
SOVIET PHYSICS JETP VOLUME 29, NUMBER 6 DECEMBER, 1969 

SPHERICALLY SYMMETRIC T-MODELS IN THE GENERAL THEORY OF RELATIVITY 

V.A.RUBAN 

A. F. Ioffe Physico-technical Institute, USSR Academy of Sciences 

Submitted November 17, 1968; resubmitted February 28, 1969 

Zh. Eksp. Teor. Fiz. 56, 1914-1928 (June, 1969) 

Spherically symmetric models constructed of dustlike matter are considered in a comoving reference 
frame, and a general solution of the Einstein equations (A ,.. 0) is obtained which contains along with 
the Tolman-Bondi- Lemaitre models an additional class of T-models of a "sphere" with the metric 
of a synchronously-comoving T-system (R =r(T )) which represent an inhomogeneous generalization 
of the anisotropic cosmological model of a "quasiclosed" type with hypercylindrical spatial sections 
V3 =(S 2 x R 1 ). The T-models of a "sphere" yield a method, which in principle differs from the 
closed Friedmann model, for realizing the total mass defect maximal in GTR equal to the total rest 
mass of matter, and are characterized by the fact that the gravitational binding energy for each par­
ticle of "dust" exactly compensates its rest mass so that as a result the active mass - the equiva­
lent of the total energy- remains constant in the case of an unrestricted growth of the "sphere" 
and, in general, does not contain any material contribution. It is of a purely field nature and coin­
cides with the geometrodynamic "massless mass" of the T-regions of the Schwarzschild-deSitter­
Kottler fields in which matter is bound gravitationally and is held by the strongest possible vacuum 
field inside the "event horizon" of the Schwarzschild sphere type. It is shown that the T-models of 
a "sphere" do not have a classical analogue, and their existence and paradoxical properties are 
due to the nonlinearity of GTR: a) a mass defect which manifests itself in a characteristic manner 
through the non-Euclidian nature of the co-moving space V 3 , b) the presence of T-regions in SSK 
fields. A detailed discussion is given of the principal properties and the dynamics of the cosmo­
logical T-models of a "sphere" (A,.. 0), and they are classified in accordance with Robertson's 
scheme for a closed Friedmann model in terms of the analogous types 0 1 , M1 , M2, A1 , A2 of trans­
verse motion of the hyper cylinder V 3· It is shown that all physically acceptable solutions with 
p > 0 must have time singularities of three kinds: collapse of V3 into a line, a point and a sphere, 
with the infinite types M1 , A2 and M2 becoming isotropic in the course of unlimited expansion. 

INTRODUCTION 

IT is generally accepted that the Tolman solutionP,lOJ 
and its cosmological variant for A"' 0[ 5• 6 • 11 • 12] are 
general and represent all the spherically symmetric 
models possible in GTR for the distribution and the 
homologous motion of gravitating dustlike matter with­
out pressure. But the commonly utilized procedure 
for integrating the Einstein equations is based on the 
implicit assumption that the condition for a comoving 
reference frame G~ = 0 cannot degenerate into an 
identity having no content, and therefore the Tolman­
Bondi- Lemaitre (TB L) solutions are characterized by 
an additional requirement on the angular coefficient of 
the initial metric (aR/ax)r"' 0. 

Actually this limitation does not follow from spheri­
cal symmetry or from the field equations, and thus, we 
can leave out of consideration the special type of the 
so-called T-models of "sphere" for which the comov­
ing reference system is also a synchronous T-reference 
system according to the terminology of[3,s] with an 
elementary interval of the form 

ds' = dr"- e'''lz. 'ldz2 - r2 (c) {dO' + sin2 c1drp2}, (1) 

where T is the proper time 1l, and x is the radial 

!)Henceforth, with exception of the classical variant, we use for the 
fundamental velocity of light and the Newtonian gravitational constant 
c = G = 1, while the Einstein constant is Jf = 81r. 

Lagrangian coordinate of the particles in a spherical 
shell. 

The object of the present work is to obtain a general 
solution in a unified closed form which would include 
as a particular case this additional class of exact in­
ternal solutions for the metric (1 ), to carry out a 
comparative analysis of the basic properties, and to 
give an invariant characterization and a physical inter­
pretation of the T-models, being guided by their analogy 
with the T-regions of the Schwarzschild-de Sitter­
Kottler fields(3,sJ and basing ourselves on a comparison 
and similarity between relativistic and Newtonian 
models of a sphere. 

The spherically symmetric T-models turn out to be 
a simple inhomogeneous generalization of the aniso­
tropic cosmological model of a "quasiclosed" 
type[ 13 - 15 • 3 1 and for A = 0 they correspond to special 
configurations, paradoxical in their properties, of a 
general relativistic dust sphere which have a finite and 
constant gravitational mass for any unlimited quantity 
of matter composing them, with this equivalent to the 
total energy not containing in general any material 
contribution and having the purely field nature of 
Wheeler's r161 geometrodynamic "massless mass". In 
analogy to the closed model of Friedmann[1 • 3 l the T­
models of a sphere are topologically "closed upon 
themselves" and yield a method, which is in principle 
different from it, of realizing the maximum possible in 
GTF total mass defect which is exactly equal to the 
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total rest mass of matter. 
The cosmological T-models of a "sphere" (A"" 0) 

are a modification of the T-regions of the Schwarz­
schild-deSitter-Kottler (SSK) fields and provide an ex­
ample of general relativistic models and nonstatic 
fields of an anomalous longitudinal type with an alge­
braic structure of the Weyl tensor ID, which are not 
gravitational waves, do not possess Euclidian ana­
logues, and whose existence and unusual properties 
are due to the nonlinearity of the Einstein equations. 
Similar special solutions (to this family also belong 
the "flat" and the "quasiopen" anisotropic 
modelsr13- 15 ' 3 l) are absent in the classical and the 
linearized gravitational theories, and, consequently, 
demonstrate a qualitatively new aspect of the interre­
lationships of the latter and the GTR from the point of 
view of the correspondence principle. 

THE GENERAL SOLUTION AND THE TOLMAN­
BONDI-LEMAITRE MODELS 

1. In the reference system comoving with the 
"dust", which apparently exists in the case of homo­
logous motion (without intersections of particle tra­
jectories) and which in the case of spherical symmetry 
can always be chosen to be synchronous with a metric 
of the form 

ds" = d-r;2 - e"'<x. Tldy,." - R2 (x, -r;) {dtl" + sin2 tidrp2}, (2) 

the field equations[l,sJ are reduced to a simple system 
which is equivalent to them (since for p ""0, R"" const): 

2m AR2 .K' 
R'=Wewiz, R2 =W2 -1+-+- p=---

R 3 ' 4:rrR2em/2 ' 

1/zwR- R = (W' +..If'/ R)e-"'12, m' = W..K', (3) 

where p is the invariant density of the "dust", A is 
the cosmological constant, and the prime and the dot 
denote partial differentiation with respect to x, T. 

The first integrals of the Einstein equations 
M (x) 2: 0, m(x) and W(x) which are arbitrary func­
tions satisfying only the most general requirements for 
the existence of a physically admissible solution of (3) 
define, respectively, the distribution of the total rest 
mass of the "dust" inside Lagrangian spheres, the 
effectively gravitating mass-which is equivalent to the 
total energy of the sphere, and the conserved relativis­
tic specific energy or the active mass of the particles 
of the layer. Within the latter one can also differentiate 
between the unit contribution of the rest mass of the 
"dust" and the kinetic energy of its radial motion and 
the potential energy of the gravitational and cosmologi­
cal interactions. 

The system (3) is consistent and admits a general 
solution by means of quadratures with respect to time 
in closed form: 

(4) 

R ( 2m Au2 )-'/• 
-r - To = ~ W• - 1 + -----;; + .-3- du, 

.f(' 

p = 4nR2ewrz ;;, 0, 
R, 

where the integrals are evaluated in terms of elliptic 
functions, while in the case A = 0 they are elementary 
and one can take Ro(x) = 0. 

The solution (4) obtained above implicitly defines 
the dynamical behavior of the metric and of matter in 
terms of an irreducible set of not more than two es­
sentially independent integrals of motion which charac­
terize any arbitrary initial distribution of the "dust" 
in the sphere (a free gravitational field is naturally 
absent). Indeed, substitution of (4) into the remaining 
equation R' =Wew/2 gives another relation A =-T~/W 
which relates the arbitrary functions A ( x) and T 0 ( x )­
the moment of the collapse of the layer at the "center" 
R(x, T0) = 0 for A= 0, and, moreover, the radial 
Lagrangian coordinate itself is determined in (2) only 
with an accuracy up to an arbitrary transformation 
x=<I>(x). 

In the absence of material sources (p = 0) the 
formulas (4), where one should set Jl = 0 and m 
= const, determine the vacuum solution within the class 
of freely falling systems (2 ), which, as can be 
shown[6 • 8 • 3 l is locally equivalent to the only SSK 
metrics[l7 l available for A :S 0 in vacuum with the 
invariant parameter of the gravitational mass m =M: 

dsz = (1- 2M- ARz)dt•- ( 1-~~- AR•)-• dRZ 
R 3 . R 3 

- R2 (dti2 + sin2ti d<p2 ). (5) 

This limiting case of the models of a sphere (4) corre­
sponds to the motion of a test "reference dust" in 
SSK fields, with the latter being globally nonstatic in 
the presence of T-regions where goo = [1 - (2M/R) 
- ( AR :Y 3 )] :S 0, and the selected time and radial co­
ordinates (5) appear to interchange their roles, and 
there exist no spherically symmetric gravitational 
waves, including shock waves, in accordance with the 
improved Birkhoff theorem [8• 9 • 181. 

For A > 0 the solution (4) in vacuuo will no longer 
be general since there exists an additional special 
solution of the initial Einstein equations [sJ with 
R = const of the form 

dsz = R 02 { (d1'2- sh2 t'dJC') - (dt1" + sin2 tidqJZ)}. (6) 

It represents a separable space-time V 4 = ( S2 x S2)-a 
direct topological product of tw,.gdimensional subspaces 
of constant positive curvature K2 =K2 =1/Rg =A> 0 
each of which possesses maximal mobility. The com­
plete group of automorphisms of this field V 4 is Gs 
= G3 x GP9 l where the transitive group G3 of type IX 
is the usual group of rotations on a sphere S2, while 
G3 of type VIII is the group of motions on an indefinite 
hyperboloid S2 which is open in the time and closed in 
the spatial direction. 

2. If W2 =1 + f > 0, then the solution (4) can be 
written in the standard form(l,s,sJ: 

R'• . 2m AR2 m' (7) 
e"'= 1+f' RZ=f+R+S' p= 4:rrRZR'' 

where the radius of curvature of the Lagrangian spheres 
R(x, r) is determined by integration of the equation of 
motion. In the general case it can be expressed in 
terms of the Weierstrass elliptic functionsr 11 \ while 
for A = 0 it is given by well known formulas in im­
plicit or parametric form[ll. In the TBL models (7) the 
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metric and the distribution of the "dust" essentially 
depend only on two arbitrary functions a 0 ( x) = 
2m/If 1312 and Ta(x), since because of the arbitrariness 
in the choice of the radial Lagrangian coordinate the 
function f(x) can be put in canonical form: 

/(yj=eS2(X), R(x,'t)=S(r.)a('t,')(), ewt•=a(1+ i1Ina) 
i1lnS ' 

S(x) = { sinx, 
shx, (8) 

The parabolic case f = 0 corresponds to a 0 = const, 
S(x) = x, m = Y2aox3, E =0 and, in fact, is character­
ized by only one physically arbitrary function To(x). 
The homogeneous isotropic models of Friedmann[l•3•12l 
the line element of which 

ds2 = d't2 -a2 ('t){dx2 +SZ(x)[d~ + sinZ{)d<p"]}, 

3ao 
XP=---;;;:>0, k = ± 1,0, 

(9) 

is contained in (7) as a special casers,e] correspond to 
a special choice of initial conditions: a) a 0 =canst, 
To = const; b) f = 0, To = const, so that the connection 
of the Friedmann models with configurations of a sphere 
is established by relations of the form 

ao 
R(x,t)=S(x)a('t), m(xl=z-S3 (x), /(x)= eSZ(x). (10) 

Here the function S( x) depending on the sign of 
E = 'f 1, 0 distinguishes between closed, open and flat 
models with invariant spatial crosssections V3 of 
constant positive, negative and zero curvature K3 
=k/a2. 

As is well known[3•201 Friedmann models with A =0 
have a complete classical analogue of local properties 
in Newtonian hydrodynamics of the isotropic expansion 
of a homogeneous sphere of elliptic, hyperbolic and 
parabolic type corresponding respectively to k = ± 1, 0. 
This remarkable analogy extends also to the general 
case of inhomogeneous models of Tolman(sJ which also 
retain a close connection and exhibit far-reaching 
similarity of local properties with the Newtonian dy­
namics of a gravitating dust sphere in Lagrangian 
formulation: 

i12R Gvfl 
at• =--w, 

R 

vK = 4n ~ pR2 dR. (11) 

The flowing rest mass of the ''dust'' .It ( x) contained 
within "liquid" spheres of radius R(x, t) is conserved 
in homologous motion (in the absence of mixing of 
layers and of violations of the continuity of the medium) 
and it is convenient to utilize it as a Lagrangian co­
ordinate. 

Within the framework of Newtonian cosmology one 
can in an adequate manner take into account also the 
effect on the dynamics of the A-term[ 21 l if one intro­
duces an additional force F = AR/3, i.e., if one alters 
the Poisson equation by including the cosmological 
constant in the sources of the field: ilcp = 4rrGp - A. 

The dynamic equation (7) is identical with the New­
tonian energy integral with an altered interpretation of 
the constants, while the Tolman solution coincides with 
the general solution of classical hydrodynamics (11) of 
a homologous centrally-symmetric motion of the 
"dust" in its own gravitational field: 

(12) 

Here the law of motion R( Jt, t) is expressed in closed 
form similar to (7 ), (8 ), in terms of two essentially 
arbitrary functions: E (.It) =the total energy per unit 
mass or the equivalent combination of the form ao( .;/{) 
=G.Jt/1 E 1312, and ta(vK)- the instant when the parti­
cles of the layer are focused at the center, which are 
subject only to the requirements which guarantee the 
homologous nature of the motion of the "dust," and 
also to additional boundary conditions at the center of 
the sphere .Jt =0, where R(O, t) =0, E(O) =0, t 0 (0) =0. 
This set takes into account all possible initial distri­
butions of density and radial velocity of gravitating 
"dust" in a Newtonian sphere including among them as 
special cases a) a0 = const, t 0 =const, b) E =0, t 0 

= const and the classical equivalents of the Friedmann 
models (9). 

If for f'"' 0 one gives up the non-Euclidian nature 
of the physical space V 3 of the comoving reference 
system (2) and if, correspondingly, one identifies the 
flowing active and proper masses, then the Tolman 
models (7) admit a quasi-Newtonian interpretation(sJ 
and in their local properties agree completely with the 
distribution of density and radial velocity of ''dust'' 
in a Newtonian arbitrary sphere. Consequently, the 
classical case gives not only a linear approximation 
valid only in the limit of weak fields, but represents 
their exact analogue. This remarkable similarity of 
relativistic and Newtonian models of a dust sphere is 
due to the specific properties of spherical symmetry 
which excludes gravitational radiation and guarantees 
a considerable similarity of structures of the Einstein 
and Newtonian gravitational fields: in GTR a modified 
inverse square law and the principle of superposition 
with respect to the active mass are preserved. 

3. The main differences are due to the nonlinearity 
of GTR which is expressed first of all by the fact that 
the role of the active mass of the sphere m(x)-the 
effective source of the external field-is played by its 
total energy(sJ which includes in addition to the total 
rest mass .1t(x) also the kinetic energy of the radial 
motion of the "dust" ( m > .;/{, if f > 0 [ 8• 221) and the 
gravitational potential binding energy. The latter is 
obviously not contained in the material energy-momen­
tum tensor, for A = 0 it is negative, as in Newtonian 
theory, in accordance with the attractive nature of the 
interaction forces, and leads to a gravitational mass 
defect il = m - .It < 0 for f < or 3•8• 22l. 

In the general case f ;= 0 the increment to the flow­
ing active mass m' =W .It' does not coincide with the 
proper rest mass of the added spherical layer and 
differs for W < 1 by the amount of the negative binding 
energy, and for W > 1 by the positive excess of the 
residual kinetic energy of infinite separation. These 
general relativistic effects - the mass defect and the 
gravitation of kinetic energy-are manifested in a 
characteristic manner through the non-Euclidian 
nature of the physical space V 3 of the co moving refer­
ence system since the distribution of the specific 
active mass W = dm/ d .11 also determines the geometry 
of the spatial cross sections T = const[ 5 l. In particular, 
the sign of the quasi-Newtonian energy f =2E which 
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differentiates in the case A = 0 the types of motion of 
the layer of "dust" is opposite to the sign of the local 
scalar curvature of V 3 as, for example, in the Fried­
mann mqdels[": 21 1. 

Because of the nonlinear contribution of the gravi­
tational potential binding energy the active mass m(x) 
is a nonadditive and possibly even a nonmonotonic 
function of the proper rest mass .!lt(x) in "semi­
closed" modelsr 3• 221 with a W(x) which can change 
sign and which has isolated zeros at x = x!. Contrary 
to Bondi's[sJ assertion it is always possibte to so 
choose the arbitrary functions in the TBL solution (7) 
that W(xi) =0, m'(xj_') =0, .tt'(xj_') > 0 and at the same 
time one must also have R'(xi, r) =0, r~(xj_') =0, while 
exp [ w (xi, T)] "' 0, so that the metric is regular at 
these points. In "semi-closed" models one can de­
crease the gravitational mass of the sphere by adding 
external layers of "dust" with W(x) < 0-the "self­
screening" effectt 81-and even to make it vanish if one 
exactly compensates the total rest mass of matter by 
the total binding energy. 

In fields so strong that the mass defect is compara­
ble to the rest mass and the size of the sphere ap­
proaches its gravitational radius the nonlinearity of 
GTR becomes essential and leads to a difference in 
principle between the relativistic and Newtonian 
models, and in view of the local validity of the classi­
cal theory it has a very specific nature and in the first 
instance affects the global properties of the solutions 
of the Einstein equations. In particular, the "super­
strong" interaction when the binding energy of the 
layer exceeds i.ts rest mass, W(x) < 0, manifests 
itself geometrically in the non-Euclidean topology of 
the comoving reference space V 3 : the latter must 
necessarily contain in T-regions R(x, r) :::>2m (x)) 
"orifices"r 81 -instantaneous spheres x = x~ with an 
extremal value of the radius of curvature. 1 

Very instructive in this connection is the example 
of "semi-closed" Friedmann modelsr 3• 8• 22 l in which 
the active mass m(x) = %a0 sin3 x and the radius of 
the spheres R =a( T) sin x simultaneously pass through 
a maximum on the "equatorial" sphere x* = rr/2 and 
tend to zero in the limit x = rr. 

Although in the region ( rr/2 < x :::> rr) the mass defect 
of the layer does exceed its rest mass, in the final 
analysis it leads only to a complete compensation of 
the material contribution to the limiting critical con­
figuration of the sphere-a closed Friedmann modelt 22 l 
which corresponds to a topological closure of the 
space v3: the boundary of the sphere degenerates into 
the opposite pole of a 3-sphere, while the exterior 
region with the Schwarzchild field disappears. Conse­
quently, the total gravitational mass defect of a homo­
geneous sphere in GTR cannot exceed the total rest 
mass of the "dust", and this differs radically from the 
result of the Newtonian theory which gives for the total 
energy of instantaneously static configurations of a 
homogeneous dust sphere the expression E = Jt c 2 

- 3G.K2/SR, o~K = 4rrpR 3/3 which does not have a lower 
bound, and whieh can become negative. But already 
from the quasi--Newtonian approximation which takes 
into account the equivalence of the active mass and the 
total energy of the sphere including the gravitational 

proper binding energy M = Jt - 3GM 2/SR it follows 
that the negative mass defect leads to a cumulative 
weakening of the interaction and cannot give rise to an 
inversion of the sign of the total energy-the mass of 
the sphere made of normal matter with p > 0, although 
"self-screening" is possible and M - 0 for .;K "' 0 in 
the limit of complete gravitational binding of matter. 

Because of the mass defect in GTR it is possible to 
construct restricted TBL models-"spheres" with an 
infinite total rest mass of the "dust" which neverthe­
less manifest themselves in vacuo as an ordinary 
sphere with a finite gravitational mass and radiusr 81 • 
Their spatial cross sections V 3 do not have a classical 
center of symmetry R =0, but are open in the "radial" 
direction (- oo < x < oo), they possess an infinite proper 
volume and contain within themselves an infinite 
amount of matter with a density which is finite every­
where. Moreover, in "semi-closed" models containing 
a denumerable infinity of "orifices" and having the 
topology of spatial cross sections V3 of the type of a 
"corrugated" hypercylinder without a center of sym­
metry R = 0 it is possible to guarantee finiteness of 
the active mass 0 < m(x) :::> M for any arbitrary 
proper rest mass of the "dust" .K( x) within the whole 
internal region occupied by matter. 

COSMOLOGICAL T-MODE LS OF A "SPHERE" 

1. The degenerate case W = 0, R = r ( T) in (3 ), (4) 
corresponds to a special class of solutions with the 
metric of a synchronously-comoving T-system (1 ): 

ro Ar2 ' { du ( r0 ,\u2 \ --'/,) 
i-2 = -- + ·--c-- 1, e"'i' = f ). -f- ufl' ~ -- - + --;-- 1 · 

r 3 " u 3 J 

which is not contained in the TBL solutions (7) and 
represents a family of cosmological T-models of the 
"sphere" which have a constant and finite active mass 
M = ro/2 for any arbitrary total rest mass ufl(x) of 
the ''dust'' of which they are composed. Here the 
characteristic gravitational radius of the T-models of 
a "sphere" r 0 =2M is a constant of integration, A.(x) 
is an arbitrary function which, however, (if it differs 
from zero) can be converted to unity by a permissible 
transformation of the radial Lagrangian coordinate. 
The possible values of the parameters M and A, and 
also the limits for the variation of the angular metric 
coefficient r( T) are determined by the condition 
(2M/r + Ar 2/3- 1) 2: 0. 

It is evident that in the solution (13) only those re­
gions are physically acceptable where the signs of 
exp(w/2) and Jt'(x) coincide (in the opposite case the 
necessary requirement p 2: 0 is violated), with con­
tinuous transition from one sign to the other being ex­
cluded due to the inevitable degeneracy if the metric 
exp w = 0. The choice of the independent branch 
exp ( w/2) > 0 corresponds to the interpretation of the 
last equation in (13) as a law of conservation of rest 
mass or of the number of partie les and is dictated by 
the natural assumption that the proper volume of a 
spherical layer of "dust" is positive. 

Although the T-models for A = 0 can be regarded 
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as limiting configurations of the general relativistic 
spherer161 in which the binding energy of each particle 
of "dust" is exactly equal to and compensates its rest 
mass, this special class of solutions (13) cannot be 
obtained by directly setting f = -1 in formulas (7 ), (8 ). 
Since the Tolman solution exhausts all the Newton-like 
models of a sphere, a classical analogue cannot be 
made to correspond to the T-models, so that the class 
of spherically-symmetric homologous motions of 
gravitating "dust" in GTR is in a certain sense wider 
than in Newtonian dynamics. 

The T-models of a "sphere" become possible in 
GTR only due to the nonlinear effect of the dependence 
of the active mass on the gravitational and the cos­
mological binding energies, and their existence is 
connected in a definite manner with the existence of 
homogeneous T-regions of the SSK fields which are in 
principle non-static (5). The latter do not have any 
Euclidian analogues and represent a maximally strong 
"attractive" or repulsive" for A> 0 field of an 
anomalous longitudinal type without material sources 
which cannot be identified with gravitational waves. 

The most remarkable property of the T-models of 
a "sphere"-the constancy of the active mass m =M 
and its independence of the distribution of the proper 
rest mass .It (x) and even of the presence of matter-
is a consequence of the gravitational mass defect and 
has a simple explanation. The negative potential bind­
ing energy of the particles of "dust" acts on an equal 
footing with the kinetic energy and the rest mass as an 
effective source of the field and in view of the condition 
W = 0 for each layer exactly cancels their contribution. 
As a result the active mass remains unchanged in the 
course of unrestricted growth of the T-models of a 
"sphere" and must have a "priming" nature, since in 
general it contains no material contribution. This ar­
bitrary parameter M ~ 0 (which also assumes nega­
tive values M s 0 for A > 0) can be interpreted as a 
gravitational "massless mass" of the vacuum T-regions 
regions of the SSK fields with a metric of the typelBl 

ds•= (2M+ Af2 -1 )-tdf2 -(2M +Af2 -1) rJx• 
\ T 3 T 3 

(14) 

into which the T-models of a "sphere" (13) go over in 
the limit of empty space p = 0, and with which they 
exhibit a very close analogy. The T-models of a 
"sphere" are constructed on the basis of the T-regions 
of the SSK fields and appear as a generalization of the 
latter to the case when space is filled by an unre­
stricted quantity of matter with W = 0 which is bound 
gravitationally and is held by a maximally strong 
vacuum field within their boundaries. 

The cosmological T-models of a "sphere" give a 
method that is different in principle from the closed 
Friedmann models (A>" O)r6 l for realizing the maxi­
mally possible in GTR total mass defect which is equal 
to the total rest mass of matter, with the latter also 
manifesting itself in a characteristic manner through 
the in principle non-Euclidian nature of the physical 
space V3-as a consequence of the universal nature of 
the relation between the distribution of the active mass 
of matter W(x) and the geometry of the reference 
space V 3 comoving with it. 
A distinguishing feature of a synchronously-comov-

ing T-system is that its orthogonal spatial cross sec­
tions T = const, each of which has the homogeneous 
metric 

(15) 

(which admits as a total group of motions the transi­
tive group G4 = G3 x G1 of type VIII[191 ), have basic 
geometric characteristics-components of the Riemann 
and Ricci tensors which do not vanish identically and a 
curvature scalar of the form 

P1212 =P1313 =0, P2a23 =1, P11 =0, Pr=Pa3 =1/r2, P=2/r2 

and, consequently, they represent three-dimensional 
hypercylinders with the non-Euclidian connectivity 
V 3 = ( S2 X R1 )-a direct topological product of an 
ordinary sphere and an open straight line. In view of 
the constancy of the radius of curvature of the Lagrang­
ian spheres s2 the physical space v 3 does not have a 
classical center of symmetry, is open in both 
"radial" directions (- oo < x < oo ), has an infinite 
proper volume and can contain within itself an unlimited 
quantity of matter. 

Owing to the total neutralization of the rest mass by 
the binding energy the "dust" in the T-models becomes 
"passive" and is "inscribed" into the initial SSK T­
regions without any essential distortion of their local 
properties, appearing to replace the test "reference 
liquid" of the synchronous T-system (14). In addition 
to the "priming" parameters M and A of the vacuum 
T-regions matter brings with it only one physically 
arbitrary integral L'(x) 2: 0 which measures the in­
crease in the invariant proper rest mass when a 
spherical layer of "dust" is added. In virtue of the 
special assumptions (W = O) on the nature of the dis­
tribution of matter in the T-models of a "sphere" the 
irreducible set of initial data of Cauchy contains only 
one essentially arbitrary function which characterizes 
the inhomogeneous distribution of the density of 
"dust" and, consequently, this special class of solu­
tions is of zero measure compared to the Tolman 
class. 

The indicated solution of (13) in the form of special 
cases a) Jt'/A = const and b) A= 0 when this single 
physically arbitrary function of the type .K' ( x) reduces 
to a constant (we know, by the way, that for A = 0 we 
can set .K' = 1) includes the spatially homogeneous 
metric of anisotropic models with p = p ( T) of a "semi­
closed" typer 13•15•3l, among them also those for A>" 0. 
Although the latter possess a higher symmetryr14l, since 
in addition to the ordinary rotation group G3 of type IX 
which is transitive on the spheres S2 they admit an ad­
ditional one-parameter subgroup G1 with a. com.muting 
operator for shifts along the Killing field ~ 1 = o~ in the 
radial direction, nevertheless they give a sufficiently 
complete representation also of the properties of the 
inhomogeneous T-models. 

The quasiisotropic homogeneous T-models with 
A= 0 in analogy with completely isotropic Friedmann 
models are possible only for regions occupied by 
matter since a more general anisotropic solution 
(A>" 0) exists also in vacuo for Jl' = 0 where it repre­
sents automatically homogeneous T-regions of the 
SSK fields with a nonstatic metric which can be re­
duced to the canonical form (14) by the transformation 
T = r ( T ). In a certain sense the T-models can be 
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treated as a peculiar superposition of homogeneous 
vacuum and quasiisotropic solutions, wherein either 
one of the two arbitrary coefficients .\ ( x) ¢ 0 or 
.;It' ( x) > 0 can be, without restricting the generality, 
taken equal to unity; in particular, it is more conven­
ient to take .\ =' ±1. 

2. The family of geodesic parallel spatial cross 
sections T = const which describe the temporal evolu­
tion of the T-models of a sphere" represents as a 
whole a nonstatic hyper cylinder V 3 containing matter. 
The tensor of the velocities of its longitudinal 
(Hu = w/2) and transverse (Hl = r/r) deformations is 
invariantly characterized by the presence of a general 
expansion and of anisotropy (a local rotation is incom­
patible with spherical symmetry). 

The radius of curvature r ( T) of the hypercy Under 
V 3 satisfies an equation of the Friedmann type (9) with 
k = + 1, so that the principal results of the analysis of 
the dynamics of "closed" isotropic models with 
A ¢ 0[ 23•121 are also applicable to the T-models of a 
"sphere." The transverse motions of the hypercylinder 
are similar to the law for the expansion of a 3-sphere 
in the corresponding closed Friedmann modelsr 21 l, and 
they can also be classified in accordance with Robert­
sonsr241 scheme (extended by taking into account the 
additional possibility r 0 ::s 0 for A > 0) in terms of 
analogous types 01, M1, M2, A1 and A2 of behavior of 
its peripheral dimensions (cf., diagram), with the 
equivalent of the static Einstein model being absent. 

The specific properties of the T-models are con­
tained in the behavior of the radial components of 
exp ( w/2) > 0 which determines the mutual proper 
distances between the particles of different Lagrangian 
spheres, and are manifest in the dynamics of inhomo­
geneous longitudinal deformations along the generators 
of the hypercy Under V 3. Although "passive" matter 
with W =0 gives no contribution to the constant gravi­
tating mass under the action of which the motion of 
each layer of "dust" occurs, nevertheless it affects 
the dynamics of the longitudinal deformations of V 3, 

Classification of the cosmological 
T-models of a "sphere" according to 
the type of temporal behavior of the 
radius of curvature r = r(r) of the hy-
percylinder V 3 = (S2 X R1 ). The curves 
r2 = 2M/r + Ar2 /3- I = 0 the turning 
points for the transverse expansion of 
the hypercylinder V3 solved with re­
spect to A(r) = 3r"2 (1-2M/r), divide 
the half-plane (A, r ~ O) into an al­
lowed (r2 < 0-shaded) regions. To 
each model for a given A corresponds 
a segment of the straight line A = 
const in the allowed region of values 
of r(r). The points of intersection of 
this straight line with the line r2 = 0 
give the roots of the characteristic 
equation rr = rj (M, A), which also 
determine the boundaries between the 
T and the R-regions of the SSK fields. 
If M > 0, A > A E• there are no inter-

if sections, there exists only one T-region 
(O< r < 00), corresponding to the type 
M1 -a monotonic unbounded expan­
sion from the singularity r = 0 with an 
asymptotic approach to the de Sitter 
typeS. 

The latter are determined only by the local character­
istics of the distribution of matter-the rest mass 
..lt'(x) of a given layer, and do not depend on there­
maining matter in contrast to the TBL models where, 
as in a Newtonian sphere, only the external spherical 
layers of "dust" do not affect the dynamics of the 
properties of the internal region. In the T-models the 
inhomogeneity of the density of the ''dust'' and of the 
velocity field of the longitudinal deformations of V 3 
are so interconnected that a homogeneous distribution 
of matter p = p ( T) is not only a necessary but a suf­
ficient criterion for a complete metrical homogeneity 
of the field V 4 and this is in accordance with the 
Birkhoff theorem concerning the impossibility of it 
having a free radiation part. 

In the general case the solution of (13) can be ex­
pressed explicitly in parametric form in terms of the 
Weierstrass elliptic functions with the invariants g2 
= ?'12 and g3 = ?'216 - Argj 48: 

1 [2 ) , I cr(1l-rJ,,)1 
T = -. - 'lS ('lo T og (" , ) 

6" (YJo) (J '1 -,- 'lo , 

where rf (T/o) =- g2, ~ = d rf/df/. The integral in (16) 
can also be evaluated in terms of elliptic functions by 
means of factorization if one finds the roots of the 
characteristic equations 4z 3 - g2z - g3 = 0, but the 
resulting expression is too awkward and is not repro­
duced here. The requirements of r ( T/) ~ 0 and of the 
reality of the time T in (16) determine the region of 
physically admissible values of the parameter T/ in the 
complex plane. 

For certain particular values of the parameters ro 
=2M and A 

2M Ar" 
7+3-1=0 

degenerates into a linear one (A = 0, M > 0) or into a 
quadratic one (M =0, A =3a2 > 0), or has a multiple 
root (9M2 A = 1) the solution of (13) can be written in 
terms of elementary functions. In particular, the last 
case of a double root rE =3M > 0, A E = 1/ rE2 
= 3aE:, 

r(-r) = rE[1 + x(T)], 

aE"t = ln[x + 2 + yx2 + 4x + 3] 
1 1 

- -=ln-[3 + 2x + l'3(x2 + 4x + 3)], 
l'3 lxl (17) 

ew/2 == .:. v x + 3 {I. + .K~[ 2x2 + x - 3-v-:~ + 1_ 
1'3 X + 1 y3 2x2 X + 3 

1 1 - ]} ---=ln-(3+2x+l'3(x2 +4x+3)) , 
2l'3 lxl 

corresponds to the asymptotic types of Lemaitre­
Eddingtonf21•241 A1 in the region (-1 ::s x < 0, 0 ::s r 
< rE) and A2 for {0 < x < ao, rE < r < ao) with an 
unbounded time scale (- ao < T < oo) for the trans­
verse expansion of the hypercylinder V3. 

3. In the course of a detailed investigation of the dy­
namics and of the time singularities of the T-models of 
a "sphere" we shall restrict ourselves in the main to 
the simple and the most important case of the T­
collapse of "dust" with A = 0, M > 0, for which the 
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solution of (13) is expressed in a convenient parametric 
form: 

r0 ro . 
r=-(1-COS1]), "f = -(1]- SlUT]), 

2 2 (18) 

e"'i2 = e ctg ~ + .K' ( 1 - ~- ctg T) . 
The cycloidal dependence of the radius of curvature 
r(T) and the temporal behavior of the peripheral di­
mensions of the hyper cylinder, and together with them 
of the proper volume elements of V 3 and of the density 
of the "dust" in general terms remind one of the 
closed Friedmann model [1, 31 ; the phase of general ex­
pansion starts from the singular state, and is then re­
placed, also simultaneously throughout the whole 
space, by unlimited compression. At the singular 
points 11 = 21Tn, where n is an integer, the metric be­
comes degenerate-r ( T) = 0, and the density of matter 
p - oo, so that these singularities prevent continuation 
of the solutions (a formal continuation of the metric 
into the region r ( T) < 0 differ only by a reversal of 
the sign of r 0 < 0 ). The proper time for the existence 
of T-models of such an oscillating type 01 with 
- oo < A < A E is restricted in both directions, and the 
period AT= 1rr0 for A =0 and tends to infinity as one 
approaches the type A1 (A - AE ). 

The dynamics of longitudinal deformations of the 
hyper cylinder V 3 can be regarded as the result of a 
superposition of pulsations of initial T-regions of the 
Schwarzchild field and of aperiodic monotonic motions 
of the "dust" in a quasiisotropic T-model, and in this 
case one can no longer restrict oneself in (18) to a 
single cycle (O < 11 < 21T), as in the closed Friedmann 
model, but one has to consider all intervals of permis­
sible values of the angular parameter in the region 
( - co < 11 < oo) which satisfy the requirement 
exp (w/2) > 0. 

The nature of the variation of the longitudinal di­
mensions of the layer does not necessarily coincide 
with the transverse compression of expansion of V 3> 

and as a result of the inhomogeneity of the velocity of 
the deformations along the "axis" of the hypercylinder 
all different combinations of their common behavior 
are simultaneously possible, and this results in leading 
to a fairly broad class of permissible motions of the 
"dust" in the T-models of a "sphere." 

The replacement of phases of compression of the 
longitudinal dimensions of the hyper cylinder V 3 by 
those of expansion in the general case occurs non­
simultaneously, and is not even necessary. For exam­
ple, for the T-collapse of the "dust" (18) withE: =+1 
in the interval ( 0 < 11 < 21T) the regular minimum for 
the longitudinal distances between Lagrangian spheres 
on V3 exists only for .K'(x) > l'21T, and for the layer 
with .K' = 2/1T there exists an instant of general in­
stananeous rest of the "dust" 11 = T1. A monotonic un­
restricted compression along the generators of V 3 
necessarily leads to the appearance of additional in­
termediate singularities exp[w(x, T*)] = 0, which, 
generally speaking, are reached nonsimultaneously by 
particles of the different "liquid" spheres and obvi­
ously correspond to the contraction of individual parts 
or of the whole hypercylinder V3 into a spherical o 
layer S2. Along these caustics the density of the "dust" 

becomes infinite, and in going through a singularity 
changes sign[131 (and does this an infinite number of 
times in the interval - co < 11 < co). 

Near the singularities r = 0 the term containing 
A becomes nonessential, and, moreover, the behavior 
of the metric of the anisotropic T-models (X ~ 0) is 
also independent of the presence of matter. It turns 
out to be exactly similar to the nonsimultaneous aniso­
tropic collapse of the Tolman models (7), (8) with 
To(x) =const[1,7J: at each point of V3 the peripheral 
distances decrease as T 213, the radial lengths increase 
indefinitely ~T113, and as a result of this the hyper­
cylinder V3 contracts into a line, its proper volume 
elements tend to zero ~r, and the density tends to 
infinity according to the inverse law. The nature of the 
special homogeneous solution with "A = 0 in the neigh­
borhood of one of the singular points r = 0 ( 11 = 0 in 
(18)) does not differ from the case of the quasiisotropic 
simultaneous collapse of the Tolman models (7), (8) 
with To = const[1•71 (which become homogenized near 
the singularity R(x, To)= 0): all the linear dimensions 
tend to zero according to the same law ~T213, and an 
instantaneous contraction of the whole distribution of 
matter within V 3 into a point occurs. The density of 
the "dust" becomes infinite in accordance with the 
same law K p = % 1T2 as in the isotropic Friedmann 
models since the anisotropy of the tensor of the veloci­
ties of the deformations disappears, and the anisotropy 
of the curvature of V 3 does not affect the dynamics of 
the collapse. 

4. The existence of time singularities p - co is a 
general property of the cosmological T-models for 
A:::; 0, in accordance with the Landau-Raychaudhuri[25 J 
theorem concerning the inevitable development of a 
fictitious singularity in the synchronous system and 
its necessary transformation into a physical one for a 
synchronously comoving system due to the focussing of 
the geodesic world lines for particles on a caustic 
which always exists for a normal time-like congruence 
of geodesics in Einstein gravitational fields V4 if 
A:::; 0. But in the case A> 0, i.e., cosmological re­
pulsion, this theorem is no longer applicable and, in 
particular, closed Friedmann models (9) having no 
singularities are possible: the Einstein static model 
E and dynamic types A2, M2• Therefore, the problem 
of singularities in the corresponding T-models of a 
"sphere" of similar types A2 and M2, when the geo­
metric singularity of the vacuum SSK metrics (5), 
(14) at the "center" R =0 has a spatial character 
( M < 0 ), or is situated beyond the boundaries of the 
initial T-region (M2 and A2 with 0 <A< AE), re­
quires a separate investigation. 

Very instructive in this connection is the simple 
example of T-models due to de Sitter- Lanczos with 
M =0, A= 30!2 > 0: 

1 
r=-cha,; 

a 

e"'/2 = e sh a,;+ .K'[ (1/21t- arc tg sh a,;)sh a,; -1], (19) 

which also belong to the monotonic regular type M2 
and are constructed on the basis of T-regions of an 
everywhere regular space-time V4 of constant positive 
curvature with the metric (5), (14) with M =0. Al­
though the metric (19) with E: = 0, Jt' > 0 and E: =-1, 
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.It' > 1/1T is regular over the whole time interval 
(- oo < T < oo ), this group of solutions is physically 
unacceptable, since for them exp ( w/2) < 0 and p < 0, 
while the remaining T-models have a singularity of 
the "disc" type exp[w(x, r*)] =0 for r(T*)> 1/a. If 
E = + 1, then all the .It' > 0 are admissible, and the 
phase of the transverse compression of the hyper­
cylinder (- oo < T < O) is not realized, while its 
general unrestricted expansion begins with the "disc" 
singularity and asymptotically becomes isotropic as 
T - oo: exp ( w/2) O!r ( T) a exp (a T ). For the physically 
admissible solutions with E = -1 and .Jt' < 1/ 1T the 
phase of the transverse expansion of V 3 is not realized, 
and general compression begins with r = oo and con­
tinues for an infinite time up to the singularity T = T 

T = r*(x). One could expect that all the physically ac­
ceptable T-models of a "sphere" with p > 0 of regu­
lar types A2 and M2 must in analogy with the 
deSitter-Lanczos T-models have a "disc" singularity 
exp[w(x, r)] = 0, although for M ,.o 0 this question 
remains open since it requires an investigation of a 
sufficiently complicated time dependence of the radial 
component of exp (w/2) in (16) and the determination 
of its zeros. We note that the infinite types M1, A2, 
and M2 of the eosmological T-models of a "sphere" 
approach asymptotically for r ( T) - oo the deSitter S 
type and, therefore, they also become isotropic in the 
course of unbounded expansion. 

One can easily show that also in vacuo the singular­
ities r = 0 of the solution of (13) with .K' = 0 (which 
is equivalent to the nonstatic parts of the SSK metric 
(14) in T-regions) are true ones for M ,.o 0, since the 
canonical invariants of Petrov - Y2 0!1 = a2 = 0!3 
= ro/2r3 and the Kretschmann scalar J = Cijklcijkl 
= 12r~/r6 constructed from the Weyl tensor of con­
formal curvature become infinite. If M > 0 these 
geometric sing:ularities at the "centre" T =0 have a 
time like character, are always situated in T-regions 
(14) on spacelike hypersurfaces and correspond to an 
anisotropic collapse of invariant cross sections of V 3 
= ( S2 x R1) into a line, so that they cannot be identified 
with a localized point mass. But for M < 0 they have 
a space like nature, are situated in R-regions (5) and 
become unaccessible for geodesics of any synchronous 
system (2). 

In contrast to the pseudosingularities of the SSK 
metrics (5), (14) at the boundaries of the T-regions of 
the type of the Schwarzchild sphere R =T =2M for 
A =0 (where r 0/r + Ar2/3- 1 =0, exp (w/2)a( T 

- r 0) - 0 and the hypercylindrical spatial cross sec­
tions of v3 degenerate into a sphere S2) the singular­
ity at the "centre" R =T =0 is nonremovable with the 
exception of the cases of the Minkowski-deSitter space­
time with M =0. We note that the metric of the fac­
torizable spacetime (6) gives one more example of an 
everywhere regular vacuum Einstein field with A ,.o 0. 
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