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Collisions that induce transitions between the doublet sublevels in pure alkali metal vapors are con
sidered. The corresponding effective cross sections are calculated. The characteristics of the 
sensitized radiation are investigated. The results are compared with the experimental data. 

INTRODUCTION 

WHEN alkali-metal vapors are exposed to light of 
frequency close to the frequency of the transition of one 
of the levels of the doublet to the ground state, the 
scattered radiation contains also a frequency-shifted 
component, i.e., one corresponding to the transition 
from the other level of the doublet. This phenomenon, 
called sensitized fluorescence, is due to collisions. 
Indeed, the incident radiation excites atoms to one of 
the doublet levels. The collisions between the excited 
atom and the surrounding atoms can lead to a transi
tion of the atom to the other doublet level. The change 
of the internal energy of the colliding atoms occurs in 
this case at the expense of their kinetic energy of rela
tive motion. The emission of the atom excited to the 
other doublet level leads indeed to the phenomenon 
under consideration. 

The transition of an atom from one doublet level to 
the other can occur both as a result of collisions with 
the same atoms, which are in the ground state, or as a 
result of collisions with extraneous atoms. We con
sider only collisions of the former type, i.e., we in
vestigate sensitized fluorescence in pure alkali-metal 
vapors. This phenomenon was investigated in detail 
recently by Krause and co-workers[l-sJ and Seiwert 
and co-workers[6 ' 7l, who determined the effective cross 
section of collisions with transitions between the 
doublet levels from the measured intensity of the 
sensitized fluorescence. In this paper we calculate this 
cross section and determine the main quantities char
acterizing the sensitized fluorescence in the system 
under consideration. 

The cross section of the transition between the com
ponents of the doublet Ps;2 and P1;2 due to collisions 
with like atoms was calculated by Ovchinnikova [BJ un
der the assumption that the region of the transition is 
determined by taking the exchange integrals into ac
count. The effective distances R to the transition point 
(point of pseudointersection of the terms) turned out in 
this case to be of the order of 15 for sodium (in the 
atomic system of units). We shall show that for alkali 
metals with a small distance ~E between the sublevels 
of the doublet, the transition region lies at much 
larger distances, where the contribution of the exchange 
integrals is negligibly small. Thus, for example, for 
transitions between the first excited states of sodium 
(~E = 17 cm-1 ), the effective distances R are of the 
order of 50. With increasing ~E, the effective dis-
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tances decrease and allowance for the overlap inte
grals apparently becomes necessary. 

The transitions between the levels of the doublet 
due to collisions with extraneous atoms were con
sidered in[9- 14l. The dielectric constants of pure alkali
metal vapors at the resonant frequency was determined 
in an earlier paper by the author[15 l. 

1. MATRIX ELEMENT 

Let us write down the matrix element M of this 
process. Graphically this matrix element is shown in 
the figure, where a wavy line represents a photon, a 
thin solid line an atom in the ground state S1;2, and a 
dashed line an atom in the state P1;2, and a heavy line 
an atom in the state Ps;2. For concreteness, we as
sume here that the atom is initially excited in the P 1;2 
state. The rectangle in the figure denotes the effective 
four-pole, i.e., the aggregate of diagrams describing 
the interaction between the excited and unexcited atoms, 
leading to a transition of the atom to the state Ps;2 
( P112 - Ps/2). The process can have either an ex
change (b) or a non-exchange (a) character. On the 
mass shell or near it, the effective four-pole reduces to 
the amplitude of the corresponding process[16l. The 
situation here is perfectly analogous to that considered 
by us[ 17 l in an investigation of resonant collisions. The 
amplitudes of the non-exchange and exchange processes 
will be denoted by f1 and f2. The analytic expression for 
the matrix element M is (we use, unless otherwise 
stipulated, the atomic system of units) 

aa,_ 2rr - 4rr ma, 
Ma,a,A, =-V jroroo(eAd)am•(e,.,d) .. a, MVUtwa, (q, qo) 

+ h;:~;(q, qo)]Gw•(Po + ko)Gm•m(P + k), (1) 

where wo, ko, eAo and w, k, and eA are respectively 
the frequencies, wave vectors, and polarization vectors 
of the absorbed and emitted photons, M is the mass of 
the atom, V is the volume of the system, and q0 and 
q are the relative momenta of the atoms before and 
after the collision: 

qo = 1/2(Po + ko- Pt), q = 1h(p + k- P2), 

G and G are the Green's functions of the excited atoms. 
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The indices a, J1, and m characterize the projections 
of the total angular momentum of the atom in the 
states S1;2, P 1;2, and P 3; 2 respectively. Summation 
over repeated indices is implied. The interaction be
tween the excited and unexcited atoms is via resonant 
dipole-dipole interaction and is characterized by large 
effective cross sections. These collisions determine 
also the Green's functions of the excited atoms. As 
shown in [171, these Green's functions, accurate to small 
correction terms, are 

(2) 

where we have used the condition I k I « I p 1. By w 1 
and w2 we denote the frequencies corresponding to the 
transitions from the excited levels P1;2 and P3;2 to the 
ground state S1;2. The widths r 1 and r 2 of the excited 
levels were determined in[ 15 l: 

r, = 'Yt/2 + 2,73nX"y~, 
fz = 'Yz/2 + 4,38nl\ 3y2, 

(3) 

where y 1 and y 2 denote the radiative lifetimes of the 
states P1;2 and P3;2, ')'1"" y2"" y, "A= c/w1"" c/w 2, and 
n is the density of the atoms. For a rarefied medium, 
when n 7c3 << 1' the widths r 1 and r 2 reduce to the 
radiative vertices of the doublet levels. Averaging over 
the momenta of the colliding particles, we write the 
differential effective cross section of the process under 
consideration in the form 

2:rrnV ~ ~ dp2 dp --
dcr = -- dpodPt'P(Po)<p(Pt) ·--V[M[ 26(Po 

cV-1 (2n) 3 

w2dw dQV 
+ko+Pt-p2 -k-p)o(wo+ ep,+ ep,- w- ep,- ep) (2 )' 

:rrc (4) 

where cp ( p) is a normalized Maxwellian distribution, 
Ep = p2/2M, the bar over M denotes summation and 
averaging over the spin indices. The density n is the 
result of the fact that the process is a three-particle 
one. 

For the subsequent calculation of the effective cross 
section of sensitized fluorescence (4), it is necessary 
to know the amplitude f or the effective cross section 
of collision with transition between the doublet levels. 

2. EFFECTIVE CROSS SECTION FOR THE TRANSI
TION BETWEEN THE DOUBLET LEVELS 

The Hamiltonian of a system of two colliding atoms, 
one excited and the other not, is 

H= H0 (1) +Ho(2) + V(R), 

where V( R) is the interaction operator. At distances 
large compared with atomic, it has the form of the 
dipole-dipole interaction operator: 

V(R) = dtd2 _ 3(dtR) (d2R) 
R3 R 5 ' 

(5) 

where R is the distance between atoms, and d1 and d2 

are the operators of the dipole moments of the colliding 
atoms. For resonant collisions, distances of the order 
of the Weisskopf radius Po are significant: Po ~ g/ lv, 

where v is the relative velocity of the atoms and g2 
= d3;2% = d1;2 %, where dj is the reduced matrix ele
ment of the dipole transition Pj - S1;2 . 

We shall assume that the velocity of the atoms is 
small compared with the electron velocity, v « 1. In 
the opposite case, the employed approximations, par
ticularly the assumption that the principal role is 
played by distances that are large compared with the 
atomic distances, will be violated. At the same time, 
we assume that the temperature T of the gas is suf
ficiently high, so that the condition T >> ~E is satis
fied. If the distance between the levels of the doublet 
~E is such that ~E » g2jp~, then the effective dis
tances for such collisions are R ~ (g2/~E)1/ 3 « p 0 , 

and the condition for the applicability of the adiabatic 
perturbation theory is satisfied 

{'z 1 v 
-----:~--~-. (6) 
fl' ,;coli U 

This condition is satisfied only for the lightest of the 
alkali metals -lithium. 

On the basis of the adiabatic perturbation theory, 
we should construct, to obtain the transition probability, 
the electronic terms of the quasimolecule made up of 
the excited and unexcited atom. If the corresponding 
electronic terms intersect then, as is well known (131, 
the transition from one term to the other occurs at the 
intersection point. 

Knowing the atomic wave functions IJ!jm (excited 
states) and xa (the ground state) and the perturbation 
operator V(5 ), it is easy to find in first approximation 
of perturbation theory the electronic terms E ( R) and 
the corresponding wave functions iP of the quasimole
cule made up of the colliding atoms. It is also possible 
to carry over to the perturbation operator the spin
orbit interaction operators of the atoms causing the 
occurrence of the fine structure (states P1;2 and P3;2 ). 
Since like atoms in different states take part in the 
collision, an additional degeneracy arises in the sys
tem, connected with the possible exchange of excitation 
between the like atoms. Accordingly, all the possible 
states of the quasimolecules break up into two classes
even and odd. A transition from one class of solutions 
to the other corresponds to a change of the sign in the 
secular equation of the matrix elements of the opera
tor V (5). 

It is convenient to perform the calculations in a co
ordinate system with z axis parallel to the vector R. 
Each term of the quasimolecule is characterized by the 
projection Q of the total angular momentum J. The 
states corresponding to different signs of 0 belong to 
the same energy. The value 0 = 0 corresponds to four 
terms, 0 = 1 to three terms, and 0 = 2 to one term. 

We are particularly interested in those terms of the 
quasimolecule, which intersect in the approximation 
under consideration at some value R = R0 • In the region 
of the intersection point, the conditions for the applica
bility of the adiabatic approximation are violated, and 
the transition from one term to the other had a maxi
mum probability. The transition between terms of un
equal parity is forbidden, so that to find the points of 
intersection it is necessary to investigate terms of 
different parity independently. We shall henceforth 
consider mainly odd terms, since they turn out to make 
the main contribution 
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An investigation of the solutions of the secular equa
tion, which we do not present here, shows that actually 
there exists two intersecting terms E0 (R) and E1(R), 
corresponding to values 0 = 0 and 0 = 1 respectively: 

Eo = E•~,- 'Mill- 3/zU + 1/2[ (i\E) 2 + U2- 2/aUM]'I•, (7) 

where U = g2/R3, and the term E1 is determined from 
the solution of the cubic equation 

'A3 - 2U'A2 - 'A(1/ 3t:.E2 + U2) + 2U3 + 2/ 9t:.EU + 2/'Eit:.E• = 0, (8) 

where E1 = E1/2 + (%)~E +A, E1 = E1;2 at R-oo. 
The point of intersection of the terms is determined by 
the relation 

g2 / Ro3 = 1.041\E. (9) 

The wave functions corresponding to these terms are 
of the form 

-(I) -(2) 
!Do= bo(R) 'l't.o + co(R) '1'1.0, 

- -(1) -(2) 
<1>±1 = a, (R) 'l'z, ±1 + b, (R) 'I' 1. ±I + c, (R) 'I''· ±t, 

(10) 

and at R - oo we get b0 = c1 = 1 and a1 = b1 = Co = 0. 
We have denoted by WJn the wave functions of the 

system of two non-interacting atoms (V = 0), having a 
total angular momentum J and its projection n. The 
functions ~Yu and Win correspond to states with en
ergies E3;2 and E1;2. At the intersection point we have 

bo(Ro) = 0.87, co(Ro) = 0.4.9, 
(11) 

b,(Ro) = 0.31, ci(R0 ) = 0,74, a1 (R0 ) = 0.61. 

Bearing in mind that the main contribution to the cross 
section of a transition from one term to the other is 
made by states corresponding to intersecting terms, 
we represent the wave function l]{ of the system in the 
form of a superposition 

(12) 

where we have introduced in lieu of the functions <1>±1, 
for convenience, their linear superpositions 

- 1 
<I>t' =-= (!D, -!IJ_t), 

)'2 

The state connected with <1> 0 is i 1 and not i~. 

(13) 

The functions <l>o and <1>±1 are expressed, in accord
ance with (10), in terms of the atomic functions l]{JS), 

taken in a rotating system of coordinates ( z axis along 
R). We should not transform these functions in a fixed 
coordinate system. Substituting then the wave function 
l]{ (12) in the Schrodinger equation, we obtain a system 
of equations for the amplitudes a and {3. 

Usinf the Landau- Zener approximation in the usual 
manner 18l, we obtain an expression for the probability 
of transition W(p) from one term to the other: 

W ) _ 4.n V'2 (R0)Ro ( de0 de, )-' 
(p- -.--

v (R02 -p2)''• dR dR R=R,' 
(14) 

where 

V' = -(b1bo + c1c0)vp/ R02, 

Using the results (9 )- (11) and integrating the proba
bility W(p) with respect to the impact parameters p, 
we obtain finally an expression for the effective cross 
section with transition from one level to the other: 

Ro~ 16n2 vg''• vXv''• 
crv=2rr pdpW(p)=1.25---=20--. (15) 

0 9 (M)''• (M)''• 

For transitions in which even states take part, the 
numerical coefficient turns out to be smaller by two 
orders of magnitude. We shall henceforth disregard 
the contribution of the even states. 

We obtain also an expression for the cross section 
averaged over the relative velocity of the colliding 
particles and the polarization. Let us consider first 
the transition P3;2 - P 1;2. Recognizing that the transi
tion occurs only from one state out of 16 possible ones 
(see (10)), we find the averaged cross section 

_ vXv'" 
cr1z = 1.25 (/\E) ,1, , (16) 

where v = 4v' T/1TM. For the inverse process P1;2 
- P3;2, the transition occurs in one out of eight possi
ble states. Accordingly we have 

_ _ vxv~ 
cr21 = 2crtz = 2.50--, 

(M)''• 
(17) 

We shall show below that although the effective cross 
section determined in experiments with sensitized 
fluorescence are close to the obtained averaged cross 
sections, they are somewhat different nonetheless. 

3. EFFECTS OF CROSS SECTION OF SENSITIZED 
FLUORESCENCE 

Let us calculate the sensitized-fluorescence cross 
section (4), using the obtained expression for the ef
fective cross section av(15). The amplitudes of the 
non-exchange and exchange processes f1 and f2 will be 
expressed in terms of the amplitudes of scattering in 
the even and odd states, f+ and L : 

f,(q, qo) = 'Mf+(q, qo) + f-(q, qo)], 

fz(q,qo) ='/z[f+(-q,qo) -f-(-q,qo)]. 
(18) 

Since the main contribution is made by transitions in 
the odd state, we shall henceforth retain only the am
plitude L. 

When the atom is irradiated at a frequency close to 
w 1 the transition during the collision occurs from the 
state P1/2 to the state P3;2: 

<'~'~~l + 'I'E>_,)/l'2 ...... 'I'~~~, 
(see (8) and (13)). Since 

(I) 1 
'1',,. = 12 (x•t, "''"· -'"- x-v. >¢•,, ,,,), 

it follows that the amplitude f~~1 is given by 

f_";,''c:,(q, qo) = 1M-(q, qo) ll~a, Oma,(Oa,. '/, -lla, -'/,) (0~. 'h + ll~. _y,), (19) 

where the function L ( q, q0 ) no longer depends on the 
spin indices. When taken on the mass shell, the ampli
tude L is connected in the usual manner with the ef
fective cross section a v(15 ): 

where the integration is over all the directions of the 
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vector q, with 
q• qz0 
M-M=-llE. 

Using relations {18) and {19), we obtain for the average 
square of the matrix element (1) the following expres
sion (the summation is carried out over the indices of 
the matrix element M): 

(20) 

where y denotes the radiative lifetime of one of the 
levels of the doublet. The difference between these 
lifetimes for the states P1;2 and P3/2 will be neglected. 
We shall also neglect, where possible, the difference 
between the frequencies wo, w 1, w 2, and w, denoting 
them by w, 7t = c/w, w2 = w - w2, w1 = Wo- w1. By e 
we denote the angle between the k and q0 • 

We substitute {20) and (4), in which it is convenient 
to change to integration with respect to the momenta 
Po, Ph P2, and p to integration over the summary mo
mentum P and the relative momenta q and qo. We 
shall henceforth assume that the Doppler widths are 
much larger than the widths r 1 and r 2. Under these 
conditions, the dispersion functions which enter in (20) 
can be approximately replaced by o functions. We 
neglect here the contribution of the virtual processes. 
Estimates show that when r 1 ~ r 2 ~ y the virtual 
processes yield a correction not exceeding 10-3. 

Neglecting where possible the momentum of the 
photon compared with the thermal momenta of the 
atoms, we rewrite the expression for the effective 
cross section in the form 

where the subscripts of the cross section denote the 
fact that the irradiation is at a frequency close to w1. 
If the irradiation is at a frequency close to w2 , the 
cross section da12 is written in similar fashion. 

The amplitude L differs from zero only in the 
region of sufficiently small angles. We shall use this 
circumstance and neglect the interference terms. We 
also take into account that ~ E « T. We denote by J 
the angle between the vectors k and ko. In the angle 
region J >> ~E/T and 'IT-J >> ~E/T, the effective 
cross section is given by 

5 ynnx"y• dQdoo 
dcrzt(ffio oo)=- -~-a21--, 21 2 r,r, ku 

( (;,~2 ){ f ( ;. )[ 17 1 ;;; •• xoxp --- -----exp ----- -+---
h'u2 sin ti /{ 02u2 ein21't 20 5 /{2u2 

where u = -./2T/M, w = w1 - cosJw2, and <f21 is given 
by expression (17). The cross section da12(w 0, w) is 
obtained from (22) by making the substitutions w 1 _. w 
and w- Wo. 

From {22) with allowance for (3) it follows that when 
the density of the medium n changes, the effective 
cross section of the sensitized fluorescence reaches a 
maximum at n?t3 ~ 1. 

We present now expressions for the absorption line 
shape da(w 0 ) and the emission line shape da(w) of 
the sensitized fluorescence 

dcr2t(ooo) = ~ dcr2t(w, ooo)doo 

dcr21(oo)= ;u~ dcrzt(ooo,oo)dooo 

where 

In the case of irradiation at a frequency close to w2 , 

we have for the absorption line shape 

d 11n y2 _ "( 2 , ) d <Jtz(ooo)=-----nX3cr1ze-•• 1+-vo 2 Q 
2"1"2 r,r. 11 

and analogously for the emission line shape 

dcr,2(oo) = dcr2t(ooo) 

with the substitution w2 - w1. 

(24) 

(25) 

As follows from (22 )- (2 5 ), the effective widths of 
the frequency distributions are of the order of the 
Doppler widths. Integrating these distributions over 
the frequencies, we obtain 

3n'" y 2 

dcr21 = 2"7: nX3 ftl'z a21 dQ, 

{26) 
3n% y 2 

dcr12 = -,1-nX3 --a,.dQ. 
2, r,r. 

It follows from (26) that the effective cross section of 
the sensitized fluorescence, integrated over the fre
quencies, is isotropic. 

In an experimental investigation of the sensitized 
fluorescence one usually registered radiation scattered 
through an angle 1T /2, and the ratio of the intensities of 
the frequency-shifted and frequency-unshifted radiation 
is determined, i.e., the ratio of the intensity of the sen
sitized and resonant fluorescence. In the case when this 
ratio is small, it is assumed equal to nQv/y, where Q 
stands for the effective cross section of a collision with 
transition between the levels of the doublet, and v is 
the average relative velocity. 

If the density n is sufficiently small, then the drag
ging of the radiation[19•201 , can be neglected, and then 
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the intensity ratio reduces to the ratio of the corre
sponding effective cross sections. The effective cross 
sections of resonant fluorescence da11 (at the level 
P1;2) and da 22 (at the level P 3;2) can be readily calcu
lated (see, for exampler211 ). When the Doppler width is 
much larger than all the other widths, these cross 
sections are given by 

t( y2 
dau = -'1:.2 ~-dQ, 

8 r,ku 

da22 = ~(1- ~-sin•tt) '1:.2y2 dQ. 
16 10 f 2ku 

These cross sections, like the cross sections (26), 

(27) 

were obtained by integrating with respect to the emitted 
quantum and averaging over the frequency of the inci
dent quantum. The ratio of the cross sections at 
"= 'lf/2 and nA. 3 << 1, when r1 = r2 = y/2 (see (3)), 
are respectively 

dazt 3n nvcr'-1 
'l]zt=-=---, 

dau 8 y 
(28) 

da, 2 3rr nilittz 
'IJtz = dazz- =T-v· 

In [1-?J the measured values of TJ 12 and T/21 
to determine the cross sections 

were used 

Qlz = 'I] I~ , Qzl = • 'l]z~Y, 
nv nv 

and their ratio ®. From (28) it follows that 
3n 3n 

Qzt = -gcrzt, Qlz = 7tt1z-

Taking into account also the connection between the 
cross sections a 12 and a 21 (17 ), we obtain 

e Qzl 7 itzt 7 
= Qlz =s iJ1z =4· 

(29) 

(30) 

The appearance of the factor % in place of 2 is con
nected with the angular dependence of the cross section 
of the resonance fluorescence at the level P 3; 2 . 

Using the relations (29) and (16), and (17), we can 
compare the results of the calculations with the experi
mental data. Under the conditions of the experiment, 
the inequality ~E << T is not satisfied for sodium and 
worse for potassium. In[6J for transitions between the 
first excited states of sodium (~E =17 cm-1) the 
values obtained were 

Qzt=L7-10-'"cm2 Qtz=L0-10-14 cm2 !; 8=1.7. 

The obtained value of ® is in good agreement with (30 ). 
From the Q12 and Q21 given in (29) it follows that 

itzt = 1.44-10-14 cm2 , cr,2 = 0.74-10-14 cm2 

Calculations by means of formulas (16) and (17) yield 
(T =280°C) 

i.e., the agreement is perfectly satisfactory. 

Transitions connected with allowance for the ex
change integrals lead for sodium, in accordance withf 81 , 
to the cross section a 21 ~ (0.5-1.0) x 10-14 cm2. In[ll 
they observed for sodium a cross section Q12 = 2 .83 
x 10-14 cm2, from which it follows that a12 = 2.1 
x 10-14 cm2. This is approximately twice the calculated 
value. The cross section observed inf71 for transitions 
between first excited states of potassium (~ = 57 cm-1) 
is approximately three times the calculated value. 
Even larger cross sections were observed in r2J. In this 
case apparently it is already necessary to take into 
account in the calculation the contribution from the ex
change integrals. 
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