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Expressions are given for the particle flux and the energy flux across the magnetic field in various 
toroidal magnetic systems (tokomak, levitron, stellarator, and bumpy torus). Both fully ionized and 
weakly ionized p~asmas are considered. The expressions that are obtained indicate that taking ac­
count of the toroidal geometry leads to a substantial increase in the diffusion coefficient and the ther­
mal conductivity at low collision frequencies as compared with straight systems (corresponding to 
o = r /R = 0). In this connection it is found that in systems that are not axially symmetric (stellara­
tor, b~mpy torus) there exists a parameter region (low collision frequencies or large electric fields) 
for which the transport coefficients do not, in general, depend on the magnitude of the magnetic field 
and are substantially higher (several orders of magnitude) than the values that obtain when the toroidal 
geometry is not taken into account. 

1. INTRODUCTION 

MANY experiments carried out in recent years for the 
purpose of investigating plasma confinement in closed 
(toroidal) systems have indicated that these systems are 
characterized by a very short lifetime; this finding im­
plies the rapid loss of plasma across the magnetic field. 
Attempts to explain this rapid loss within the framework 
of the theory of binary collisions and stable plasmas 
have not been successful and have led many authors to 
the conclusion that the enhanced plasma loss is due to 
various kinds of instabilities that develop in a plasma, 
that is to say, that the diffusion and thermal conductivity 
derive from turbulence phenomena. We are very much 
of the opinion that it is important and necessary to de­
velop a turbulence theory for transport phenomena al­
though, unfortunately, a quantitative analysis of this 
problem has still not been initiated. It should be noted 
that the potentialities of a theory that takes account only 
of binary collisions or, as it is sometimes called, a 
classical theory of transport phenomena, have still not 
been fully investigated and it would be premature to 
overlook such a theory in attempts to explain experi­
mental results that have been obtained. 

There are basically two arguments that support the 
notion that the diffusion and thermal conductivity are 
associated with turbulence phenomena. 1) The extreme­
ly small value of the theoretically computed diffusion 
coefficient as compared with that which is measured ex­
perimentally, and 2) the fundamental differences in the 
dependence of the theoretical and experimental plasma 
lifetime (and consequently the diffusion coefficient) on 
the magnetic field and a number of other plasma param­
eters. However, it should be noted that the comparisons 
between theory and experiment are frequently carried 
out making use of transport coefficients which are com­
puted for straight systems rather than toroidal sys­
tems.1> As is well known, the diffusion coefficient and 

1 l There are investigations in which the toroidal geometry has been 
taken in to account; however, there are hydrodynamic calculations 
which have been improperly extrapolated into the region of low co­
llision frequencies. 
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the thermal conductivity for a straight system are di­
rectly proportional to the collision frequency (i.e., den­
sity) and inversely proportional to the square of the 
magnetic field and the square-root of the temperature. 
But any such comparison implies that the toroidal ge­
ometry does not have an important effect (in any case, 
for a sufficiently small ratio of the minor radius of the 
torus r to the major radius R) on the magnitude and 
structure of the particle and energy fluxes. However, 
this assumption is found to be quite improper even when 
the toroidal parameter is small (o = r /R << 1). In very 
many cases there are fundamental changes in the mag­
nitude and structure of the fluxes and these lead to re­
sults that are fundamentally different from those ob­
tained for straight systems (o = O) both as regards the 
absolute values of the transport coefficients as well as 
the nature of the dependence of these transport coeffi­
cients on the parameters that characterize the mag­
netic field and the plasma. 

Actually, as far back as 1951 Tamm[ 1J and Budker[ZJ 
called attention to the fact that in toroidal systems the 
particle flux and heat flux across a strong magnetic 
field could be considerably larger than for analogous 
straight systems. This enhancement is due to an effect 
called "mixing" [ZJ which arises because of the toroidal 
drift and is manifest as differences between trajecto­
ries corresponding to different values of the particle 
velocities. In turn, the latter effect can lead to a situa­
tion in which, as a result of a collision, a particle is 
displaced over a distance greater than its Larmor ra­
dius. The net effect is to increase the effective particle 
drift rate across the magnetic field. 

Subsequently, more exact calculations carried out by 
Pfirsch and Schluter[3l (see also [ 4 , 5 l) and Shafran­
ov[6J verified these qualitative predictions. However, 
the results of these investigations, which were obtained 
within the framework of a hydrodynamic approximation, 
are valid only for a dense plasma, in which the mean 
free path is much smaller than the characteristic dimen­
sions of the system. For this reason it is of interest to 
carry out analogous calculations using kinetic theory in 
order to obtain expressions for the particle flux and the 
heat flux that hold for a low density plasma. Galeev and 
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Sagdeevt 7l have carried out a mathematical analysis of 
this problem for the case of an axially symmetric sys­
tem and a fully ionized plasma of low density. However, 
an improper linearization of the collision integral leads 
these authors to results that differ from those obtained 
below (cf. Sec. 2B). For certain particular cases, esti­
mates of the diffusion coefficient and the thermal con­
ductivity for systems that are not axially symmetric 
were obtained in a paper by Galeev, Sagdeev and 
Furth, r 83 which was devoted to a discussion of the dif­
fusion of a fully ionized plasma in an l = 3 stellarator. 

In the present work we discuss transport across a 
strong magnetic field in various kinds of toroidal sys­
tems. The second part of the paper is devoted to axi­
ally symmetric systems, in which we include such sys­
tems as tokomak, levitron, and zeta, while the third 
section is devoted to systems that are not axially sym­
metric such as the l = n stellarator and the bumpy 
torus.r 9 l 

It would be beyond the scope of the present work to 
go into any great detail concerning the actual mathe­
matical calculations, which are extremely complicated.21 

Here, we shall limit ourselves to a description of the 
general scheme of the calculation and present the final 
expressions for the particle and energy fluxes and also 
the limits of applicability of the results, together with a 
brief discussion. 

The general features of the calculation are as fol­
lows. We start with the stationary kinetic equation for 
particles of species j (the subscript j = e, i refers to 
electrons and ions respectively): 

of; { 1 }of; v-+e; E+-[vH] -=St;, 
iJr c ,i)v 

where fj is the distribution function for particles of 
species j, E and H are the electric and magnetic 
fields and 8tj is the kinetic collision integral, which 
takes account of collisions between particles of species 
j and all other particles (electrons, ions, and neutrals). 

Without dwelling on the details, we indicate here only 
that collisions with neutrals are taken into account by 
means of a collision integral written in the form given 
by Bhatnagar, Gross and Krookr 103 while collisions be­
tween charged particles are taken account of by the 
Landau collision integral, r 113 these then being linearized 
in accordance with the procedure used below by expan­
sion of the solution in powers of a small parameter 
"'1/wj• It is important to emphasize that the first mo-
ment of the exact distribution function (i.e., the mean 
directed velocity) although small, is not equal to zero 
and for axially symmetric systems (Sec. 2) is of the 
same order of smallness (in terms of the parameter 
1/wj) as the corrections of interest to the distribution 
function in the zeroth approximation.31 This means that 
in the derivation of the linearized collision integral, as 
in the initial integral, it is necessary to make sure that 
one does not violate momentum conservation. In partie-

21 The detailed calculations applying to the material described here 
will be published separately. 

13 lJn the usual way, we take this to be a local Maxwellian distribution 
with density and temperature depending on coordinates, and mean veloc­
ity equal to zero. 

*!vHJ=vXH. 

ular, the linearized collision integral must satisfy the 
two following physically obvious requirements: 1) col­
lisions between particles of the same j-th species must 
not change the total momentum of the j -th component 
of the plasma, and 2) collisions between particles of 
two different species must not change the total momen­
tum of both plasma components. 

However, these requirements were not always kept 
in mind:r 73 although the initial collision integral was 
written properly, in the subsequent use of the linearized 
form as well as in the "T-approximation" the require­
ments given above were violated. This is the basis, in 
particular for the difference between the results obtained 
in Sec. 2B of the present work, according to which the 
diffusion of the plasma is always (that is to say, aside 
from the dependence on the magnitude of the electric 
field) ambipolar in nature, and the results of r 73 , from 
which a contradictory result is obtained. 

In Eq. (1) we can make use of the so-called drift 
variables, r 123 in which the equations of motion of the 
particles do not contain the fast phase a, that is to say, 
these are averaged over the fast Larmor gyration) and 
we can write fj = ~ + fj where fj is the average part of 
the distribution function while fj is the variable part 
(with respect to a) of the function. We then obtain the 
following equations for fj and fj :41 

(2) 

(3) 

where Stj and stj are the mean and variable (with re­
spect to a) parts of the collision integral while the op­
erator ~, which after conversion to the new variable 
becomes integrals of the drift equations (i.e., the ener­
gy~ and the transverse adiabatic invariant JJ.) is given 
by 

(4) 

where vdj is the familiar expression for the drift ve­
locity of the guiding center in weakly inhomogeneous 
electric and magnetic fields. r 12 l 

The particle flux 

S;= ~ vf;dv 

and the energy flux 

r m·v2 
IT;= J ·-t-v/; dv 

can also be written in the form of a sum of two terms: 

S; = S; + S;, IT;= fi; + fi;, (5) 

one of which (Sj, nj ) is a~so<:_iated with the slow drift 
motion while the second (Bj, nj) is associated with the 
fast gyration. Assuming that stj "' 1/wj and that in the 

zeroth approximation the distribution function is Max­
wellian, we can integrate Eq. (2) for Ij and derive ex-

4 >In the usual way we assume that the magnetic field is large so that 
the ratio of the particle Larmor radius to the characteristic dimensions of 
the system is much smaller than unity. 
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pressions for the fluxes sj and rrj :5 > 

(6) 

(7) 

where j = e, i and the subscript l means that we take 
the component of a vector perpendicular to the mag­
netic field; p = Pe + Pi; Pj = NjTj, Nj and Tj are the 
density and temperature for particles of species j, vj 

= vjn + vje + vji is the effective collision frequency and 

m, 
Vie= -'Vei' m, (8) 

The expressions (6) and (7) for the fluxes Sj and fij 
are essentially independent of the "fine structure" of 
the magnetic field and give the well-known expressions 
for the diffusion coefficient and the thermal conductivity 
for transport phenomena in systems in which the mixing 
effect is not important. However, the contribution to the 
transport phenomena due to mixing is given completely 
by the fluxes Sj and IIj and this contribution depends 

on the degree to which the drift trajectories depart 
from the magnetic surfaces. The calculation of these 
fluxes and the determination of the conditions for which 
these are appreciably greater than the fluxes Sj and fij 
will then be the fundamental problem with which we 
shall be concerned. 

We make use of a quasi-toroidal coordinate system 
r, cp, and ~ (cf. Fig. 1) and assume that the magnetic 
field can be written as a superposition position of a uni­
form toroidal field H~ = e~H0/(1 + 15 cos cp) where 15 
= r /R << 1, and a small stabilizing field HI> where H1 

<< H0• Now, Eq. (3) for Ij can be solved by successive 

approximations by expansion in the small parameters 15, 
HjH0 and 1/wj· Applying this procedure we can find 

~ and then the fluxes Sj and llj, which, in addition to 
depending on the subscript of the magnetic surface, for 
example,its mean (with respect to ~) radius r 0 will, in 
general, depend on the variables cp and ~. However, 
since the rate of plasma loss (or energy loss) is obvi­
ously determined by the mean component of the flux Sj 

(IIj) averaged over a magnetic surface, this flux being 

perpendicular to the magnetic surface, the expressions 
for Sj and IIj that are obtained can be simplified ap-

FIG. I. Coordinate System 

5 >we note that after conversion to the drift variable and separation of 
the collision integral into mean and oscillating parts, the quantity Stj: con­
tains terms that are proportional to the electric field and the gradients of 
the density, temperature, and magnetic field. 

preciably by taking averages over cp and 1; [for fixed 
ro = ro(r, cp, ~)] 6 > and then projecting in the direction of 
the normal to the magnetic surface n0 = vr 0 / I vr 0 1. The 
expressions for these averaged "radial" fluxes, which 

we will denote by S~ and n~ will be given below. 
0 0 

2, AXIALLY SYMMETRIC SYSTEMS 

Let us assume that the magnetic field is axially sym­
metric, that is to say, that it is independent of the vari­
able ~: 

where 15 = r /R ::::J r 0 /R << 1. In this relatively simple 
case we can obtain general expressions for the fluxes 

II~ 0 and S~0 which, in practice, are valid for a plasma 

with arbitrary density and ionization. However, in view 
of the fact that these expressions are extremely compli­
cated, we shall make use of them only for a number of 
particular cases in which they can be simplified appre­
ciably. Having in view the fact that real devices (toko­
mak, zeta, levitron) are characterized by a rotational 
transform i = 27TRHJroH0 which is rather large, we 
assume in this section that the radial electric field 
satisfies the condition 7 > 

A. Weakly Ionized Plasma 

111 
V;= y__2. 

m; 

If the following condition is satisfied: 

_ 1 me T.+ Ti 
Vjn ~ Veill --T--, j = e, i, 

mi i 

(9) 

(10) 

the expressions for the "radial" fluxes of particles and 
energy are of the following form: 

S,/ =- v;nN; 2~2 pJ'{ (3 + q2i + q1ic;2) ( o!nN; _ e;E,,) 
l iJr0 T; 

+(4 + . 3 ·)iJ!nT;} q,'--q2' --
2 iJro 

(11) 

11; = -v N T·-2n2p·2{(~+ q,i+~q,ic·")( iJ!nN;- e;E.r,) 
r, ]n ' ' i2 ' 2 2 ' iJro T j 

where 
( 3 . ) iJ In T; } ( ) + 20 + q4i- 2 q3' ----;;;:-

0 
, 12 

(13) 

. ,;2 r '?" e-t'12 dt 
q,' = Y--;- ~ e-xxs dx ~ ~+ t2 + bx/4 

{ 

s!/c;' for c;~1 

~ Y ~ s!/c; for r:,'l•/2<!{ c;<!{ 1, 

)'2~ (s- 'h) !/fJ'/, for c; <!{ .S''•/2 

where the magnitude of the electric field is determined, 

6 >The equality r0 (r, .p, n = const obviously represents the equation 
for a magnetic surface. 

7 >1n the opposite limit the fluxes are reduced appreciably (especially 
in the region Cj ..:: I). 
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in the usual w~y, from the condition for ambipolar dif­
fusion S~ = Sr1 • 

0 0 

It follows from Eqs. (11)-(13) that when Cj >> 1 the 

diffusion coefficient and the thermal conductivity coin­
cide with those obtained in the hydrodynamic model; 
however, when the collision frequency !ljn is diminished, 

the diffusion coefficient and the thermal conductivity be­
come much larger than the latter (cf. Fig. 2a). The 
greatest difference appears in the region c << c5 112 /2 
where the expressions in (11) and (12) lead to a diffu­
sion coefficient Dj and a thermal conductivity Kj that 
are approximately c5 - 1 ; 2 times larger than those ob­
tained in the hydrodynamic theory when extrapolated to 
the region of small !ljn· 

B. Highly Ionized Plasma 

We now consider the case of a highly ionized plasma, 
in which the following conditions are satisfied: 

m, T,+ T; 
\1 jn~--;;;; Vei _T_;_, j=e,i. (14) 

For arbitrary collision frequencies the expressions for 
the particle flux and the energy flux are extremely com­
plicated. However, in view of the fact that these expres­
sions are already known[ 3 - 51 for the region cj >> 1, in 

which the conditions for the hydrodynamic approxima­
tion are satisfied, here we shall limit ourselves to low 
frequencies, in which kinetic theory effects become im­
portant. 

Thus, assuming that Cj = !lj r 0 Hofvj H1 << 1 and 
neglecting quantities of order unity as compared with 
cis (cj) >> 1, we find 

S e _ S ; _ _ ~{ . v,v,q2(c,)q2(c;) } 
r0 - r0 - Ve1 .... " 

l2tn,tu,2 VeV.eq2(c,) + 'V;V,;q,(c;) 

where the function 

(:/12 
for 2~c;~ 1 

6',, (17) 
for c,~ 2 

It follows from Eq. (15) that the electron flux and the 
ion flux do not depend explicitly on the strength of the 
electric field Er and that these fluxes are equal, that 

0 

is to say, that to first order in wt the diffusion is al-

ways ambipolar (cf. [ 71 ). The general nature of the de­
pendence of the diffusion coefficient Dj and the thermal 

conductivity Kj on collision frequency is similar to the 

case of a weakly ionized plasma (cf. Fig. 2b). B> However, 

8 >we note that Eqs. (15)-(17) imply that when 8312/2 ~ cj ~I the 
fluxes are independent of collision frequency. The point here, as in the 
case of a weakly ionized plasma, is that there is a monotonic increase 
of these quantities with increasing ~'j in this region as well (cf. Fig. 2b). 
This can easily be shown if account is taken of small terms - <J, which 
we have neglected in the expression for the fluxes. 
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FIG. 2. Qualitative dependence of the diffusion coefficient Dj on the 

collision frequency Cj = 21T Rvj/tVj for the fixed values of Tj, ro, R, t, and 
H for axially symmetric systems: a) weakly ionized plasma and b) highly 
ionized plasma. 

the difference between the true and hydrodynamic 
transport coefficients reaches a maximum in the region 
of still lower collision frequencies vj << o3 12 vj H1 /2r0 H0 

and is then considerably larger:9 > for a fully ionized 
plasma the ratio of the diffusion coefficients and the 
thermal conductivities is approximately c5 - 3 ; 2 • 

Thus, in axially symmetric systems, although the 
toroidal geometry leads to an increase in the transport 
coefficients, the dependence of these coefficients on the 
strength of the magnetic field, with i = const, remains 
unchanged (Dj, Kj "' H~2). 

3. AXIALLY ASYMMETRIC SYSTEMS 

We now wish to consider transport phenomena in ax­
ial asymmetric systems, of which we shall consider the 
following to be the most characteristic examples: a) the 
l = n stellarator, and b) a toroidal system with a bumpy 
field. The specific difference of the first of these sys­
tems from an axially symmetric system lies in the fact 
that the former always exhibits a group of "trapped" 
particles which oscillate in a region bounded in t. In 
general, these particles do not "see" the rotational 
transform. As is well known, [ 131 the trajectories of 
these •particles depart noticeably from the magnetic 
surfaces so that in the case of low collision frequencies 
and weak electric fields [ cf. Eq. (20)] it is specifically 
these particles that determine the effectiveness of 
"mixing" and make the basic contribution to the flux. 
In bumpy-field systems there is generally no rotational 
transform, the stabilization of the toroidal drift in such 
systems being provided by the inhomogeneity in the lon­
gitudinal field (that is to say, by the "bump") while the 
effectiveness of the mixing for strong electric fields 
[ cf. below Eq. (3 8)] it is determined by all the particles 
in equal degree. 

The results given below apply for a plasma with an 
arbitrary degree of ionization. 10> 

A. Particle and Energy Fluxes in an l = n Stellarator 

As is well known, the magnetic field in an l = n stel­
larator is given by 

e~Ho 
H = +H~o H, = V<l>, 

1 + 6 cos 'P 
(18) 

<1> = ea-1H0 ln(nar) sin [n(<p- a~}], 

9 l Similar results have been obtained earlier in [7 ]. 
IO)The only exception is the case of very low collision frequencies 

Vjro~ -yV).j [(cf. below Eqs. (26) and (27)] in which the differential 
nature of the Coulomb collision integral becomes important. 
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where In(x) is the modified Bessel function of order n 
while the parameters € and a characterize the inten­
sity and spatial periodicity of the helical field. If the 
toroidal geometry is neglected the equation for the mag­
netic surfaces is given by 

2sr a ( ) r02 = r'-~-In(nar)cosn(cp- a~)= const. 19 
a2n iJr 

We assume that the following inequalities are satisfied: 

6«i; 2snln, 6;«i; 2naRn2eln, v/r02 + V,?«i;( i~:; r a;neln, (20) 

where VE = cEr/H0; 11j = Tj /m; i, as before, is the 
rotational transform, that is to say the angle through 
which a line of force rotates around the magnetic axis 
in one circuit around the principal axis of the torus, 
while 

a;= l m·T·v· 
snln ' ' ' 

mv.v.; (Te + T;) 

The physical significance of these inequalities is 
very simple. The first inequality implies that the devi­
ation of the trajectories of the trapped particles from 
the magnetic surfaces is small. The second implies 
that the basic role is played by particles which are 
trapped between maxima of the helical field rather than 
the longitudinal field. If these inequalities are violated 
the number of such particles becomes relatively small 
and the dominant role is played by "toroidal" trapped 
particles, that is to say, particles which reflect the 
maxima in the basic longitudinal field Ht. Because of 
the averaging effect in motion along the lines of force, 
for these particles the local inhomogeneities of the 
helical field are unimportant. In this case the specific 
features of the stallarator such as the lack of axial 
symmetry disappear and the expressions for the fluxes 
assume forms similar to those obtained above for axi­
ally symmetric systems. Finally, the third inequality 
is a statement of the condition that the basic contribu­
tion to the transport processes comes from trapped 
particles rather than transiting particles. 

In addition to assuming the conditions in (20), we 
shall also assume that the equipotentials are close to 
the magnetic surfaces, or, more precisely, that the 
tangential component Et << Tj I ej IR. This is a reason-
able assumption for a rarefield plasma because of the 
very high conductivity along the magnetic lines of force. 

If the conditions given above are satisfied the ex­
pressions for the particle flux and the energy flux be­
come 

( r0 ) 2 V2wln {ulnN; S i=-v·N· - --p·2v.2Q2i --
r, ' ' R n ' ' oro 

+ [ Q3i. __ 3 J _a ln T; _ e;Er, }. 
02' 2 oro T; 

(21) 

( r0 ) 2 V/2wln ·{BlnN; TI i= -v·N·T· - -~p;'v;'Q•' ---
'" ' ' ' . H 1t oro 

+ f Q.;_ __ 3_] iJln T; _ e;E'"}· 
LQ3i 2 iJr0 T; 

(22) 

The explicit form of the functions % that appear in 
these expressions depends on the magnitude of the self-

consistent "radial" electric field Er which, in the sta-
o 

tionary diffusion regime, must be determined, in the 
usual way, from the requirement that the electron and 
ion fluxes be equal.11> In the general case the expres-

sion for Q~ is extremely complicated and we shall con­
sider it here only for two particular cases. If the elec­
tric field is sufficiently large so that 

(23) 

the expression for ~s assumes the simple form 

Q,i= r e-xx•+'/,____r!!._ __ = (s+ '12)! ' Q:+'=s+-~ (24) 
J0_ VE2 + ro2v;2 V,? + ro2 v;2 Q,i 2 · 

In the opposite limit (weak fields), in which I ejr 0Er 0 I 

<< ~nTj or, what is the same thing, 

p-2 
VE'«i; VA;2 = An2V;2 +• 

ro 

the functions ~s are determined as follows: 12> 

K(to) (s- 1/z)! 

r0v;V;.; 

K(to) (s- 3/z)! 

vV•;• 

(25) 

(26) 

where t 0 = 0,91 is the root of the equation 2E(t) - K(t) 
= 0, K and E are the complete elliptic integrals of the 
first and second kind [K(to) = 2.3], and the parameter 
y 2 << 1 depends on the degree of ionization of the plas­
ma and is of the following order of magnitude: 

! 6 4enln 
-- for v;n > --v;; 

2 4neln li 
'I' ~ 6 3 

(--) for v;n < v;;. 
4neln 

(27) 

The difference between Eqs. (24) and (26) is con­
nected physically with the different nature of the motion 
of the trapped particles in the cases described by (23) 
and (25). In a strong field in which the condition in (23) 
is satisfied the electric drift rate exceeds the magnetic 
drift rate and the drift trajectories of all particles are 
approximately circles. In the inverse case there is a 
group of so-called resonance particles[ 131 whose tra­
jectories are similar to those of trapped particles in 
axially symmetric systems, being crescent-like. These 
do not encircle the axis of the system. These resonance 
particles, like the trapped particles in axially symmet­
ric systems, exhibit the most marked deviations from 
magnetic surfaces and (in the case of low collision fre­
quencies) make the basic contribution to the particle 
flux and the energy flux. Thi~ is the origin of the simi­
larity between Eq. (26) for Qls and Eqs. (13) and (17) 

11 lIn this case the diffusion rate of the plasma as a whole is obviously 
determined by the diffusion of the component that has the slower diffu­
sion rate. 

12 >we note that in the particular case n = 3, Vjn = 0, Tj = const and 
-yV~j < "jro < V~j Eq. (21) leads to the results that have been obtained 
earlier in [ • I 
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for q~ and cis [cf. Eq. (27) and Eqs. (10) and (14)]. We 
note that if the quantity y is not very small, then for 
quantitative estimates Eqs. (24) and (26) can be approx­
imated by a single expression which is valid for arbi­
trary values of VE· Under these conditions we find13 > 

Q)= (s+'/•)! -- Q.~, =s+~. (27') 
VE"+ro2v;"+ VA;' Q,i 2 

In discussing Eqs. (21) and (22) we may note the fol­
lowing most characteristic features of the transport 
processes in a toroidal stellarator. 

1. In contrast with axially symmetric systems, the 
particle flux in the stellarator is proportional to the to­
tal collision frequency llj = 11jn + llje + llji which means 
that even in the presence of only one particle species 
( llj = lljj) and a uniform temperature (aTj /or 0 = 0) there 
is no equilibrium state in a toroidal stellarator. In ac­
cordance with this result, even in the absence of a neu­
tral gas ( lljn = O) and witq Er 0 = 0 the electron and ion 

fluxes are generally not equal; this leads to the produc­
tion of a radial electric field Er0 which, in the station-

ary diffusion regime, is determined by the relation 
e i 

8ro = 8ro' 
2. As the collision frequency is increased from zero 

to 

• ~ (VE2+ VA})'" 
'Vj ,_ (28) 

ro 

the diffusion coefficient first increases essentially lin­
early with collision frequency llj and then, when llj 

~ vt, reaches a maximum value of order 

Dr=~ yenln_(r~)·p;"-- v,!l. (29) 
8 2 R rol'VE2+ VA;2 ' 

Finally, it starts to diminish to a value for which the 
last inequality in (20) is violated, after which, as fol­
lows from the hydrodynamic analysis, it again increases 
(cf. Fig. 3). We note that for a sufficiently strong mag­
netic field Dj can be many orders of magnitude greater 

than the diffusion coefficient Dny ~ 11 eiP~(1 + 41T2/i2) as 
computed in the hydrodynamic approximation. 

3. The third characteristic feature of transport 
processes in the systems being considered is the exist­
ence of a region in which the particle flux and the en­
ergy flux are essentially independent of the strength of 
the magnetic field H. This is the region of low collision 
frequencies or weak magnetic fields, in which the par­
ticle flux and the energy flux increase linearly with fre-

FIG. 3. Qualitative dependence of the diffusion coefficient Dj on the 
collision frequency for fixed values of 'Yj, Er0 , and H for an axially asym­
metric system. 

I3)This approximation has been used in a work of the author. [1 4 ] 

quency. This region is defined by the inequality (c is 
the velocity of light) 

Thus, as the magnetic field is increased the particle 
flux and the heat flux will exhibit the following behav­
ior. 14> When H < Hj these fluxes are generally in de-

pendent of the magnetic field and when H ~ Hj they di­

minish slowly; it is only when H >> Hj that they be­
come inversely proportional to the square of the mag­
netic field (cf. Fig. 4). 

4. The fourth distinguishing feature of the transport 
coefficients is the rather complicated dependence these 
coefficients exhibit on temperature which, for various 
values of the parameters, can vary over rather broad 
limits. Thus, for example, for a fully ionized plasma in 
which llj ""'T j 3 / 2 , in the low-frequency region llj << vj 
the diffusion coefficient Dj ""' T j 3 ;a; however, when 11j 

> vj we find Dj ""'Tj! 2 • 

5. As we have already indicated when Er = 0 the 
0 

electron flux and the ion flux are generally not equal. 
Consequently, in the stationary regime, in which the 
diffusion is ambipolar in nature and the electron and 
ion fluxes are equal, the plasma must become charged. 
Under these conditions it is found that depending on a 
number of parameters the charge can be either positive 
or negative. Analysis of Eq. (21) shows that when15 > 

(32) 

the plasma is always charged positively and for the op­
posite limit 

(33) 

the plasma is always charged negatively. However, in 
the region of intermediate parameter values, depending 
on the magnetic field and the density, the· plasma charge 
can be either greater or less than zero. The value of 
the magnetic field Hp (or density) for which the plasma 

charge vanishes can be found from the equations 

H, 

FIG: 4. Qualitative dependence of the diffusion coefficient on the 
magnetic field for fixed values of 'Yj, Vj, and Er0. 

14 >obviously this description holds only when the other plasma para­
meters (density, temperature, electric field, etc.) are independent of the 
strength of the magnetic field. 

15 >1n a fully ionized hydrogen plasma the condition in (32) is equiv­
alent to the inequality T, < so-• 17 Te· 
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(34) 

For reasons of simplicity w~ limit ourselves to the ap­
proximate expression for Q§ (27') and find that 

Hp=~_!_:_{ v,-v; }''' (35) 
ro2l'vev; I eel v,- v;(e;T,je,T;)2 . 

Thus, when ve >Vi and ve > vi(eiTe/eeTi) 2 in the 
region of strong magnetic fields H > Hp the plasma is 

charged negatively (assuming that Er = 0 in the initial 
0 

state) while for weak fields H < Hp the plasma is 

charged positively. 
In Fig. 5 we show the qualitative dependence of the 

dimensionless electric field x = eir0Er/Ti in the plas­
ma as a function of the parameter !; = veviwfr~!vf for 
various relations between the quantities A= ve /vi and {32 

= e~TflefT~. The dashed curve shows the unstable part 
of the function /;(x): in the region where one value of !; 
corresponds to two values of x the magnitude of the 
electric field is determined by the initial conditions. 

In concluding this section we wish to present a nu­
merical example for an l = 2 stellarator. Substituting 
the following values in Eq. (21): n = 2, E = 0.5, r 0 

= 4 em, a = 0.12 em-\ R = 60 em, Ne = Ni = 1011 cm-3 , 

Te = 16 eV, Ti = 25 eV, H0 = 5 x 103 G and assuming 

olnN,T, olnN;T; 
---=----=3 cM-1, 

oro oro 

we obtain the following values for the plasma lifetime 
and the magnitude of the electric field 

nro2N· 
-r = ---' ~ 3-io--3 sec E,, ~- 3 V/cm 

2nrcS,,i 

We note that the hydrodynamic theory would predict a 

A</ A >I 

I 
-8 a :c 

a :r 

A</ 

I 

0 

FIG. 5. Qualitative dependence of the electric field on density and 
magnetic field: 

lifetime that is three orders of magnitude larger; how­
ever, the value of the lifetime observed in experiment 
is very close to the one derived here. 

B. Particle Flux and Energy Flux in a Bumpy Field 
System 

A system of this kind is characterized by a magnetic 
field 

(36) 
<D = -ea-'Holo(ar) sin as, 

while a "magnetic surface" can be understood to be a 
surface defined by the equation 

2er a 
ro2 = F- ~Or Jo(ar)cOS as= COllEt. (37) 

In computing the particle flux and the energy flux, in 
contrast with the earlier section we shall limit our­
selves to the case of a strong electric field that satis­
fies the condition 

ie;raE,,I a 
--7-. -->A.>= ero-0 lo(ar0). 

, ro 
(38) 

However, we will not necessarily assume that the equi­
potentials coincide with magnetic surfaces (37) and al­
low the possibility of small (of order T j/1 ej I R) azi-

muthal electric fields Eg'. 
Thus, if (58) is satisfted and if the following condi­

tions are satisfied: 

X I 'Vj 

for 
> m.T.+Ti 

Vjn;;.;...~Vei~---

Vjn mi T; 
miT;v; ::;::: m. T. + T; 

m,v,; (Te + T,) for Vjn--x:::Vei ____ 

m; Ti 

the expressions for the particle flux and energy flux 
assume the form 

(39) 

A comparison of these expressions with Eqs. (21) 
and (22) show that the structure of the fluxes in the 
case of a bumpy field is very similar to the structure 
of the fluxes in a stellarator field, differing from the 
latter only in numerical factors. In accordance with 
this result all of the remarks made in the preceding 
section with regard to the diffusion coefficient and the 
thermal conductivity remain valid for this case. 

In conclusion we note that in Eqs. (40) and (41) we 
have given the component of the electric field Er that 

0 

is normal to the "magnetic surface." This means that 
a weak lack of equivalence of the "magnetic surfaces" 
(E 47 * 0) will not have an effect on the magnitude of the 
particle and energy fluxes. 
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