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The theory of superconductors containing paramagnetic impurities[ 11 is generalized to the case when 
the scattering of electrons by an isolated impurity is not weak. An exact calculation of the scattering 
of electrons by an impurity with spin S leads to the appearance of local states lying inside the gap. 
It is shown that the order parameter does not change substantially near an impurity. For finite im­
purity concentrations, these states are responsible for the experimentally-observed broadening of 
the region of gapless superconductivity. For the calculations it is assumed that the impurity spinS 
is a classical vector. 

THE theory of superconductors containing a small 
number of magnetic impurities was developed by Abrik­
osov and Gor'kov (AG). [lJ They showed that the critical 
temperature Tc of such an alloy decreases monotoni­
cally with an increase of the concentration n of mag­
netic impurities and vanishes at a certain value n = ncr· 
On the other hand, it was found that the absorption 
threshold w 0 in such a system is not in good agreement 
with the value of the order parameter ~ at T = 0; the 
decrease of w0 with concentration n takes place some­
what more rapidly than for the quantity ~(n). Accord­
ing to the calculation [ 11 the value at which the threshold 
w 0 tends to zero corresponds to a concentration n~r 
= 0.91ncr· Thus, in the narrow region n~r < n < ncr 
an interesting situation occurs in which the system ex­
hibits the Meissner effect ( ~ * 0), and at the same time 
its energy spectrum starts from zero (w0 = 0), just like 
in a normal metal. This phenomenon is called gapless 
superconductivity .u 

Somewhat later the phenomenon of gapless super­
conductivity in magnetic alloys was confirmed in the 
tunneling experiments by Reif and Woolf.[ 3 , 41 However, 
in contrast to the prediction of the AG theory, the ex­
perimental value of n~r turned out to be substantially 
smaller and approximately equal to 0.5 ncr· An opinion 
was expressed that ferromagnetic ordering of the im­
purity spins at low temperatures[sl in principle might 
be responsible for the observed broadening of the re­
gion of existence of gapless superconductivity.2 > 

In this article we show that agreement with the 
data [ s, 41 can also be obtained for a paramagnetic phase 
(the impurity spins are not ordered) if, in contrast to 
the AG theory, the interaction between an electron and 
an impurity is not assumed to be weak. The essential 
point consists in the fact that, as shown in [ 61 , an exact 
calculation of the scattering of an electron by an iso­
lated magnetic impurity in the case of a superconductor 
leads to the appearance of local impurity levels inside 
the energy gap, corresponding to excited states of 

I) Later it was found that a similar situation also occurs in a number 
of other cases (see the discussion given in the book [2], Ch. 8) 

2>Private communication from L. P. Gor'kov. 

Cooper pairs near the impurity. Below we will see that 
simultaneous account of the scattering processes on 
many impurities leads to the appearance of an absorp­
tion edge with a minimum energy w0 which is smaller 
than in the AG theory; in accordance with this the smal­
lest concentration n~r at which the threshold vanishes 
(w0 = 0) also turns out to be smaller and dependent on 
the relative magnitude of the interaction (i.e., the ratio 
of the exchange interaction J of an electron with an im­
purity to the Fermi energy iJ.). 

Let us write the interaction of an electron (at the 
point r) with the i-th impurity in the form 

Vi= U(r- ri) + uS/(r- ri), (1) 

where S is the spin of the impurity, and a denotes the 
Pauli matrices (ai = 1). In the AG theory Vi is taken 
into account in the Born approximation. In this case the 
final results actually do not depend on whether we re­
gard the spin S as a classical vector or as an operator. 
In higher-order approximations the above statement 
ceases to be valid as a consequence of the well-known 
Kondo anomaly, which is a reflection of the specific 
commutation rules of the spin operator. [ 71 In the fol­
lowing account we shall neglect the Kondo effect, i.e., 
we shall regard the spin S as a classical vector. This 
is apparently valid provided the impurity spin is suffi­
ciently large (S >> 1). A more detailed analysis shows 
that in practice this restriction is not too strong. 

1. LOCAL LEVELS NEAR AN ISOLATED IMPURITY 

Regarding the spin as a classical vector, let us first 
consider the case of a single impurity located at the 
origin of coordinates (ri = 0). For the calculations we 
shall use Gor'kov's technique in matrix form, as set 
forth in [sl, 

The Green's function ffiw(P, p') for a superconductor 
in the presence of an impurity is given by the expres­
sion 

@Jw (p, p') = @Ji?l (p) llpp" + c§~~) (p) ±~~· ( r.>) c§~~) (p'), (2) 

where tpoJ,(w) is the vertex part, which satisfies the 
equation 
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(3) 

The matrices &~> and V appearing here have the form 
form[sl 
.o.<o> _(@I~ (p) - ia"\j~ (p)) _ _ 1 ('iw + 6 iava ) 
<:~., (p) - - 2 A 2 t2 ' 

-- iau\j~ (p) @!~ .. (p) w +" +" iaua -- iw + 6_. 
• ("a~(P,•II') . 0 ) (4) 
Vpp' = 0 Vpa(P', p) ' (5) 

where w = w = JTT(2n + 1), ~ = (p2 /2m) - IJ.. In writing 
down Eqs. (2) and (3) it was assumed that the parame­
ter ~ is unchanged by the introduction of a single im­
purity. Justification of this assumption will be given 
below. 

In connection with the integration over p1 in Eq. (3), 
we now exclude the region of momenta far from the Fer­
mi surface. One can do this in general form by intro­
ducing the amplitude ~p' for the scattering of an elec-

tron by an impurity in place of the potential Ypp'• in 
analogy to the way this is done for a nonmagnetic im­
purity. [ 81 Then 

(6) 

The momenta entering into this equation lie on the 
Fermi surface: I pI = I p1 1 = lp'l = Po• The bar denotes 
integration over the energy, 

e<•> = +r e~> m a5 = 1 (- iw - ia"a) . 
.. _.Joe lt t w2 + a• - iava iw 

The amplitude f has the dimension of a length and 
satisfies the equation 

• m V c V pp,fr,,p· dp1 
/pp' = 2it pp'- J ~ (2rt)3 • 

(7) 

(8) 

In order to determine the vertex part i~~~(w), we 
expand the corresponding quantities in Eq. (6) in series 
of Legendre polynomials: .. 

frlP' = ~ (2l + 1)hPz(nn'), 
z~o 

00 

~co> ~ ~co> 
!tpp• = LJ (2l + 1)!t1 P 1(nn'), (9) 

I=={) 

where n = p/lpl. As a result for the l-th harmonic we 
obtain 

(10) 

Let us choose the direction of S along the z axis; 
then one can write the solution of Eqs. (10) and (7) in 
the form 

where 

( 
:t~ 0 0 -:t. ') 

t<•> (w) = 0 :t~ • :t; 0 ' 
I 0 - to (:tt) • 0 , 

to 0 0 (t~). 

(11) 

!t,± = (2n/m)f,±I':J. Y~- ipofz'f'w (12) 
R, e1)'w2 +a2 ±iw)'a2 -ez2 ' 

!t2 = (2n/m)pofz+fca• 1 (13) 
R, edw"+a"+Ui>l'a2 -e?-

ez = .a(1 + Po2fz+tz-) I R,, Rt = [ (1 + Po2!z+tz-)2 + Po2 (/,+- tz-)•f1•, 

for J > 0; for J < 0 one must make the following sub-

stitutions: !t~ += 't- 1- and :t2 += <t- 2*. An asterisk de­
notes the operation of complex conjugation. The ampli­
tudes f l describe the scattering of an electron by an 
impurity in a state with orbital momentum l and spin 
projection ± % in a normal metal. 

In order to determine the possible bound states in 
the system associated with the presence of an impurity 
we must, according to general rules ([ 91, Sees. 7, 17), 
construct the analytic continuation of the Matsubara 
vertex 't <o> (w) into the upper half-plane of complex 
values E = iw. Setting iw = E + ill in Eqs. (12) and (13), 
one can easily see that the function rz (E) = ~f01 (iE-ll) 
satisfies the formulated condition in the complex E 
plane with cuts along the real axis from - oo to -~ and 
from ~ to oo, The pole of rz (E) at E = Ez- ill gives the 
energy Ez of the bound state with orbital momentum z.s> 

Expression (14) for Ez was previously obtained in 
[ 61 by another method; an expression was given there 
for the wave function of this state. Here we shall not 
cite the corresponding formulas and only note that the 
contribution of the pole iw = Ez to the Green's function 
(2) for T = 0 in coordinate space falls off at distances 
r ""~0 (1- (Ez/ ~ )2J-112 as one goes away from the im­
purity, in contrast to the case of a pure superconductor 
for which the Green's function &~1 (r - r') falls off at 
the coherence length ( I r - r' I "" ~0 = v / ~ ) • The cons id­
erations given below for finite impurity concentrations 
indicate that, as a consequence of the rapid oscillations 
of the electron wave functions at the Fermi surface, the 
interaction of these local levels becomes important for 
n "" ncr (compare with the case of two impurities in 
article[ 61 ). 

Finally we present an expression, which will be use­
ful in what follows, for the energy levels Ez in terms 
of the phases llz for the scattering of an electron by an 
impurity: 

ez =a cos (6,+- 6c), tg 6,± = pofr. (15) 

2. SPATIAL VARIATIONS OF ~ 

Now let us briefly discuss the question of the spatial 
variation of the parameter ~(r) near a paramagnetic 
impurity. For a nonmagnetic impurity this problem was 
studied in detail in [ 121 , and it was shown that the entire 
variation of ~(r) near an impurity reduces to small os­
cillating (over atomic distances) corrections. This is in 
complete agreement with the fact that, in general, the 
ordinary scattering does not have any effect on the 
critical temperature Tc of a superconductor (see (gl, 
Sec. 39). 

The situation is somewhat different in the case of a 
magnetic impurity. As we now see, here the correction 
ll~(r) = ~(r) - ~ remains finite after averaging the 
atomic oscillations; however, it is extremely small in 
magnitude. Near the critical temperature (~ = EZ = 0) 

3> A bound state (for 1 = 0) having an energy less than the supercon­
ductor's energy gap .1. was found in articles [10•11 ) for impurity spin S = 
I. However, in this case the physical situation is very complicated due 
to the above-mentioned Kondo anomaly, FJ which even in a normal 
metal may in principle lead to a bound state of an electron on an 
impurity. In particular, in article [11 ) it is shown that within the frame­
work of the dispersion method used there, the question of the actual 
existence of such states for a superconductor remains open. 
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the variation oA(r) was previously calculated in [13 l; 

for n << ncr the relative correction to the AG result 
for Tc(n) turned out to be insignificantly small, 
~ 10-6 to 10-7 , which justifies the assumption in the AG 
theory about the constancy of A in space. In the pres­
ence of isolated states inside the gap, this conclusion 
remains valid at absolute zero. 

Variation of the parameter A(r) near an impurity 
leads to the appearance of an additional term of the 
form 

, , -<Ol ~ ~(o) , ll®.,(p, p) = ®., (p) Mp-p.®m (p ), 
iq the right-hand side of Eq. (2), where the matrix 
o A has the form 

By definition, 

(16) 

(17) 

(18) 

where &14 is the element, standing in the upper right­
hand corner, of the matrix (2) with the additional term 
(16) taken into consideration, and g is the electron­
electron interaction constant corresponding to attrac­
tion (g < 0). Considering the second term in (2) as a 
perturbation, to first order in <t<ol one can write 

[igi-'-T~ ~ ( ®.,•(p+ ~ )®-.,•(p-;) 
"' 

- w.,•( P + ~) w .. •( P- ~)) (2~,] M~ 
- 1 "" I ~ [ ( ® ' ( + _I!_) ® c ( - _1_) - ":J(:!rr)' "p 2 -m p 2. 

-w.,o( P+;) \Y.,•( p- ~ )) 'tz(q,w) 

+®.,'( P+~) \Y.,'( p- ~) 'tt+(q,w) 

+W.,"(P+ ; )®-.,•(p- :) ('tt-r]. (19) 

Performing the integration over ~ (for q << p0), we 
obtain 

n2 
( e12 

) L(q)Mq=--~ (21+1) 1-~ \fl(q), 
mpo l !12 

where 

(20) 

The left-hand side of Eqs. (19) and (20) has the stand­
ard form of all similar problems relating to a variation 
of the order parameter under the influence of a static 
external field (see, for example, [ 14 l ). In coordinate 
space 

M(r)= ---1- ~ (21 + 1) (1-~) r qsinqr<pl(q) dq. (22) 
2mpor 1 !12 

0 L(q) 

According to Eqs. (21) the dimensionless functions 
L(q) and cpz(q) have a characteristic scale of variation 
coinciding in order of magnitude with the reciprocal of 
the coherence length (q ~ ~;1). From here and from 

Eq. (22) one can at once see that the relative change of 
the order parameter can be written in the form 

M(r) 1 ( r ) --=----F-
tJ. Po2sor so ' (23) 

where F is a certain dimensionless function varying 
over distances r ~ ~0• For r ~ ~0 the correction oAI A 
is insignificantly small: ~ 10-8, a fact which has been 
utilized from the very beginning. Apparently one can 
expect a substantial variation only over atomic dis­
tances; however, the model itself becomes inapplicable 
much sooner-at distances of the order of the interac­
tion radius r ~ vI w D ~ 10-6 em. 

One can evaluate the function F(r I ~0) in two limiting 
cases: r >> ~0 and r << ~0• Here we present the re­
sults for the case of absolute zero. 

At distances which are large in comparison with the 
coherence length, small values of q << ~0 1 are import­
ant in the integral (22). Using the expansion[ 14 l 

L(q) = 1 + l/12(qv I 8)2 

and the value cpz(O) = Al2 (A + Ez) it is easy to obtain 

M (r) 3n ( e1 ) tJ. 1 ( 2ySr!i) v 
---= -- ~ (21+1) 1-- --exp --- , r>-so=-. !i 4 1 tJ. f.' por v tJ. 

Similarly, at small distances (r << ~0 ) large mo­
menta q >> ~;1 for which L(q) ~ln q~0 and cpz(q) 
~ n(q~0)lq~0 play the major role. Carrying out the in­
tegration in (22), in the logarithmic approximation we 
obtain 

M (r) 1 ( e12 ) --=----~ (21+1) 1-- po-'~r~"o (25) 
A 2 (par) 2 1 t.• ' " · 

3. FINITE CONCENTRATIONS 

Now let us discuss the case when the concentration 
of magnetic impurities is finite but small in the sense 
that the impurities do not exert any significant influ­
ence on the thermodynamic properties of a metal in its 
normal state. This is equivalent to the condition that 
the electron mean free path l be large in comparison 
with the lattice constant 1lp0• We shall assume that the 
impurities are randomly distributed in the crystal and 
that one can neglect the spin interaction of neighboring 
impurities. For averaging over the positions of the im­
purities we shall use the technique developed by Abrik­
osov and Gor'kov; [ 1 • gl in this connection we shall treat 
the scattering by a given impurity exactly. 

In contrast to (2) the Green's function of a supercon­
ductor averaged over the coordinates and spin direc­
tions of the impurities, ® w (p) depends on only one mo­
mentum p and satisfies the following equation: 

(n denotes the impurity concentration). The exact ver­
tex part ipp' in turn satisfies an equation containing 

the exact Green's function @J: 

, I , ('"' ~ , dp1 
~ ••. (w) = Vpp' + J v,,.,@$. (p,):tp,p' (w) (2n)". (27) 

In writing down these equations the physically-reason­
able assumption has been made that interference ef­
fects associated with the scattering of an electron si-
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multaneously by several impurities can be neglected. 
In r 1 l it is shown that the neglected terms lead to cor­
rections ~ 1/p0 l << 1. In addition, we have taken into 
consideration the fact that the parameter t::.. can be. re­
garded as constant in space with a high degree of accu­
racy. 

If the scattering by an impurity is weak, then in the 
second term in Eq. (27) one can set t = V and obtain 
the AG theory. 

Introducing the exact amplitude fpp' for the scatter­
ing of an electron by an impurity, we write Eq. (27) in 
complete analogy with the case of a single impurity: 

(28) 

The notation is the same as in Eq. (6). In order to avoid 
misunderstandings involving the notation, we note that 
in Eq. (26) the function i is assumed to already be 
averaged over the directions of the impurity spin, but 
this has not been done in Eqs. (27) and (28); on the other 
hand in both cases the function @! is assumed to be 
averaged (i.e., it does not depend on the direction of S). 
Thus, in order to obtain the averaged x, it is necessary 
to solve Eq. (28) in general form and then carry out the 
necessary averaging. 

Let us assume that the function @J has the same 
structure as ~ <o>, namely, 

, _ _ _ (i-;;) + ~ icr;ii ') e .. (p) =- [Ul2 + ~· + 62 ]~'/, . -
'a"~ -iffi+ ~ · 

(29) 

It is also natural to seek the averaged vertex part i 
in the form (11): 

i = ( !tt - icry!tz) (30) 
- icry!tz !tt' · 

Here we have used the following obvious property: 
t 1 = t: = t~ and !t2 = t 2* -a result of averaging over 
the directions of S. The final result is in agreement 
with the assumptions which have been made. 

Substituting (29) and (30) into (26), one can easily ob­
tain the following relations between the quantities that 
have been introduced: 

w = Ul- n Im!tt(O, oo), Li = ~ + n!t2 (0, oo), 
(31) 

s = s + n Re !tt(O, oo), 

where !t (0, w) = t (p, p; w) is the vertex part for for­
ward scattering. 

It remains for us to solve Eq. (28); the matrix ®w, 
in accord with (29), is given by formula (7) in which it 
is necessary to make the following substitutions: w, t::.. 
-- w, E.. In view of the cumbersome nature of the re­
sulting expressions, we cite only the result for the 
averaged values of t: 

R .,.(1) n oo• + ~· . + e..,, (oo)= 2--~sm2(b,-b, 
mpo oo'+ er 

I ... <'>< l n ;;;v;;;•+K• <. •~++ .• ~~l m""l W = - .-. .--2 Sill Vt Slll Ul , 
mpo oo2 + e 1 

... <'>( ) 2n K Y~ . ,+ . ~~ ('' ~-) 
""2 (I) = - ,_ :--2 Sill Ul Slll Vl COS U[ - Ul , 

mpo w2 + e 1 

(32) 

where €z = A cos (o{ - o{). Here we have used the no­
tation of Sec. 1. In the Born approximation (o~ << 1) 
formulas (32) agree with the results of the AG theory: 

Re ti'> = 1/ 2 (Vt-:- V!), 

lmt~>(oo)=- mpo [(Vt)'+(VI)2 ] _ 00 _ , 

4n y oo'+~' 

t(l) (oo) = mpo v+v- - " --~-. 
' 2n l l Vw• -j t'!' 

(32') 

In this case the quantity Re t 1 (0, w) in formula (31) 
does not depend on the frequency w and may be in­
cluded in the chemical potential /J.• In general this is 
not so in the simultaneous presence of exchange and 
ordinary scattering. However, this property is unim­
portant for an investigation of the static properties of 
the system since upon integration over ~ of the ex­
pressions containing the Green's function with the same 
frequency, the component n Re t 1 (O, w) drops out of the 
answer. 

Substitution of (32) into (31) finally gives 

where 11 = w /E. satisfies the equation 
(33) 

[ nn M+ 1 ] oo=T) ~-- ~(2l+1)sin2(b1+-b1-) • 
mpo 1 T)2 + cos2 (1l1+ -61-) 

(34) 
Let us consider the case of absolute zero in more 

detail; here for simplicity we shall regard the scatter­
ing as isotropic (l = 0). The dependence of t::.. on the 
impurity concentration is determined by the equation[ll 

~oln~ = r doo [- 1 --~- ~. ]. 
~o 0 iTJoo2 +1 ioo'+~o2 

(35) 

where 1:::..0 is the value of t::.. for a pure superconductor. 
With the aid of a change of the integration variable 
dw = (dw/dn)dn in formula (34), one can express the 
result in terms of elementary functions: 

~ n 1 1 
In-=----- -&eo2 • 

~0 2(1+eo)-r,~' ,;,~""' 

~ --·· 1 T)o 
In-= -ln[TJo+l"TJo'+ 1)+--.- ;; 

~. ,;,~ T)o2 + eo" 
1 T)o(1-eo) 1 eo 

-----arctg - ·----arctg -· 
T,l1 (1- eo2) T)o2 + eo -r,/1 (1 +eo) T)o' 

where 
1 

T)o2 = 2 (,;_,!1)2[1- 2eo2 (-r,l1) 2 + 1"1 + 4(1- e02 ) (,;,!1) 2), 

1 nn 
-= -(1- eo2 ), eo= cos(llo+- bo-). 
-r, mpo 

The parameter T s represents the time it takes for an 
electron spin to flip during impurity scattering proc­
esses. In the Born approximation (1 - E:o << 1) formu­
las (36) go over into the formulas of the AG theory. 

According to (36) the vanishing of superconductivity 
(1:::.. = 0) takes place at the concentration n =ncr at 
which Tcrl:::..0 = 2. We note that the non-Born nature of 
the scattering now develops in the terms ~ 1:::..2 , i.e., in 
the region where the Ginzburg- Landau equations are 
not applicable. Thus, for isotropic scattering (at 
T = 0) 

( A)' 3 ncr- n 
A =-5 4 ,--.-, ncr-n<iii;ncr-
LlO - fo ncr 

(37) 
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In the general case of anisotropic scattering and arbi­
trary A. the results depend in a complicated way on 
various superpositions of all the harmonics ft. 

It is of great interest to determine the absorption 
threshold and the .corresponding structure (i.e., the 
density of states) near it. The retarded Green's func­
tion G:R(p, w) gives the answer to this question. In tll 
it is shown that for its construction one must make the 
following substitutions in formulas (29), (33), and (34): 
Wn-- -iw, 77n -- -i17, Wn -- -iw, ~ -- A., and one must 
define the root as the analytic continuation of the root 
+,;1 -17 2 (for 111 I < 1) into the upper half-plane of the 
variable 11• Then the absorption threshold is the mini­
mum frequency w0 > 0 for which the roots of the equa­
tion 

( 1 1"1- '1] 2 ) w='!] ~-----, O.;;;'!].;;;eo. 
,;, eo2 - '1] 2 

(38) 

become complex for w > w0 • It is easy to see that for 
TsA. > 1/e:~ and as w- 0 this equation always has a 
real solution 11 lying in the interval 0 < 11 < E0 ; there 
is an energy gap in the spectrum of the system. The 
magnitude of the gap w0 (n, e: 0) is equal to the largest 
value of the right-hand side of Eq. (35), i.e., it is ob­
tained from the condition (dw/d7J)w = 0. The resulting 

0 
equation can only be solved numerically. In the limit of 
small concentrations (n << ncr> the gap in the spectrum 
is equal to w0 = e:0A., which reflects the presence of a 
discrete level (with l = 0) for an isolated impurity, ob­
tained in Sec. 1. 

On the other hand, for T sA. ::s 1/E~ Eq. (38) does not 
have any real solutions, i.e., w0 = 0. From (36) it fol­
lows that the gap vanishes at the concentration 

n,0 ,' = 2eo2ncr exp [-neo2 /2(1 +eo)]. (39) 

The phenomenon of gapless superconductivity occurs in 
the region ncr < n < ncr• In the Born approximation 
(Eo= 1): ncr = 0.91 ncr• the value Which follOWS from 
the AG theory. As is evident from Eq. (39) the pres­
ence of impurity levels (E 0 < 1) leads to a broadening of 
the region of gapless superconductivity. It is natural to 
expect that taking account of higher harmonics in the 
scattering leads to a further decrease of n~r-4 > 

As mentioned at the very beginning, in the experi­
ments of Reif and Woolft 3 , 4 J the value of n~r was ap­
proximately equal to 0.5ncr· As alloys they used iron 
atoms in indium. t3 J Within the framework of the stated 
theory, from here one can conclude that for such an al­
loy of indium containing iron impurities, the exchange 
interaction of the conduction electrons is not weak. One 
can obtain a rough estimate of the magnitude of the ex­
change interaction with the aid of Eq. (39) if one sets 
n~r = 0.5ncr in it. This gives E0 R: 0.6 which, accord­
ing to (13), leads to a quite reasonable value for the am­
plitudes f0+ = -f; = 0.5p;1 (we assumed U = 0). 

In conclusion let us calculate the heat capacity in the 
gapless region at low temperatures. For this it is ob­
viously sufficient to know the density of states Ns(w) 

4 lIn the general case of anisotropic scattering one can, with the aid 
of Eq. (34), write the condition w0 = 0 in the form (7rncr/mp0 ) X 
I: (2/ + I )tan2(Bi- B /) = A.(n~r); however, now the value of A.(n~r) 
I 
cannot be expressed in closed form. 

for excitations of small energies. According to general 
rules of statistics, 

1 s dp 
N,(w) = n lm GR(p, w) (2n)" (40) 

(for a given spin direction). Taking what has been said 
above into account, we have 

N,(oo)=Nnlm '!] (41) 
1"1- '1]2 

where Nn = mp0/27f is the corresponding density of 
states in the normal metal. For w - 0 and T sA.< 1/E~ 
the root (38) is purely imaginary ( 17 = i7]0); an expres­
sion for 17o is given above (see Eq. (36)). Consequently 

N,(w) = Nn '!]o . (42) 
)"1 + '!]o2 

In view of the fact that Ns(w) = const as w- 0, an ex­
pression for the heat capacity can be written down at 
once: 

n 2 mpo '!]o 
C,(T) =-2N,T=--=T. (43) 

3 3 )"1 + '!]o2 

At the point T sA. = 1/ e:~ the coefficient in the heat 
capacity vanishes ( 7Jo = 0); this corresponds to the con­
centration nC:r and only indicates that the heat capacity 
does not vary faster than linearly as a function of T. In 
the region n < ncr the electronic heat capacity has an 
exponential character. However, since the investigation 
can be successfully carried out only in the uninteresting 
region of very small concentrations, we shall not cite 
the corresponding formulas here. 

In conclusion I wish to thank L. P. Gor'kov and G. M. 
Eliashberg for their attention to this work and for valu­
able suggestions, and I also thank L E. Dzyaloshinskii 
and A. I. Larkin for a discussion. 
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