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A general theory of the size effect in the electric conductivity of semimetals is developed in the 
relaxation time approximation which takes into account the various mechanisms of carrier relax­
ation on the surface and within the sample. The kinetic equations are reduced to a set of integral 
equations determining the spatial distribution of the concentrations of carriers belonging to dif­
ferent valleys and also of the transverse electric field. A general analysis shows that inter­
valley scattering at the surface leads to a specific result, viz. in the quasineutral region the 
transverse electric field and all concentration gradients become nonuniform and increase 
logarithmically with approach to the surface at distances of the order of the usual mean free path 
l. In plates with a thickness 2b ~ l the coefficient before the logarithmic term is of the order of 
the applied longitudinal field. The bend in the band near the surface V should be of decisive im­
portance for the electric conductivity of thin plates (2b < l); the bend makes access of the surface 
difficult for carriers of one sign or another (electrons or holes) and creates conditions for specu­
lar reflection for a certain part of the carriers. The behavior of the conductivity consequently 
changes for 2b << l; thus it tends to saturation if Vat both surfaces is of the same sign, in dis­
tinction to the usual monotonous decrease. The general course of the dependence of the conduc­
tivity on thickness (which should include three plateaus) is established. The height of the first 
(for 2b Rj l) elevation is related to the degree of specularity of scattering at the surface; the 
height of the second elevation for large thicknesses is related to the intensity of intervalley scat­
tering at the surface. 

INTRODUCTION 

GoRKUN and one of the authors[ 1 l have shown that 
earlier attempts[ 2• 3l of generalizing the well known 
Fuchs theoryr4 l of the size effect in the electric con­
ductivity of thin films to include multivalley semi­
metals and semiconductors were incorrectly performed, 
and in certain cases even lead to an incorrect qualita­
tive picture. The reason is that the effect of the re­
distribution of the carriers among the valleysrs,s] is 
ignored in[2 • 3l, and a non-self-consistent procedure is 
used to solve the equations. 

The case considered in(ll is one for which a simple 
exact solution is obtained, namely the case when there 
is no intervalley scattering in the volume or on the 
surface. Since the experimental situation is also dis­
cussed in detail in(1 l, we shall not touch upon this as­
pect of the problem here. 

We consider below a much more general model, 
when intervalley scattering in the volume and on the 
surface is taken into account (but it is assumed, as 
before, that the ordinary mean free path l is much 
smaller than the diffusion displacement length L with 
respect to intervalley scattering), and a wide range of 
thicknesses is considered. We investigate also the 
role of the near-surface bending of the bands in con­
nection with its influence on the surface scattering. 
Unlike metals, in which there is practically no bending, 
and semiconductors, where the predominant effect is 
modulation of the conductivity in the surface layer of 

the space charge, in semi-metals of the Bi type with 
large l the near-surface bending of the bands greatly 
influences the distribution function of the carriers in 
the quasineutral region. It must be emphasized that a 
unique role is played in this case by the intervalley 
surface scattering. 

The main qualitative results of the paper are as 
follows: in the assumed model, the effective electric 
conductivity a of plates, as a function of the thickness 
2b, should exhibit three plateaus (Fig. 1 ). The first 
plateau ( 2b « l) is due to the transport of current 
exclusively by a definite fraction of the carriers of that 
sign, for which the near-surface bending of the bands 
is repulsive. The second plateau ( l << 2b « L) is 
due to the non-equilibrium concentration of the car­
riers from different valleys under the conditions of the 
diffusion approximation (cf. (l,sJ ). The third plateau 
(2b » L) corresponds to samples of maximum thick­
ness. Owing to the intervalley scattering of the car­
riers from the surface, the transverse field produced 
in the interior of the plate turns out to be sharply in­
homogeneous and increases logarithmically on approach­
ing the boundary of the quasineutral region. 

A plateau in the a(b) dependence of Bi has been ob­
served in a number of already performed experimental 
investigations [7 -loJ. Apparently, for a unique corre­
spondence with the plateaus obtained in our theory, it 
would be desirable to carry out a more detailed quanti­
tative study and to perform the measurements in a 
wider range of thicknesses. It would also be of great 
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FIG. I. Dependence of the effec­
tive electric conductivity a on the 
thickness of the plate 2b in the 
presence of a near-surface bending of 
the bands. 

interest to measure the transverse field, since such 
measurements would make it possible to estimate 
directly the role of the intervalley scattering on the 
surface. It is particularly advisable to perform all 
these experiments under conditions of controlled bend­
ing of the bands in field-effect experiments. 

1. FUNDAMENTAL EQUATIONS AND BOUNDARY 
CONDITIONS 

Let us consider a degenerate semimetal with sev­
eral electron valleys, which we shall number by the 
index {3, and one valley in the valence band, which we 
shall designate by the index v. We shall henceforth 
assume that all the valleys are ellipsoidal, and assume 
for simplicity that the intravalley scattering can be 
described by a scalar relaxation time ( T~ in the elec­
tronic valleys and T~ in the valence band); we intro­
duce the times T and Tv characterizing respectively 
the scattering between electronic valleys and scatter­
ing from electronic valleys into the valence band. We 
shall assume throughout that T, Tv>> T~, T~. All the 
distribution functions f for all the valleys will be re­
garded as functions of the velocities and will be repre­
sented, as usual, in the form 

8/o 
I= /o(e- s) -1--oe q:, 

The chemical potentials /;(3 and /;v are reckoned from 
the edge of the corresponding band. Then the system 
of kinetic equations can be written in the form 

Orr~ q:~- !p~ ~ q:~- !p~' q:~- fPv v,--eEv+---+ LJ---+---=0, (1a) 
az 'tc0 W4B T Tv 

_i}cpv E + <!'v- iji, I "' <!'v - !p~ - 0 
Vz - e V --0 - -i- LJ ---- · (1b) 

8z Tv B qT" 

The symbol ({! denotes here the mean values over the 
corresponding Fermi ellipsoids, for example ({! {3 
= ( r.p) {3 /( 1) {3• where the angle brackets denote inte­
grals: 

> I ( 8fuB d d 2 a·· \F B =- J Fs v) -- Tf,, TB = --13 'Pil· 
oe ' 

(2) 

The quantities (/!{3 and ({!v, taken with the inverse sign, 
have the meanings of additions to the chemical poten­
tial for the corresponding carrier groups, i.e., they 
are proportional to the non-equilibrium additions to 
their concentrations. All the intervalley relaxation 
terms are written in such a manner that they are 
cancelled out when the Fermi levels of any two valleys 
are raised by equal amounts (two electron valleys or 
one electron and one valence valley). The parameter q 
is determined from the detailed balancing principle and 
equals 

(3) 

me and mv are masses which determine the density 
of states (i.e., the geometric means of the three prin­
cipal values). 

The kinetic equations (1) should be supplemented by 
the Poisson equation, which reduces throughout, with 
the exception of the narrow layer near the surface, to 
the quasineutrality condition 

(4) 
B 

It is necessary to formulate boundary conditions for 
the system (1) and (4). Since (4) does not hold in the 
space-charge regions near the boundaries of a semi­
metal, with a width of the order of several Debye 
lengths ln =(KI;/4rre'n)112 (which amounts to usually 
10-5-10-6 em, where K is the dielectric constant), it 
is necessary to formulate effective boundary conditions 
for the boundaries of the quasineutral region. We shall 
consider below only plates with 2b » lD, when the 
thickness of the quasineutral region is practically 
equal to the thickness of the plate. Since in semi­
metals (unlike semiconductors) the carrier density in 
the near-surface layers is of the same order of magni­
tude as inside the volume, the conductivity of the near­
surface channels should in itself not make an appreci­
able contribution to the total current, and therefore the 
bending of the bands should influence the conductivity 
mainly via changes of the boundary conditions for the 
quasineutral region. 

This latter question is considered in the Appendix. 
Physically, the situation reduces to the fact that if the 
bands at the surface are curved, say, upward (see Fig. 
2 ), then only electrons moving to the surface inside a 
certain cone (attainability cone), surrounding the 
normal, can reach the surface. The remaining elec­
trons are specularly reflected from the space-charge 
layer. This is correct in the compressed-gas approxi­
mation nl0 » 1. 

As a net result, the effective boundaries on the left 
boundary can be represented in the form 

'I'Jr (- b, v') = 'P;f (- b, v), outside the cone 
<!'f (- b, v') = p; q:;f (- b, v) + B~, inside the cone 
q::,? (- b, v') = p~ <p; (- b, v) + B~. 

(5a) 
(5b) 
(5c) 

Here r.p z are respectively the distribution functions 
for the electrons with Vz ( 0, the velocities v and v* 
are connected by the conditions for elastic specular 
scattering for non-spherical surfaces (see r3 l, and also 
(1.12 )11 ), Pc and Pv are the effective specularity coef­
ficients, and the constants B(3 and Bv are determined 
from the condition of the integral flux balance on the 
surface 21 • Although (5) has been formally written out 
for z =b, actually we have in mind the condition on the 
boundary of the quasineutral region. An analogous sys­
tem is written for z =b. Equations (5a) and (5b) are 
best represented in a unified form (5b ), regarding Pc 
and Bf3 as functions of Vz, which change jumpwise on 
the surface of the cone. 

Using (4), we can partly decouple the system (1): 
8cpB q:B <j)B- GB v,-+-- eEv---- = 0, 

fJ.z 'tc 'tc 

and analogously for r.pv, where (N is the number of 
electronic valleys) 

(6) 

1 1 Here and below, all references to the formulas of the article [ 1 ] 

are marked with the index I. 
2 lThe role of this condition is explained in [ 1 1 ]. 
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__!_=__!___+ N-1 +~ ~=_!_+~ (7a) 
Tc Tc0 T Tv ' Tv Tv0 qT v ' 

Gp(z)= Tc ( ~ + ;Jlpp -T,( :. - ~) ipv, Gv(z) =Tv N + q fllvo 
qT. (7b) 

We solve formally the equations (6), assuming cp 
and Ez to be known function of z, and we use the 
boundary conditions. Then 

cpif (z, v) = iPB (z)- G~ (z) + ..--!--( ) { ,'J;ljf exp (- z 'f b) + fliltp.+ 
Llc Vz Vz'fc 

X exp(- z,±b) + lp.+l ~ dz'e(v'E~(z'))exp(- z + z') 
l..z't'c Vz J Vz'tc 

+ __!___ ~ dz'e (vE~ (z')) exp (z'- z ± 2b) 
Vz :(o Vz 'tc 

+b 
+ p/p.- -~ dz'e (vE~ (z')) exp (z'- z 'f 2b)} , (8) 

Vz t Vz't'c 

and analogously for cp v <. Here 

!l,(v,)=ex_~:(-1 2 bl )-p,+p,-exp(-~). (9) 
v, Tc lvzl<c 

E~(z) = (Ex,E.,E,- _!__~ (cp~- G~)) (10) 
e dz ' 

!Hp± = B~± -(1- p,±)[cp~(±b)- Gp(±b)]o (11) 

Outside the attainability cone in (8) it is necessary to 
put p~ = 1 and !Hfr =0. 

The parameters B± should be determined in terms 
of the probabilities of the different types of scattering. 
We introduce for electrons moving inside the attaina­
bility cone, besides p~ and p~, the probabilities of 

diffuse intravalley scattering d~ = d~/3 and d~, of the 

electron intervalley scattering d~/3' and of scattering 
from the electron valleys to the hole valley, d~ , and 

back, d~f3 • It is obvious that v 

p~±+ ~d~~·+d~~=1, Pv±+d,±+ ~d~=1o (12) 
r ~ 

According to the detailed-balancing principle 

dp~· (v,<)'p = dp:-p (v,<>a·, dp-;, (v,<)'p = d;p (v,<)., (13) 

where the < sign of v indicates that the integration is 
carried out only over the half-space Vz < 0, and the 
indices f3 and v denote the ellipsoid over which the 
averaging is carried out (in those cases when the angle 
brackets contain a function with index f3 or v, the 
averaging region is determined uniquely and therefore 
we shall omit the appropriate indices at the angle 
brackets). The primed brackets denote here (as in 
(15 )- (17) below) that the integration is carried out only 
within the limits of the attainability cone. If the dis­
persion law of the {3-th ellipsoid is represented in the 
form Ef3(P) = E~ PiP/2m (where m can be chosen to 

be, for example, the mass of the free electron), then 
(13) reduces to 

a~;,= ( e,~~ )''• , dp~ = i:__ ( mv: e,• )''' 
0 

(14) 
d-WP e, d~~ (;., m, e,P 

The conservation condition for the number of electrons 
of the valley {j at the boundary z = -b is of the form 

(v,q;p>)' + p.(v,q:p<)' + Lj dp•p(V,<pp•<)' + dvp(v,cp.<) = Oo (15) 
w 

Substituting here cp5 from (5) and using (13), we get 
B- = ~ d -, (v,q;p,<)' + d- (v,cp.<) (16) 

p ~· p~ (v,<)'p, Pv (v,<), ' 

B.-= d- (V,IJlc<) + ~ d- (v,cp~<)' (17) 
' (v,<). ~ ·~ (v,<)'~ 0 

In (15)-(17) all the mean values are taken at z =-b; 
similar equations can be easily written for z =b. 
Equations (16) and (17 ), in which, according to (8 ), the 
right-hand sides themselves depend linearly on B± 
form a linear system from which it is possible to de­
termine in principle all the parameters B±. 

2. INTEGRAL EQUATIONS FOR THE CONCENTRA­
TIONS AND FOR THE FIELD 

In solving (6 ), fP/3 and 'Pv were assumed to be known 
functions of z. It is now necessary to reconcile the 
solution, stipulating that all the mean values of cp, de­
fined by formula (8 ), actually be equal to cp. Averaging 
of the terms of the type ( E f3 v) in (8) is best carried 

out by using the transformations (1.6 ), which transform 
ellipsoids into spheres, and the half-space Vz < 0 into 
uz < 0: 

we obtain 

(v;Fp(v,)> = a;,P(v,Fp(v,)), 

where i/3 = A./3/A~z, since (ux,yF(vz)) =0. 
By laborious but elementary manipulations we can 

transform the equations for CiJ{3 into 

b 

+ p,+exp (z- b)])>+) dz'e8~(z'){(p•+ exp (z + z' ))> 
Vz't'c -b Ac Vz'tc 13 

- ( p.- exp ( _ _:__±-___:_:_))> -sign(z'-z) [(-1 exp( 2b -1z~-z1 ))> 
\ de ' Vz'tc p L\c Vz'tc P 

_ (P•:P·- exp( lz'-zl-2b))>]} =(t),Gp(z)o (l8) 
Llc Vz'tc 1 p 

The symbol > at the angle brackets indicates here that 
the averaging is carried out over the half-surface of 
the ellipsoid f3 with Vz > 0, and 

8p(z) = (Ep(z)"ap)zo (lOa) 

Since the !H± cancel out outside the attainability cones, 
only the region inside the cones contributes to the first 
two terms of (18) when the bands are curved upward. 

In conjunction with (4), Eqs. (18) form a system of 
integral equations, which makes it possible in principle 
to determine cp and Ez(z). 

Naturally, the solution of the system in general form 
is impossible, and we shall analyze in Sees. 2 and 3 
below the limiting cases. However, one interesting 
general regularity can be revealed by differentiating 
with respect to z and transforming Eq. (18) into a 
second-order equation 

6 

Tc (1).e8p(z)+) dz' e8p(z') (_!- [p,+exp (- z +z') 
-b Vz.l\c Vz'tc 

( z + z' ) ( 2b-lz-z' I ) ( lz-z' l-2b )])> +p.-exp - -- -exp ------- -p,+p,-exp 
Vz't'c Vz'tc "z't'::: ~ 

<!Hp+ [ (z+b) ( z+b)J)> + -- exp -- -p.-exp ---
Vz.6.c Vz't:c Vz't"c 

< !Hp- [ ( b - z) ( z - b )] >> oGp - --.- exp -- -p.+exp -- =T,(t).-~-0(19) 
VzLlc Vz't'c ' Vz't'c . OZ 

The free terms of (19), which contain the parameters 
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!JJ±, diverge logarithmically at the points z = ± b in 
the absence of a bending of the bands for all the car­
riers, owing to the appearance of Vz in the denomina­
tor; in the presence of a bend, they diverge for those 
groups, which are attracted to the surface (the region 
of integration in the angle brackets retains for these 
groups the singular point Vz = 0). As a net result, in 
these IS {3 , and consequently also in the concentration 
gradients of all the groups of carriers and in the field 
Ez, there arise logarithmic singularities at the bound­
aries. This is a direct consequence of the finite inter­
valley scattering on the surface, for in its absence all 
the gradients in Ez, as shown in[ll, are constant at 
the boundaries. 

We now establish a general relation for the main 
measured quantity-the total current flowing through 
the plate. It is required to calculate the partial densi­
ties of the currents, the expressions for which reduce, 
using the variables ui, to the form: 

j;~ = e(v;q;~>(v)+ v;'q;~<(v'))> = e ~Au.~ (u>.[q;~>(v) 
~=x, y (20) 

+ cp~< (v') J>> + aih,B. 

Thus, the longitudinal current includes as a component 
part the transverse current multiplied by a1z: 

j,~ = e{'(!JJ~-v, [ exp( b- z )- p,+exp (,z- b)])> 
~c Vz'fr Vz'tc 

- < !JJ~+v, [ exp( :+~)- p,- exp(-~)])> 
Llc Vz'tc Vz'fc 

ib, , (v'[ (2b-jz-z'j) _ (lz-z'j--2b) + _. dz e<b'~(z) - exp ----- + p,+p,-exp -----~-
_11 Ac VzTc Vz"tc 

(z+z') ( z+z')J)>} - p,+exp -- - p,-exp --- . 
Vz""Cc , Vz'tc j3c 

(21) 

To determine jz it is necessary to solve the system 
(4) and (18) and to obtain the parameters B by means 
of formulas (11), {16), and (17). The first term of the 
right side of (20) does not contain the quantities B and 
(,0, and can be explicitly calculated. Integration of (20) 
over the thickness yields 

b 

!1~=) dzj1 ~(z)=2be'-r, S F"A"~M~,~{2(u!..2)> 
-b ~,, !J..=X, Y -< Vbz'tc u,2 [ (1-p,+)(exp(_!-)+p,-exp(--b )) 

2 Llc Vztc Vz'Tc 

+(1- p,-) ( exp ( V~T, ) + phxp(- ~~-J) J 
xf exp(-b )-exp(-~-))'(}+at,~l,~. (22) 

\ Vz'tc liz'tc I j3 

The total current in the plate is obtained by summing 
the partial currents J r and J i (the formulas for the 
latter are analogous to expressions (20 )- (22 ). 

3. THIN PLATE 

If the thickness of the plate is small compared with 
the length L of the intervalley diffusion displacement, 
then the right sides of Eqs. (18) and (19) can be 
omitted3). In this case Eqs. (18) or (19) can be de-

3 ) It is obvious that this approximation suffices to determine the 
spatial dependences of all the quantities. At the same time, in the case 
of weak intervalley scattering on the surface, when the rates of the in­
tervalley transitions in the volume and on the surface become com­
parable, it is necessary to introduce certain modifications in the fore-

coupled and be used to determine the functions E {3 ( z ). 
In terms of these functions, d(,O/ dz and Ez can be 
expressed with the aid of (4) and (10 ): 

E,(z) = - 1-{ ~ [/S~(z)- (EIIi~),] + q[ISv(z) -(EII;v)z]}, (23) 
N+q I' 

dq,~/dz = e(E(z)aB),- e<b'~(z), (24) 

where E 11 =(Ex, Ey, 0). 
When b « l we can omit from (19) the integral 

term4 ) 

e<b'~(z) = --1 {( _!JJ~- [ exp( b,- z ) - p,+exp( z- b )])> 
-r,\1>, v,"', c,-r, v,-r, 

- < !JJ~+ r exp(b + z ) - p,- exp(- b + z )]\>} . (2 5) 
Vz.6.c:.... Vz'Tc Vz'tc I 

Simultaneously with (19 ), it is necessary to satisfy 
for all values of z also the equation (18) from which (19, 
was obtained by differentiation. When b << l it is also 
possible, approximately, to omit the integral term in 
(18 ), and all the exponentials can be replaced by unity. 
Then 

( !JJ~+ 1 + p,-- >> +( gJ~- 1 +p,+ _)> =0, 
\ 1- Pc"Pc 1- p,+p, 

!lJv 1 (1 + Pv-) + !lJv-(1-\- Pv+) = 0. (26) 

Thus, for a complete solution of the problem and 
for a determination of the parameters (,0( ±b) and !lJ ±, 
we have Eqs. (16), (17), (and analogous equations with 
z =b), (24), and (26). Since there is a single linear 
connection between the conservation equations on two 
surfaces (owing to the identical conservation of the 
total transverse current), we must use Eqs. (4) for 
absolute calibration of (,0 (which in the weaker form­
in the form of a derivative-was already used in the 
derivation of (23)). 

Let us consider the particular case of a symmetrical 
plate, when all the p and d on both sides are the 
same. It then follows from (23)-(26) that 

gJ~- = -!JJ~+ == !JJ~, q;~(-z) = -<p~(z), E(-z) = E(z), 

(27) 

lr = T, 12e,B ~,/m; (28) 

The formula for /Sv is established from (28) by means 
of the substitutions {3- v, Pc - Pv. and ec - rr/2 
(ec is the apex angle of the attainability cone). If ec 
is not too close to rr/2, namely when b << l cosec, 
all the exponentials under the integral sign in (28) can 
be replaced by unity, and 

e8B(z) ::::> [.%'~/ 1~(1 + p,)] jlncos Bel, (29) 

going procedure, and the absolute values ip must be determined from the 
conditions of the integral balancing (see, for example, [ 1 2 ] ). Since we 
shall consider here mainly the symmetrical case, when all the ip (0) = 0, 
we shall not have to resort to this condition. In addition, the case of 
a weak intervalley scattering on the surface is of no interest to us here, 
since it is considered in [ 1 ] . 

4 )The error introduced in this case is easiest to estimate in the sym­
metrical case. The correction to iF 13 turns out to be of the order of 

(b/ l)ln(l/b) 813, where F13 is the mean value of <Ff3. The relative error in­
troduced by all the succeeding approximations is of the same order, or 
approximately equal to b/ /. 
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i.e., it is constant. At the same time 0v(z) near 
z = ±b diverges logarithmically: 

!!Jv lv' 
e@,(z)~-ln--. 

· 21, b2 - z2 

(30) 

As a result of (23) and (24), analogous singularities 
appear also in Ez and in all the dq:i/dz. In the case of 
a small bending of the bands (b?: z13 cos ec), all the 
0f3 begin to depend on z, and when V(O)- 0, singu­
larities similar to (30) appear in them. The singulari­
ties vanish only when V(O) > ~c. when the intervalley 
scattering on the surface vanishes completely. 

Let us proceed to determine the quantities !JJ. When 
(8) is substituted im (16) and (17), the main contribution 
comes again from the integral terms in (8): 

1 ~ ~. ~ 
g)~+-- 4.1 dw!JJ~, +---!11. = LJdw(iPB'- 'liB)+ dBv('fl,- 'fl',), 

1 + p, W 1 + Pv ll' (31) 

( dv ) ~ dvp ~ - ( 2 ) 1 + 1~ !11. + LJ·:r--+ g)~= 4.1 a.~(!pp- 'Pv), 3 
, Pv B P~ ~ 

where (p = cp( -b). Let us now determine these cp, inte­
grating (24). According to (28) 0{3 ~ !11[:3, and integrals 
of all the terms of (24) containing 0p do not exceed in 
order of magnitude !lp (b/l) ln (l/b) and can be dis­
carded as small compared with the left sides of (31) 
and (32 ). The right sides of (31) and (32) are then de­
termined by the formulas 

(p"B ·- <iiw = eb [(E 11 aw), -(E 11 ap),], 

(jip- cp. = eb [(E 11 a.), -(E 11 aB),]. 
(33) 

It is interesting to note that they do not depend on the 
intensity of the surface intervalley scattering (unlike 
the thick plates [sJ ,, where they are cancelled in the 
case of strong scattering). The system (31)-(33) de­
fines !JJ, in terms of which all the remaining quantities 
are expressed. It is seen directly that in order of mag­
nitude !JJ ~ ebdE 11 ,, where d characterizes the probabil­
ities of the intervalley transitions. Consequently, the 
singular part is 

E, ~ d-In---- Ell ( b [2 ) 

l b2 - z' 
(34) 

(the constant part of Ez, according to (23) is of the 
order of E 11 ). 

In the current jf in (21) non-integral terms pre­
dominate, which, iln accordance with the estimate ob­
tained for !11, are of the order of a 0 d(b/l)E 11 , where 
a0 is the electric conductivity of the bulky sample; 
consequently, the role of the effective free path is 
played here by db. At the same time, in the first term 
in (22 ), as can be readily understood in analogy with [4 1, 
the effective free path may vary, depending on the sur­
face conditions, from l to b ln (l/b), making it possi­
ble to neglect in a thin plate ( b « l) the last term of 
(22 ). 

Let us proceed to analyze the principal term in (22) 
in a symmetrical plate; in the absence of bending of the 
bands, it coincides with (1.16). It must be emphasized 
first of all that it depends exclusively on the fraction 
of the specular scattering Pc, and does not depend on 
the fraction of the intervalley scattering in the overall 
diffuse scattering .. In the limit of "thick" plates 
( L » 2b » l ), the second mean value in (22) is smaller 
than ( u~ )> by a factor l [:3/b, and can be omitted. The 
effective conductivity is then determined by the sum of 

the first and third terms, and reaches saturation. 
However, as already noted in[l 1, unlike the results 
ofr 2• 3• 13 l, this value of the conductivity ("intermediate 
plateau") does not coincide with the conductivity of the 
bulky material, and goes over into the asymptotic 
value of the conductivity at "small" thicknesses in 
the diffusion size effect[sJ. 

When V(O) = 0, and even when V(O) > 0 for the 
electrons of the valence band, the principal terms in 
the two mean values in the curly bracket of (22) cancel 
out, and when b « l ( 1 - p) the effective conductivity 
decreases by a factor 

__ b_ln (~-~1__- p) )· 
l(1- p) b 

However, for electrons from the conduction bands, 
when V(O) -..<- 0, the integration in the second mean 
value of (22) is limited to the attainability cone and 
therefore the effective conductivity tends to saturate as 
b/l- 0. If b « lp (1 - p) cos ec, then the average 
saturation current, calculated from the formula (22 ), 
is equal to 

1 e',;,.n, ~ ~ 3 ( 1 ) (22 ) -1;=·--LJ LJ E"A,,,,BA1,,B.--:;-cos0,. 1--;;-eo,28,. a 
2b m B 1., P=x, u ~ ,_) 

where nc is the equilibrium concentration in one of the 
electronic valleys. The last factor in (22a) describes 
the dependence of the effective electric conductivity on 
the near-surface bending of the bands. 

It must be noted that the first to obtain a plateau at 
b/l << 1 was Parrotr131 , who also assumed, but from 
other considerations (see the Appendix), that the scat­
tering of the glancing electrons is purely specular. 
Unfortunately, however, his final formulas are incor­
rect, owing to errors in his solutions, which are 
similar to those in( 2' 31 • 

4. THICK PLATE 

If 2b >> l, the diffusion approximation is valid every­
where except in surface layers of thickness ~z. It is 
precisely these layers where the singularities of Ez(z) 
arise. The purpose of this section is: 1) to determine 
the singular part of Ez and 2) to connect the phenom­
enological boundary conditions for the diffusion ap­
proximation, which determines the carrier distribution 
in the interior of the plate, with the parameters char­
acterizing the scattering from the boundary. 

To simplify the analysis, we confine ourselves to an 
account of the electronic valleys only, assume the scat­
tering to be diffuse ( p = 0 ), and the band bending to be 
equal to zero. We choose the origin on the left surface 
of the plate, and define the distance o such that l « o 
« L, where L ~ VF ..fTT is the diffusion length. Then 
we can neglect the intervalley scattering in the kinetic 
equation if z :s o, and use the diffusion approximation 
if z 2: o. The region near the second surface is con­
sidered perfectly independently and in similar fashion. 

Near the left boundary, Eq. (18) reduces to 

f dz' e@p(z')sign(z'- z)E2 (£=.:1 )= f11rJE2( - 2-), (35) 
' 0 lB ' lB 

and the differential equation (19) that is obtained from 
it reduces to 
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e~f(z)=-1-f:tz'e~~(z')£1 ( lz-z'l )+~-E1(-:_), (36) 
2lp 0 ~~ 2l~ ~~ 

where 
00 

En(x)=) dee-ne-xt. 
0 

Equation (36) is the inhomogeneous Milne equation[14l, 
which has been well investigated, in particular, in 
neutron-transport problems[15l, If we denote by M(3(z) 
the solution of the homogeneous Milne equation, corre­
sponding to (36 ), and normalize it in such a way that 
M(3(0) = 1, then it is possible to verify by direct sub­
stitution that the solution of (35) is 

dM~ 
e~p(z)=91paz-· 

It is known[ 14' 151 that when z >> l(3 we have 

Mp(z)::::::: f3( ;-+ q.,.), q.,. ~ 0.710. 

When z « l(3, in accordance with (36), 
91 lp 

e~p(z)::::::: 2lln~. 

We proceed to determine the effective boundary 
conditions and to calculate 91(3. Using (21), (23) and 
(24) (see also[ 151, Sec. 6, 3), we can show that 

(37) 

(38) 

(39) 

elp ( ) j,r. =-_(1),91p, 40 
't'c)'3 

1 ~ 
ijlp(z)= ijl~(0)-91~(Mp(z)-1)+N LJ 91p,(Mp,(z)-1) 

w 

+e[(EII;p),- ~ ~ (EII~p-),]z. (41) 
w 

From (41) and (38) it follows that when z » l(3 the 
functions Cii(3(z) depend linearly on z. This is natural, 
since in this region the diffusion approximation is al­
ready valid and the nonequilibrium concentrations of 
the electrons n{3 (z) = -( 1 ) c cp {3 (z) should vary linearly 
with z if intervalley scattering is neglected[5l, There­
fore the phenomenological boundary concentrations 
n{3 (0) should be obtained by extrapolating to z =0 the 
asymptotic expression for Cii(3(z) from (41) in the 
region of large z. Thus, 

np(O) =- (1),{ tpp(O)+(yS q.,. -1) ( ~ ~ 91p,- 91p)}. (42) 
P' 

It remains to write down Eqs. (16), in which the right­
hand sides are calculated in analogy with (40 ): 

91p+ ~aw( 4--1)91w= ~dw(ijlp'(O)-!Jlp(O)). (43) 
P' yS P' 

Eliminating all the cp (3(0) and 91{3 from (40 ), (42 ), and 
(43 ), we obtain 

_..!:._j,~ + 4 - 3qoo ~ dp-pj,P' = .-!:!.._ ~ dpp' [np(O)- nw(O) ]. (44) 
e 3q00e P' 3-rcqoo P' 

Equations (44) solve our problem, since they relate 
the phenomenological fluxes j ~ / e with the concentra-
tions n(3. Solving these equations we can obtain the 
rates of surface recombination s, which, as is obvious 
from (44), are of the order of vFd· The current through 
the plate is then directly determined by the formulas 
of[5 J. 

Let us also estimate 91(3. If the values of s are not 
not too small, then j ~ ~ a 0 E 11 [sJ, and as a result of 

(40), 91(3 ~ eEiiz, which exceeds by a factor Z/b the 
values of !l1(3, and consequently also of the singular 
part of the field in thin plates. 

CONCLUSION 

Without repeating the main conclusions made in the 
text and summarized in the Introduction, let us make 
a few remarks concerning the size effect under certain 
conditions for which the calculations were not per­
formed, but for which the qualitative picture is per­
fectly clear. 

If the bands are curved downward in a thin plate, 
then when b - 0 the hole conductivity saturates, and 
the electron conductivity is cancelled out. Therefore, 
for example in bismuth, where under normal conditions 
the electron conductivity predominates, it is possible to 
change the type of conductivity by decreasing the elec­
tron effective mean free path. Since it is assumed that 
the electrons, unlike the holes, have a multivalley 
spectrum, even when I V(O) I >tv, when the holes are 
all crowded away from the surface, the logarithmic 
singularity in Ez ( z) still remains. If the bands on two 
surfaces are curved in opposite directions, then the 
plateaus in the electric conductivity at small values of 
b, naturally, vanish and the conductivity, as usual, 
tends to zero51 • 

It is clear from the foregoing that it is important to 
carry out investigations of the size effect when the 
bending of the bands is controlled, and to combine 
these investigations with experiments on the field effect. 

The schematic dependence of the electric conductiv­
ity on the thickness, described in the Introduction, may 
become complicated by an additional structure con­
nected with the difference of the electron and hole free 
paths, and also with the anisotropy of l(3; the aniso­
tropy of l(3 should lead to a different thickness depend­
ence of the currents Jr (formula (22 )) for ellipsoids 
having different orientations relative to the surface of 
the plate. It is difficult to estimate the order of mag­
nitude of the corrections that may result from the al­
lowance for the anisotropy of the relaxation times, 
deviations from the condition kFlD >> 1, etc. 

It should be noted that the singularities in Ez(z) 
should arise also in normal metals with complicated 
Fermi surfaces, and not only in semimetals. 

We note in conclusion one more consequence of the 
developed theory. Violation of the equilibrium distri­
bution of the carriers among the valleys with large 
concentration gradients near the surfaces should lead, 
as a result of the ordinary electron-photon interaction, 
to the occurrence of inhomogeneous deformation. Ob­
viously, in an alternating external electromagnetic 
field the same effect should cause a new mechanism of 
sound generation. 

APPENDIX 

Let us consider the region of the near-surface bend­
ing of the bands upward at the left boundary, which we 
assume here for convenience to be the plane z = 0; we 
denote by z0 the value of z, starting with which the 

5 >Disregarding the purely "optical" effect [ 13 ], the role of which is 
as yet unclear. 
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FIG. 2. Plot of the bottom of the 
conduction bands (c) and of the top of 
the valence band (v) near the surface; 
F- Fermi level. 

near-surface field can be neglected in practice and the 
bending of the bands V(z) vanishes (Fig. 2). Let us 
assume that collisions can be neglected in the layer 
(0, zo), an assumption valid when l >> Zo, and that the 
kinetic equations hold everywhere. If e:(p) 
= EijPiPjl2m for one of the electron valleys, then it 
follows from the energy integral that 

v,(z)= ±[ (v,0) 2 -2 ~· V(z) r 
where v0 is the velocity on entering the space-charge 
layer. We see therefore that the electrons entering the 
attainability cone are those with I v~ I > v cr 
= v'2EzzV(O)/m, which corresponds, in the coordinates 
u, to an attainability cone apex angle Be, such that 
cos 2 8c = V(O)/t'c. The remaining integrals of motion 
for the electrons entering in the layer are given by 

e;, v dV 
v;+-S --=v;o, 

m 0 v,(V) 
(A.1) 

where the integration is along the trajectories of the 
motion. 

The distribution function in the surface layer is 

f(z, v) = fo(e- f.L(Z)) + <p8fo I Be, 

where J1. (z) = t' - V(z) is the electrochemical potential 
(eEz = dV / dz). Neglecting collisions, we should dis­
card Ex and Ey in the same approximation. Then the 
equation for cp reduces to vzacpjaz- eEzacpjapz =0, 
and its solutions are arbitrary functions of the integrals 
of motion (A.1 ), i.e., they remain constant when v and 
z are connected by the relations (A.1 ). 

For electrons outside the attainability cone, (A.1) is 
valid along the entire trajectory, and for Vat the turn­
ing point Vtur we have 

vtur 
2.!_ (' dV _ 0 
m J v, (V) - v, · 

0 

(A.2) 

Since Vz reverses sign when moving on the opposite 
branch of the trajectory, the velocities on emerging 
from the layer, according to (A.1 ), are equal to 

( v;0) • = v;O- 2 !:.!!._ v,0, (A.3) e,, 
which coincides with (1.12) and confirms (5a). 

For the electrons in the attainability cone, (A.1) 
relates the velocity Vi(O) on the surface with v~. A 
similar relation holds for the outgoing electrons. It 
follows directly from (A.1) that if the velocities v(O) 
and v* (0) at z = 0 are connected by relations of the 
type (A.3 ), then these relations will also be satisfied 
by the corresponding velocities at z = zo. Therefore, 
if we assume at z = 0 the boundary condition 

<p>(v(O)) =p<p<(v•(O)) +B, 

where B is determined from the conservation of the 
number of particles, this automatically leads to an ef­
fective boundary condition (5b ). The electrons of the 
valence band all reach the surface and equation (5c) is 
valid for them. 

The next problem is to relate the effective constants 
df3(3' and the other constants in (13) with the constants 
d~{3' and the others on the true surface. For the sake 

of brevity, we shall only indicate the procedure and 
present the final results. Writing down an equation 
similar to (13) for the true surface z = 0, we can go 
over in all the integrals containing CfJ{:3 (0, v ), using the 
method indicated above, to cp{:3(z0 , v), i.e. to fluxes on 

the fictitious boundary z 0 • 

The situation is different in the case of the valence­
band electrons, since those electrons that go off from 
the surface at glancing angles are returned to the 
surface by the contact field (this can be readily visual­
ized by considering holes in the valence band). The 
distribution function of these "trapped" electrons, 
naturally, cannot be connected directly with the distri­
bution function at z0 , but in analogy with the function 
of the glancing electrons from the conduction band, 
this function has the property cp? (z, v) = cp $ (z, v* ) • 
As to the remaining electrons of the valence band, the 
values of cp v (O, v) and cp v (zo, v) for these electrons 
are expressed directly in terms of each other. Writing 
now the balance equation for the "trapped" electrons 
at z = 0, we can determine from this equation their 
flux at z =0 in terms of the different fluxes at z = z0 , 

and then eliminate it from the balance equation for the 
conduction electrons and for the valence electrons 
emerging from the space-charge layer As a result we 
obtain a system of equations for the fluxes through the 
surface z0 , similar to (15), in which 

dw = dp~· + adp.od.~· cos2 e. 

dp. = adp.O(f- ppo)sin28., pp = p,o, 

dvp = a(1- Pv0 )dvp0, dv = dv0(1- p.0) sin2 8,, p, = Pv0 

a = ( 1 - p.o- a.o cos2 B.) -t, cos2 8; =s. :(~ (O) (A.4) 

The angle Bv limits the region of "trapped" valence 
electrons in the coordinates u. When V- 0, the angle 
Bv - 1r/2 and all the d - d0 • It follows directly from 
(A.4) that all the d depend on V(O). It should be noted 
in passing that the d0 also depend on V(O), since rela­
tions of the type (12) hold for them, too, except that the 
right-hand sides contain the electrochemical potentials 
on the true surface. Therefore, for example, when 
V(O)::::: t'c, the surface scattering of the holes becomes 
purely intravalley (in the elastic-scattering approxi­
mation). 

Let us stop also to discuss the criteria for the ap­
plicability of the kinetic equation to the surface layer, 
and consequently, the region if validity of formulas (5) 
and (A.4). They are valid if kFlD » 1, where kF is 
the Fermi momentum of the group under consideration. 
This is equivalent to rB >> lo, where rB is the effec­
tive Bohr radius, i.e., the radius in the dense-gas ap­
proximation. Since the criterion for the existence of 
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a semi-metal (the absence of pairing of electron-hole 
pairs into excitons) has the same form (but with a weak 
inequality), the use of the quasiclassical approximation 
can be regarded as valid. However, in real semi­
metals, the satisfaction of the criterion is apparently 
still on the borderline; a more general theory should 
take into account tunneling through the space-charge 
layer towards a rough boundary, which is far beyond 
the scope of the present article. 

The potential in the space-charge layer was as­
sumed above to be dependent only on one coordinate z. 
This is valid either when the relief p on the surface 
has dimensions p » lD, or when p « lD (i.e., 
macroscopic violations). In both cases, allowance for 
the potential V has a strong influence on the inter­
valley scattering, but only in the second case does it 
change de appreciably. If the criterion kF lD » 1 is 
satisfied, then the intravalley scattering on the surface 
will occur in any case at small angles. But since the 
scattering even through small angles becomes very 
appreciable when 2b « l, the criteria for the applica­
bility of the theory will become more and more string­
ent. 

We note that Parrot(Is] was apparently the first to 
consider the "cutoff" of the diffuse scattering for 
glancing electrons; he started from the usual optical 
analogy. It seems to us that the mechanism considered 
above is more effective, is capable of explaining a wide 
range of variation of the angle Be, and points to direct 
experiments, of the field-effect type, for a controlled 
variation of this angle. Naturally, of course, both 
mechanisms should be considered in parallel. 
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