conclude that the condition for the applicability of the 
results in Sec. 2 is 

611 
III(k1) I~ lw- kvg, k,l-,-, 

""'' or more precisely, if account is taken of the compensa-
tion of positive frequencies and negative frequencies in 
Eq. (2.16) (the small factor k/k1), 

k 
-max(w, kvg)?>! '"'- Wk, I; 
k, 

(3.10) 

where w1 - Wk1 is the nonlinear correction to the fre­
quency (3 .8 ). 

The criterion in (3 .10) can be obtained if we con­
sider the next order in the turbulence energy ( ~vk_ ).rwJ 
Omitting the extremely complicated calculations we 
have limited outs elves to the result. (1oJ 

The correction to D1 can be written as an additional 
term Od1 in Eq. (2.15):[101 

6a, = _ w pie~ 1 u,,u_k,dk, dk,(k,, ~ lczii~­
n0me' J w,''oJ 2'li(k,- k)II(k2 - k) 

di) (k,- k,)e.~1 (k,- k,) 
X----·- .. -·---. 

e<~l(/< 1 - k2) + e;~l(/c1 - k,) 

(3.11) 

Com_Earing (3.11) with (2.16) taking account of (3.9) 
for Re ~and (2.7) we obtain the criterion in (3.10). We 
note that in (3 .11) only those frequency regions are 
import ant in which E < 01 ( k1 - k 2 ) is large, that is to say, 
w1 and w2 are of opp1>site sign so that the positive and 
negative frequency parts to not balance each other. 
This feature gives the factor k/k1 in Eq. (3.10). 

4. We now consider the turbulence acoustic wave 
considered in Sec. 2 from the point of view of the 
criterion in (3.10). The criterion in (3.10) is of the 
form 

This corresponds to the criterion for neglecting the 
nonlinear dispersion and, provisionally, w << kvg, in 
which case this acoustic wave is possible. Thus, the 
turbulent acoustic wave can exist over a relatively 
wide range of plasma parameters. The conditions for 
the appearance of the instability (2.19) are very string­
ent [in accordance with Eqs. (2.19), (2.23), and (3.10)]: 

We note that the limitations imposed on (3.10) be­
come less stringent for turbulence fluctuations whose 
frequency difference is larger than the Langmuir fre­
quency. This is the case for non-electrostatic fluctua­
tions. [!OJ 

4. INTEGRAL EQUATIONS FOR SUMMING THE 
SERIES IN THE TURBULENCE ENERGY IN THE 
COLLISION INTEGRALS FOR PARTICLES AND 
TURBULENCE FLUCTUATIONS 

1. When the nonlinear frequency correction is intra-
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duced the renormalized group velocity is a physical 
quantity. Consequently, the collision integral for the 
plasma particles in the turbulence fluctuations must 
contain the complete plasmon Green's function 
1/IT( k1 + k) rather than 1/Il(k1 + k) as in Eq. (2.13). 
It will be evident that when k - 0 the quantity 
ll(k1 + k) is of order Vk· Consequently, all terms of 
this order must be retained. In the present section we 
expand the collision integrals for the particles and 
turbulence fluctuations in the small parameter W / nT, 
assuming that in the first approximation.Il(k1 + k) is 
a quantity of order Uk. 

We now obtain the equation for the kernel for the 
collision integral for the particles and turbulence 
fluctuations. We show that in a very natural way this 
equation can be obtained within the framework of the 
weak-correlation approximation for the fields ek0 > (be­
tween themselves and between the perturbation field 
e~>) that is to say, in the approximation usually used 
in the theory of weak turbulence, in particular, in ob­
taining Eq. (3.1 ). It is now convenient to write Eq. 
(2.5) in somewhat different form, introducing the no­
tation 

We have 

_ (1)a:. (i)a ea, (i) 
'Ph = 'f• - -. - e" 

1m" 

_ co>" co>" e" co> 
'Ph = 'P• --. - eh 

zm" 

1 &cD<•>a 

(w- k,u, +ill) au, 

1 oli><0>" 

(w- k,u, +ill). au, 

c1> e" eli><•>" a acD<•rz 

(4.1) 

-i(w -k,u,)li>k +-i!}o-,---.. -(D') -.-
m" ou, au, au, (4 .2) 

ii' e" \ <'> (O)« (O) _c1>" ) 
=- -.--- .l dk1 dk2 ii (k- k 1 - k,) (e,, tji,, + eh, <pk, , 

OVz rna 

(4.3) 

<'>" e" I k k k ) -i(w-k,u,)tp• +-.) dk,dk,o( - ~- ' 
m" 

(4.4) 

(4.5) 

Here 

We see from Eq. (4.2) that for low-frequencies 
k - 0 the collision integral that contains D* is much 
larger than the other integrals on the right side of Eq. 
(4.2 ). 

Actually, when k - 0, k2 - - k1 and by virtue of the 
fact that e~0 > is close to the linear field we find that 

1 

e< 1>, which contains the quantity 1/11 ( k2) by virtue of 
k2 

Eq. (4.3), is a large quantity. On the right side of Eq. 
(4.2) the quantity cp~1 > does not contain the large factor 

that has been indicated and, in accordance with Eq. 

(4.5), is nonlinear in et, that is to say, the quantity 

( e< 1> q5< 0 >) is proportional to a higher power of the 
k1 k2 

turbulence energy. Hence, we start the calculation by 
forming the equation for D*. The right side of Eq. (4 .2) 
will not be used below but the use of this method for 
unknown ( D*) can also be used to compute these inte­
grals. 

Using Eqs. (4.3) and (4.4) we can form expressions 
for (e< 0>e(l>): 

k1 k2 

X ( (<p~~/" e);:> e~:~ ) + (ek~> ek~l q:f!~•)) /j ( k2 - k{ - k,') 

= _ Wpe2 ~ Uh,ll(k1+k2-k')dk' _ali>,~~)e du 
no k,,(w,-k,,u,+io) au, ' 

- Wpe' ~ dv, dkt' dkz' ll (k2 - k{- kz')--!'_h_i --. 
~~ ~-~~+~ 

a· < <•> <•> X....,...- ek, ''Ph,' ) ==; G. 
uu, 

(4.6) 

The right side of Eq. (4.6) G does not contain e~> and 

can be computed as a summation in powers of Uk1 in 
the standard way by means of Eq. (4.5). In the first 
approximation we have 

G=- wp.zu •• ~ du,dk'fi(k1 +k2 -k') 
no k,, (w2 - k2, v, + ifi) 

[ oli>~~)e e . o 1 6li>CO)e J 
X -.-+-z[!)", . -- . 

OU, me OU, (WI- ktz U, + i{i) OVz 
(4.7) 

In the transformation for the average ( e~0>e< 0,>e~0:) 
1 k1 2 

in the average over the four fields we use the weak­
field correlation approximation. In the expression for 
ek0;, we make use of Eq. (3.5) for the quadratic com-

binations of the fields and for e~1: the relation obtained 
from Eqs. (4.3) and (4.4) if we limit ourselves to linear 
and quadratic terms in e~> and ek0 >. The linear terms 
in this relation contain only ek0> and in ( e~0:e~0{e~? 

they give terms ~uk which must be referred to the 

right side of Eq. (4 .6) (being independent of e~>) and 

which are neglected in the approximation in (4.7). 
Hence, in obtaining e~1~ it is sufficient to use the 

relation 
e (1) 2 r dV 0 oli>(O)e 

IT(k)-e~1>=_!!_.) z • (D'-(D'))-.-. 
me nokz (i) - kzVz dVz OVz 

Similar considerations indicate that in calculating 
( cpk1>e e~0:e~0f> we can make use of the following rela-

tions for q5k>e 

(l)e 0 i1li>(O)e 
-i(w- k,v,)ijih = -.-(D'- (D'))-.. -. 

OVz OVz 

Finally, in computing (rp~0,>e< 0 >e< 1,>) it is sufficient 
k1 k2 

to use the first approximation for cp~0 > from Eq. (4.5). 

As a result of these calculations the left side of Eq. 
(4.6) is reduced to a form that contains only the aver-
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age over the four turbulent fields which, as an approxi­
mation, can be divided into possible products of the 
averages of two fields. We find 

G = II(k2) (e~"! J!; >-~ uk, ~ dk2' dk2" 
me 

X b(k1 + k2- k2'- k2")£k,', k,•, -<., "'" ( (eSJ e.~~!+ e~~!.e::! )) 

e' I +-me2 } d~' dk('b(kt + k,- k,'- k2")Sk,, k,"-k, k,• 

1 (0) (t) 
XUk,"-k, II(kt) S,,, -;,"+k., ""' (e.,-.e.,,. ). (4.8) 

Here, ~ and S correspond to the definitions (3 .2) and 
(3.3). We note that the operator ll(k2) appears auto­
matically in Eq. (4.8) as do additional terms ~uk which 
are of the same order as II ( k2) or IT ( k2 ). 

In the case of nondecay turbulence the last term in 
Eq. (4.8) vanishes and the sought equation assumes the 
form 

(' r a!IJ~I)e e ij 1 o!IJ(O)e ] 
X J dv, --.-+i-ff!,, . --c---

l ov, m, dV, (uH- klzVz -f- 16) av, 

1 e2 (' (0) (I) 
x·-_--_-(-=-k------=k~) -+ .• + - 2 Uk, J dkt' (e",. ek-k() 

W (l)i z 1z Vz lu me 

X (ik-;, k,', -k,, k-k,• -f- £k-k., k-k,', -h., k,') · (4 .9) 

if the integral equation (4.9) is solved it is a simple 
matter to obtain the collision integral that contains D*. 

Finally, the collision integrals on the right side of 
Eq. (4.2), which contain ( ek1:cpko:a> can, by means of 

Eq. (4.5), be reduced to a form that contains the small­
est two ek0 >. Consequently, by these same methods 
these can be reduced to terms of the form 
Uk'( ek0>e(l) ) that is to say, they can be computed 

1 1 k-k1 
from the solution of (4 .9 ). These, however, are of 
order W /nT with respect to the term with D* because 
in the transformation of the average ot the three turbu­
lence fields only the expression 1/II ( k1 - k~ ) « 1 
arises. In the integral with (ek0 >cpk(l>) on the right side 

1 2 

of Eq. (4.2) there also only arise terms Uk~( ek0:e~1~k ) 
1 

with small factors 1/II ( k1 - k~ ) and linear terms in 
uk which give the terms Do and D in Eq. (2 .10 ). This 
indicates that the method can be used for taking ac­
count of higher order terms in Uk. In the first approx­
imation being used here the right side of Eq. (4 .2) 
vanishes and the summation over Uk required for 
lower frequencies in perturbation theory reduces to the 
solution of the integral equation (4.9). 

2. We now solve the integral equation that has been 
obtained in the limiting case I w1 - w~ I << I k1z 
- k1z I VTi; w « k1z VTi which, for the example con­
sidered above, corresponds to the case of one-dimen­
sional Langmuir turbulence Vp >> 3vTe /vTi. This is 
the limit in which the expansion of the collision integral 
in terms of Uk yields questionable results. From 
Eqs. (3.2) and (3.4) we have 

- Wpe2 Te 
~k-k.,.,,•,-k.,k-k,•;=:;- (T +-1.-)-,---'--;-( ----)-(-·;·--). (4.10) 

e i UTe ffif{t)i ~1 - W Wi - W 

This result holds if the frequencies w1 and w~ are of 
opposite sign; if the frequencies w 1 and w~ are the 

same sign then the expression in (4.10) vanishes. The 
quantity 2:k-k1 ,k1 -k~-k1 ,k~ does not vanish when w 1 and 
w~ are of the same sign, being given by (4.10). 

We now divide (4.9) by ll(k- k1) and form the equa­
tion for 

< (0) (I) 

S±(k) = ~ dkt±-e,, ek-k) , 
Wt(Wt -w) 

where in S+ the integration is carried out over the 
region of positive frequencies; in s_ it is carried out 
over negative frequencies. We now obtain a system of 
linear algebraic equations for S±; the solution has the 
form 
S+(k)+S-(k)=-[1+ w,.• ~---1 Uk,d~ ~--r 

4nno(T. + T;) w12 (w1 + w)W(k1 + k) 

X Wpe' ~ - uk, dk, ~ dv, ____ !__ __ e-

n• IT(k + kt) (kt, -f- k,) (w + Wt- (ktz-f-k,) v,-f-ib) 
I i7!llkl)e . e jj 1 8!IJ(O)e] 

X· ---L-f!rk~~ -- . 
L iJv, m. i}v, ( w1 - k 1,v, + ib) ilv, 

Here the integration is carried over all frequencies. 
To the accuracy required here we find 

e2 
(D')=- i(~- k,v,) -[S+(k)+S-(k)]; 

me2 

which allows us to obtain the coefficients D1 and D2 in 
Eq. (2 .10 ), for example 

. Wpe2 (t) e2 (' Uh, dk, 
D, =- , __ (w- k,v,)nk - J ·---='----

n0 m.2 II(kt + k)uH(Wt + w) 3 

x[1+- __(J)~-~. uk,d":_ r. (411) 
4n no(Te + T;) ~t'(u>t + w)2II(k1 + k) ' 

This expression differs from the one obtained above 
by expansion in Uk in that the denominator contains an 
expression that differs from unity while the plasmon 
Green's function in the numerator 1/II (k) is replaced 
by 1/IT(k). Thus, the result reduces to the renormali­
zation of the plasmon propagator and the renormaliza­
tion of the effective electron charge. The denominator, 
like the denominator in (4.11 ), also appears in D2 and 
the estimate D2/D1 « 1 obtained above for w/k 
<< w1/k1, w < w1, k << k1 remains valid in the present 
case. 

From Eqs. (2.10) and (4.11) we can obtain the die­
lectric function 

e (k) = E~l (k) + (e~l (k) -1) (1 + n0m.d2 (Te + T;)-1) 
(4.12) 

(e) 

X frl+ (eo (k)-1)n0k,2d,-f-~d2 )-'· 
\

1 wre' T,-f-T; 

d = e2 w,.," (' Uk, dk, 
1 J ~ ' 

me2 no ll(k + kt)wt(wt-f-w)a 

d = e2 wp," (' Uk, dkt 
2 J- -----~. 

me' no IT(k + kt)wt2(w1-f-w) 2 
(4.13) 

3. We now consider one-dimensional Langmuir 
turbulence. In the region Vp >> 3vTe / vTi in accord-
ance with Sec. 3 the group velocities of the plasmons 
are not affected. Hence, in Eq. (4.13) IT can be re­
placed by II. 7 > Further, in the limit w << w 1, k « k1 
w/k « w1 /k 1 , we find d2 ~ d1 and both give in Eq. 
(2.16). 

7 lThis is not evident from expansion of d1 in terms of Uk since the 
corrections -Uf coincide with (3.11). 
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If however kz VTi « w « kz VTe, then Eq. (4.12) 
yields 

(4.14) 

V±'= ~(v,'-v~' Te~T,)±{~(v}-v~• T,:Ty 

" 2Te + T; }'r, 
+v;.,v}Te+f. . 

Here v 2 = 3W/4nome· The instability in (4.14) is 
qualitati~ely different from that in (2 .19 ). When v_: 
» v; the square of the growth rate (4.14) is propor­
tional to W while the square of the growth rate (2 .19) 
is proportional to /W. Finally, when w << kz VTi, 
w « kzvg we have 

w2 = -2k,2v~2 (Te + T;) Te-1• 

In conclusion, we wish to emphasize the following 
points. 

1. The appearance of new modes of oscillation in 
the presence of turbulence is of a rather general 
nature and the possibility is not excluded that these 
are possible in other turbulent media (for example, 
fluids). 

2. The theory developed here takes account of the 
effect of correlation between turbulence fluctuations 
and makes it possible to trace their effect on the low­
frequency properties of the turbulent plasma. 

3. In taking account of renormalization effects the 
plasmon Green's function has a singularity when k- 0. 
Taking account of this singuiarity in the proper way 
leads to the need for summing the perturbation theory 
series in the turbulence energy. 
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