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The behavior of longitudinal magnetoresistance associated with scattering from impurity ions is 
analyzed. Because of the strong angular dependence of the Coulomb scattering amplitude the magneto
resistance is in this case considerably more negative than for scattering by phonons and depends sig
nificantly on the parameter kR (R is the screening length and k is the electron momentum). It is shown 
that when the finite time between collisions is taken into account the magnetoresistance becomes less 
negative. t:..p 11 jp is calculated as a function of f3 = :fiO/koT with f3 > 3 for several values of kR. The 
longitudinal magnetoresistance in tellurium single crystals with impurity concentrations ~ 1015/cm3 is 
investigated experimentally between 1.6° and 20.4°K. The experimental dependences of t:..p11/P on f3 and 
kR are in good qualitative agreement with the theory. 

INTRODUCTION 

IT has been shown in[l•21 that when current carriers 
are scattered by acoustic phonons in the absence of de
generacy, the oscillatory behavior of the state density in 
a magnetic field when the quantum parameter f3 = :fiO/koT 
({3 < 2) is small leads to a negative longitudinal magneto
resistance of as much as -12%; ko is Boltzmann's con
stant. The possibility that negative longitudinal mag
netoresistance might be associated with scattering from 
ionized impurity centers was first predicted by Argyres 
and Adams, [31 who were studying magnetoresistance in 
the quantum limit. In the present work the behavior of 
longitudinal magnetoresistance associated with the same 
scattering mechanism is analyzed in the absence of de
generacy. It is shown that the negative magnetoresis
tance then considerably exceeds (reaching -90%) the 
effect which accompanies scattering by phonons and that 
it can remain negative for {3 » 1. 

The described effect is associated with the fact that 
when scattering from ionized impurities occurs the 
magnetic field changes the scattering probability not 
only through an altered behavior of the state density, but 
principally because of a changed amplitude of scattering 
with momentum transfer in the direction of the magnetic 
field. 

The existence of negative magnetoresistance can be 
accounted for as follows. We know that when an electron 
is scattered by a screened Coulomb center in the ab
sence of a magnetic field and with kR » 1 {where R is 
the screening length and k is the mean electron momen
tum}, the small-angle scattering amplitude greatly ex
ceeds the large-angle amplitude. Therefore, although 
the resistance is determined by the probability of scat
tering with a change of momentum in the electric field 
direction, it is caused mainly by scattering at small 
angles down to 9~in ~ 1/kR. In a magnetic field 
H II E II z energy is quantized in the plane perpendicular 
to the magnetic field, and the z component kz of the 
electron momentum changes by discrete amounts in 
elastic scattering: 

436 

kz'2 = k?+2(n-n') /1.2. (1) 

Here n and n' are the numerical indices of the Landau 
bands before and after scattering; A 2 = c:fi/eH is the 
magnetic length. Since scattering with no change of 
kz (k~ = kz} does not affect the resistance, the latter is 
determined by scattering processes with momentum 
transfer t:..kz ::::: .../2/A, i.e., by scattering at angles ex
ceeding egin ~ .../2/Akz ~ ..[ff. 

We thus find that in a magnetic field ll./.../2 plays the 
role of a screening length in the sense that the potential 
of the Coulomb center is cut off at the smaller of the 
two lengths A/.../2 and R. When ll. 2/2R2 « 1 (9~in > 9~in) 
the magnetic field, by cutting off the most important 
region of small-angle scattering, drastically reduces the 
scattering cross section so that we expect t:..pjp < 0, 
whereas in the case of A 2 /2R2 » 1 (egin < e~in) we can 
expect t:..p/p > 0. 

In a high magnetic field ({3 » 1), when transitions are 
possible only within the "zeroth" Landau band (n = n' 
= 0), Eq. (1) shows that the magnetoresistance is deter
mined by backward scattering (k~ = -kz), or more pre
cisely by scattering into the backward sphere, because 
a large change can occur in the momentum component 
perpendicular to the magnetic field. Since the large
angle amplitude of Coulomb scattering is small, the 
probability of scattering is now much reduced by the 
presence of a magnetic field and we can expect to obtain 
a pronounced negative value of t:..p/p. 

It is clear that the parameter kR determines the de
gree of negativity exhibited by t:..p/p. Since for kR « 1 
scattering is isotropic in the absence of a magnetic 
field, the application of a field induces no great change 
in the transport cross section for scattering. Under 
these conditions t:..pjp should behave in about the same 
way as for scattering from acoustic phonons, in which 
case the scattering cross section is also isotropic in the 
absence of a magnetic field. We can therefore expect 
that t:..p/p becomes more negative with increasing values 
of kR. The calculation of t:..p/p in the region of f3 from 
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3 to oo yielded an extremely large negative value (up to 
90%) of t:.p/p, and for sufficiently large kR the effect is 
negative even in the quantum limit. 

In actuality a circumstance exists that can consider
ably diminish the negativity of magnetoresistance for 
kR » 1. The study of t:.p/p was subject to the customary 
conditions ~h » 1 (:IH2 » n/T) and koTT/n » 1 (the un
certainty of the electron energy is much smaller than 
their mean energy), i.e., the finite time elapsing be
tween collisions has been neglected. It is found that for 
Coulomb scattering in a magnetic field the finite time 
between collisions is significant even when that time is 
large (TkoT/n » 1). The physical situation can be des
cribed as follows. As has already been stated, a high 
magnetic field and energy conservation exclude a con
tribution to the resistance from processes involving 
small momentum transfer. However, when the time 
between electron collisions in a crystal is of the order 
T, the uncertainty in its energy is r ~ n/T. Therefore 
the squared momentum change t:.k~ is not necessarily 
zero, but can amount to ~ 2m/n T. This signifies that 
small-angle scattering can actually contribute to the 
resistance. Since the small-angle scattering amplitude 
is large for kR » 1, this effect can be substantial even 
for koTT/n » 1 (koT » r). 

We can evaluate the effect in the following simple 
manner. We compare the transport relaxation times for 
"backward" (b) and "forward" (f) scattering: 

where Wb is the probability of scattering into the back
ward hemisphere; 

( ~) ~ t;.k, w ~v mf_w f 
T f k, f h2k,2 ' 

where Wf is the probability of scattering into the forward 
hemisphere. It is easily proved that for Coulomb scat
tering with kR » 1 we have 

Wb = W r I 2(2kR)2• 

Then the total relaxation time is 

1 1 1 r yr l -=--+-~2Wb 1+ -(2kR)', 
T T b T f L k 0T _ 

which means that the correction for small-angle scat
tering can be significant when kR >> 1 despite the small
ness of r /koT. The inclusion of small-angle scattering 
increases the resistance by making t:.pjp less negative. 
In the present work we have obtained a correction to 
t:.pjp resulting from this effect for R/Z « 1 (where l is 
the mean free electron path in the field direction), i.e., 
when the mean free path exceeds the diameter of the 
scattering center. 

CALCULATION OF LONGITUDINAL MAGNETORESIS
TANCE ACCOMPANYING SCATTERING FROM 
IMPURITY IONS IN THE ABSENCE OF DEGEN
ERACY 

We shall calculate the longitudinal component of elec
trical conductivity in a magnetic field, taking account of 
electron quantization, followingc 4 ' 51 • The longitudinal 
current density in a magnetic field is 

j, =- egu ~ ~ dk, Vzfn (k,); (2) 

where fn(kz), which is linear in E and kz, represents a 
correction to the equilibrium distribution function; 
Vz = llkz/m*; gH is determined from 

1l 

where no is the concentration of conduction electrons 
and Fo(E) is the equilibrium electron distribution in a 
magnetic field: _ [-ft__- en(k,) l 

Fo(Bn)- exp .koT koT _,' 

(3) 

Bn (k,) = (n + 'l.)hQ + h2k,2 I 2m•. (4) 

We obtain fn(kz) by solving the kinetic equation 

eE iiFo(Bn) 
----

h ak, 

where Wnn' (k~, k)r, kz, ky) is the probability per unit 
time of an electron transition from the n, kz, ky state to 
n', k~, ky· The known form in the first approximation of 
perturbation theory for scattering by a screened 
Coulomb potential is 

Wnn•(k, k,') = ~Jt ~ !Cq 1'1 Q~'-n (u) I'll (Bn- Bn•) 
q 

(6) 

where 

4ne2 1/ N 
Cq = -(q2+R-2)x V' 

q is the momentum that is transferred in scattering, 
K is the dielectric constant, R is the screening length of 
the potential, N/V = n1 is the concentration of scattering 
centers, 

Qnn'-•(u) = (n! n'!)-'lzu(n'-n)/2e-uf2£nn'-n(u), 

L~' -n is a generalized Laguerre polynomial, and 
u = (q~ + q~)A. 2/2. Inserting Wnn' of Eq. (6) into {5), we 
obtain 

iiF0 hk, 
fn(k,) =-e-0 ----;-xnE. 

e m 
(7) 

We sum over~ and k~, integrate with respect to q, and 

introduce the dimensionless variables y = Em*A. 2/:11 2 and 
tn = ..Jy- n to obtain 

(8) 

where 

(9) 

with the following relation between Xn and Xn: 

(10) 
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Thus for Coulomb scattering the kinetic equation (5) is 
transformed into the system (8) of n algebraic equations. 
Electrons having energy of the order E are distributed 
over n ~ E/1H2 Landau levels. To obtain the distribution 
function we must find a set of Xn providing a solution of 
the n-th order system. 

It is worth mentioning that in the case of scattering 
by acoustic phonons, since the interaction matrix ele
ment is independent of q the "arrival" term in the 
kinetic equation vanishes; we may then introduce the 
relaxation time and arrive at an independent determina
tion of fn(kz) corresponding to the energy En· 

Inserting gH from (3) and fn(kz) from (7) into (2), and 
making use of (4), we obtain 

nox2 fi (koT)'h P3(1- e-~) ~ r - _ 
rJ, =t .. ---- 2 ,1 .,, XLJ \ d'f Xn ('!) e Bu. 

nie Jt : m ... z n ~ 
(11) 

Let us consider the sum over n. For each unit interval 
of y (k < y < k + 1) in the integral with respect toy we 
have an integrand formed by the superposed solutions of 
a k-th order system: 

oo oo k+1 n=k 

~ \ dYXn (y) e-Bu = ~ } dy ~ X~k) e-~Y. 
n 0 k=O k n=O 

In the absence of a magnetic field, as we know, [SJ we 
have o no 2'/, ( k0T) •;, x2 

O'zz = nl ;rr,31zm*lf2 e2fll ('tl) ' 

tl>(l]) =In (1 + lJ) -l] I (1 + TJ), lJ = (2kR)' npn E = 3k0T. (12) 

Equations (11) and (12) give for the magnetoresistance: 

~:-=tt>(11)~(P.11) -1. (13) 

We have introduced here the notation 
oo k+t n=4 

P3 (1-e-B) ~} dlj~ x~)e-BY=:l(P.~~. (14) 
k~o k n~o 2~ 

It is seen from (9) that J is a function of the parameter 
A 2~2R2 ; but since A2/2R2 = 12/f517, we have J = J({3, TJ), 
which we must now calculate in order to obtain t::.p/p. 

The solution has been obtained in the quantum limit 
by Argyres and Adams. [JJ In this case all electrons are 
in the first Landau band (n = n' = 0), and the system (8) 
becomes a single equation for the determination of xo: 

y z 
xo= 2 , z=4y+!.'/2R2• (15) 

1+ze'Ei(-z) 

Here x o equals the relaxation time; in dimensional 
variables we obtain for the backward relaxation time an 
expression similar to that obtained in[31 : 

ne4 n1 -'1, 1 +ze'Ei(-z) 
-= --=:==-Bz 

-c x2 12m' 1+(2k,R)-2 
(16) 

In the quantum limit, when {3- oo, we shall have 

xo = !!_ [4y + -~] 
2 2R2 

(17) 

and for the limiting value of the magnetoresistance we 
shall have 

~p = --~----1. (18) 
p QJ (1]){1 + 3/2T}] 

Equation (18) shows that for kR » 1 the magnetore
sistance as a function of {3 approaches a negative limit 
that increases in absolute value as kR increases. For 

kR ;S 1, when the scattering is nearly isotropic, t::.pjp 
is positive. Since Ei(-z) < 0 we see from (15) and (14) 
that in a very high field J is larger than in the quantum 
limit, i.e., 

~p ~p 
-(H)<- (co) p p • 

and the curve of t::.p/p as a function of {3 approaches the 
limit from below. This behavior of t::.p/p is associated 
with the fact that the scattering probability is deter
mined by both the scattering amplitude and the state 
density. The Coulomb scattering amplitude is dimin
ished as the magnetic field increases, while for {3 » 1 
when n 2k~/2m* ~ koT «nil the state density is con
siderably greater in the absence of a field and increases 
with {3. These two factors lead to an increase of the 
magnetoresistance for very large values of {3 and cause 
a minimum of t::.p/p to exist when {3 is not too large. 

We calculated t::.pjp = f({3, TJ) for {3 =:: 3 and several 
values of TJ (230, 9.8, 5.0, and 1.42). 1> Equation (14) 
shows that the contribution to J({3, TJ) from each succeed
ing band contains the additional factor e- f3; if Xn does 
not increase too rapidly, for {3 =:: 3 we can thus limit 
ourselves to only two Landau bands. Numerical calcula
tions showed that the contribution of the second band to 
J({3, TJ) comprises about 25% for {3 = 3 and about 2% for 
{3 = 6. Figure 1 shows the dependence of t::.pjp on {3 with 

15o ~~r~~/r-% 

100 I 
501-

-50 -

-1oo L 

FIG. 1. Dependence of longitudinal magnetoresistance on the para
meter {l, calculated with two Landau bands for fl > 3. Curves 1 ,2,3, and 
4 were calculated for n = 230, 9.8, 5.0, and 1.42, respectively. The 
values of !lp I p are given in the quantum limit. 

two bands taken into account. All of the foregoing re
sults were obtained in the Born approximation, which 
can be used for sufficiently fast particles, i.e., when the 
criterion e2 /Knv « 1 is satisfied. 

EFFECT OF THE FINITE TIME BETWEEN COLLISIONS 

As has been indicated in the Introduction, the uncer
tainty of electron energy that is associated with the 
finite time between collisions produces the following 
effect: Scattering with small momentum transfer, which 

1lThese values of n were selected on the basis of the experimental work 
that will be discussed below. 
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is excluded from the resistance in a high magnetic field 
by the conservation laws, actually does contribute to the 
resistance. We calculate the correction for this effect 
in the quantum limit ({3 » 1, n = n' = 0), when we can 
introduce the transport relaxation time: 

1 1 "' '[ kz'] -=-=-..:..JWoo(k,,k.) 1--k. 
't tr xo k, z 

(19) 

Since the uncertainty of electron energy is nl T ~ r, en
ergy conservation takes the following form 

li /i2 r 
e- e' = 2m•' (k,Z- kz'2)= 2m' (2k,q, + ql) ~ 2'-

The momentum transferred in scattering is 

q,± ~ -k, ± yk,2 + mT I li2, 

so that both backward scattering (qz) and forward scat
tering (q~) can occur: 

_!_=-'-+-' . (20) 
't tr 't b 'f f 

For backward scattering the correction to the trans
ferred momentum because of the energy spread is small; 
we may therefore anticipate that the correction to the 
scattering probability because of this effect is also 
small, and we shall neglect this effect in connection with 
backward scattering. Forward scattering results only 
from the energy spread, and the given effect must be 
taken into account here. Therefore we use (16) for 1lrb, 
and to calculate 11 Tf we replace o ( € - € 1 ) in (6) by 

1 r;2 
n (e-e')'+(r/2)2 

The calculation yields 
1 

Tr 'Kzj2m' 

xe,-'t.[1 + z,e'• Ei{- Zt)] 

R ( 2l, )z xu:- (2k,R)ln R , (21) 

where z1 = A 2 I2R2 and lz is the mean free path in the 
direction of the field. Equation (21) has been calculated 
subject to the condition lz » R, which means that the 
mean free path is much larger than the dimension of the 
scattering center. This condition is required if individ
ual scattering events are to be regarded as independent. 
We finally obtain 

'Kz -yz;;;• e:· [ 1 + ze' Ei {- z) 
'ttr = e4n1 1 +(2k,R)2 

+ : {1 + Zte'• Ei(- Zt)) ~z {2k,R)ln ( 2~' )l (22) 

To derive the longitudinal magnetoresistance we 
must calculate Uzz from (3) using Ttr from (22). We ob
tained a rough estimate of the effect produced by the 
energy spread for large finite values of {3 (taking one 
band into account) by transferring the expression within 
the square bracket of (22) to a position outside the 
integral (with Ez = 2koT) when calculating Uzz· Then 

(23) 

50 

-50 

--------____ ... -
--

FIG. 2. Magnetoresistance ~PII /p for (3 > 5, calculated with ac
count of the finite time between collisions (in the approximation 
of the first Landau band). Curve b was calculated for> R/2/z = 0.1, 
and curve c for R/2/z = 0.2. These are compared with curve a, which 
was calculated without account of the finite relaxation time (R/2/z = 0). 
The values of ~PII / p are given in the quantum limit. 

For {3 - oo the result is 

~--2-[ 1 !._.!!._1/2 ln(~)z]-1 
p- <D{1J) 1+3/21] + n 21, f 31] R ' (24) 

Figure 2 represents the numerical calculation of 
t::.plp from (23) for {3 > 5 and 1J = 9.8 and Rl2lz = 0.1 or 
0.2. 

To evaluate Rl2lz we must calculate lz = VzT· We 
determine lz from the total lifetime (not the transport 
lifetime) of all possible scattering processes. For ex
ample, an electron-electron interaction, which does not 
contribute to resistance, reduces the total lifetime of an 
electron. 

AN EXPERIMENTAL INVESTIGATION OF LONGITUDI
NAL MAGNETORESISTANCE IN TELLURIUM 

We have investigated the longitudinal magnetoresis
tance t::.p 11 lp of tellurium single crystals because the 
properties of this substance at impurity concentrations 
~ 1015lcm3 and temperatures T = 1.6-20°K correspond 
to the conditions assumed in our calculation. Moreover, 
it has been reported in [7J that in the indicated tempera
ture and concentration regions tellurium exhibits os
cillations of !::.PulP that dip into the region of negative 
values. A potentiometer was used for de measurements, 
and magnetic field signals were recorded with a two
coordinate instrument. 

The valence band of tellurium at the investigated con
centrations and temperatures is represented by two 
ellipsoids of rotation along the C3 axis of the crystal. [BJ 

When the relaxation time is isotropic or possesses 
cylindrical symmetry, as occurs in tellurium for scat
tering from ionized impurities, [sJ classical theory yields 
zero longitudinal magnetoresistance for this band. How
ever, tellurium single crystals often exhibit !::.pulP 
having considerable magnitude even in weak fields and 
at relatively high temperatures (77° K) when the quantum 
parameter {3 is small, apparently because of crystal 
imperfections. [lOJ Therefore in order to study the effect 
of quantization on the longitudinal magnetoresistance 
(which is our present interest) we had to select tellurium 
single crystals for which at 77°K we would find !::.PulP 
« l::.P1IP· 

Our most interesting results were obtained with a 
crystal having the concentration 1015lcm3 and 
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FIG. 3. Experimental dependences of the magnetoresistance 
.6-P!I I p on f3 at different temperatures. Initial segments of some curves, 
representing amplified measurements, are shown in the upper left-hand 
corner. 

(.6-PuiP)/(.6-pl/P) f'::l 0.05 at 77°K. Figure 3 shows the 
dependence of .6.p 11 jp on {3 for this sample at different 
temperatures. In the investigated temperature region 
this sample is nondegenerate; we thus have for the 
screening length: 

(25) 

We obtained the following values of the reduced chemical 
potential JJ. * and of 7J for the sample: 
T, "K: 1,6 2.6 3.0 3.8 4,2 14.45 20.4 
1'*: +0.1 -0,8 -1 -1,5 -1.7 -~.5 <-4 
IF 1.4 3.8 5 8.00 9,8 116 230 

(26) 

For the calculation of m* cyclotron masses from (UJ 

were used, and the calculation of the dielectric constant 
K was based on data obtained from U2J. The calculated 
curves shown in Fig. 1 correspond to the temperatures, 
1.6, 3, 4.2, and 20.4°K. 

It should be noted that at 4° K and lower temperatures 
in tellurium having the concentration 1015/cm3 resis
tance results mainly from scattering from ionized im
purities; scattering by acoustic phonons begins to play 
a significant part at hydrogen temperatures (14-20°K). 
It therefore follows from 110J that the ratio between the 
lattice and ion-dependent components of the mobility is 
~ 60 at 4 o K, while at 20° K the ratio is ~ 0. 5. Therefore 
both scattering mechanisms should be taken into account 
at hydrogen temperatures. 

Figures 1 and 3 show large discrepancies between 
the calculated and experimental values of .6-p/p; how
ever, the theory provides a good qualitative description 
of the behavior of .6-p/p for f3 > 1. As predicted by the 
theory, a minimum of the longitudinal magnetoresistance 
is observed on several experimental curves for {3 ~ 4-6. 
The minimum becomes deeper as kR increases, i.e., as 
predicted by the theory, the magnitude of the negative 
effect is associated with the anisotropy of Coulomb scat
tering. 

It has been pointed out in the introduction that a sig-

nificant negative effect is possible in the region where 
~ 2 /2R2 = 12/ f37J < 1, i.e., we may expect that for larger 
values of 7J (higher T) the transition to the negative reg
ion occurs for smaller values of {3. Figure 3 shows this 
effect for temperatures at which only scattering from 
ionized impurities is important. In the mixed scattering 
region (at hydrogen temperatures) for 12/qf3 < 1 scatter
ing from ions decreases drastically because of the tem
perature increase. The inclusion of this scattering 
mechanism can lead to greatly negative magnetoresis
tance in this case also. However, since for {3 > 2 the 
magnetoresistance that is associated with scattering by 
phonons increases linearly with {3, 11 J the transition to 
negative magnetoresistance in the presence of both scat
tering mechanisms occurs for larger values of {3 than 
would have been the case for pure scattering from ions 
at the same value of 7J. The value of {3 increases with 
the temperature, i.e., with the relative role of lattice 
scattering. 

Almost all the experimental curves reveal weak nega
tive magnetoresistance for {3 « 1. Although we have 
performed no calculation for {3 < 1 and have not con
sidered the asymptotic behavior of .6.p 11 jp for {3- 0 in 
the case of scattering from ionized impurities, we shall 
attempt to elucidate qualitatively the behavior of .6.p 11 /p 
for very small values of {3. When {3 « 1/1} the magnetic 
field is so weak that there is Jractically no cutting off 
of small-angle scattering: emin < e~in and scattering 
is determined mainly by 7J (kR), as in the absence of a 
field. The effect of quantization is then manifested 
mainly through the behavior of the state density, as in 
the case of the isotropic scattering mechanism. It has 
been shown in 11 J that for this case we have 

(27) 

i.e., when {3 is very small we have negative .6.p 11 /p, fol
lowed by a transition to the positive region or a mini
mum [if the terms O(f 12) begin to play an important 
role]. We may possibly have observed this effect, upon 
which a weak dependence on kR (i.e., on temperature) is 
superimposed in the case of scattering from ions. How
ever, we cannot exclude the possibility that negative 
magnetoresistance in the initial segment of a curve is 
associated with the so-called Toyozawa effect. 113 J 

A comparison of the calculated and experimental 
curves has thus shown that by taking quantization into 
effect within the framework of the kinetic equation we 
are enabled to describe the behavior of longitudinal 
magnetoresistance qualitatively. What causes the pro
nounced discrepancies between the experimental and 
theoretical values of .6.p 11 /p in the region {3 > 3? One 
source of the discrepancies lies in the fact that the 
curves in Fig. 1 were calculated without taking account 
of the finite time between collisions. Through the dis
cussion in the preceding section and Fig. 2 we have be
come aware that the inclusion of this effect changes 
.6-p 11 I p considerably, without essentially altering the de
pendence on {3. It is interesting to estimate the order of 
magnitude of R/2lz that is required for this effect under 
experimental conditions. The mean free path lz = VzT 
is determined by the total lifetime of all possible scat
tering processes. We evaluate T from the experimental 
mobility for our sample at 4.2° K. By doing this we ex
aggerate T, because the mobility depends on the trans-
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port relaxation time, not the total relaxation time. For 
n ~ 1015/cm3 at 4.2°K in tellurium we have lz ~ 5.5 
x 10-6 em and R/2lz ~ 0.2. Figure 2 shows that when 
R/2 lz has this value the aforementioned effect makes 
an important contribution to the magnetoresistance. 

Another source of the discrepancies can be found in 
the fact that the foregoing calculations were performed 
subject to the fulfillment of the criterion y = e 2/nvK « 1, 
although the following data show that this condition is 
not satisfied: 

T, °K: 1.6 
r: 4 

3,0 
3 

4,2 
2,5 

20,4 
1 (28) 

The nonfulfillment has different effects on PH in a high 
magnetic field and Po calculated in the Born approxima
tion. The Born expression for the amplitude of scatter
ing by an unscreened Coulomb potential is an exact 
solution. For backward scattering, induced by interac
tions at short distances, where screening is insignifi
cant, the solution coincides with the expression for the 
amplitude of scattering by a screened Coulomb poten
tial. Therefore when PH is calculated in a high field, 
where it is determined mainly by backward scattering, 
the nonfulfillment of the Born condition affects the value 
of PH only slightly. 

The resistance in the absence of a field is deter
mined mainly by small-angle forward scattering. This 
signifies the inclusion of the cross section for scatter
ing by a screened Coulomb potential, for which when 
y « 1 is not fulfilled the Born equation yields a value 
that is too high. As a result the ratio PHIPo calculated 
in the Born approximation is too small and the negativity 
of f¥1/p is exaggerated. 

We note that at higher temperatures, when the Born 
condition begins to be better fulfilled and the error re
sulting from the use of the Born approximation is re
duced, the finite time between collisions begins to play 
an especially large role, since this effect increases with 
kR. 

In conclusion, I wish to thank I. I. Farbshtei:'n and 

V. A. Noskin for their continual interest in the experi
mental work and for discussions of the results. I am 
also greatly indebted to M. S. Bresler and Yu. A. Firsov 
for theoretical discussions, and to S. S. Shalyt, whose 
unfailing interest was responsible for this work. 
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