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Analytic expressions are obtained for the forerunner field. Spectral and energy estimates are made. 
The possibility of its experimental observation is discussed. 

1. The first to consider in detail transient processes 
in the optical range were Sommerfeld and Brillouin P' 2 1, 
who showed that the principles of special relativity 
theory are not violated in the anomalous-dispersion 
region. Subsequently, this question was raised many 
times in connection with an analysis of the concepts of 
phase and group velocity[3, 4 J and the propagation of 
radio pulses in the ionosphere[ 5l. It was shown that 
when the front of the light wave enters a dispersive 
medium, a transient process takes place, which leads 
to the formation of a "forerunner" propagating ahead 
of the stationary signal. Estimates of the duration and 
energy of the forerunner have shown that the registra
tion of the forerunner lies beyond the capabilities of 
the then existing experimental techniques. However, 
recently developed experimental methods make it pos
sible to register time intervals down to 10-14 sec ra, 7 1 

and to generate powerful ultrashort light pulses with 
steep fronts. In this connection, it is timely to raise 
the question of the possibility of experimentally study
ing transient processes in the optical frequency range. 

To this end, we consider the character of the transi
ent processes that develop upon reflection and refrac
tion of a light pulse by a plane boundary. 

2. We specify an electric field incident on a plane 
interface y = 0 between vacuum and a medium, in 
terms of a unit-amplitude wave: 

{ . ( xsina+ycosa)} xsina+ycosa exp -zw 0 t- · t > ---~---
c c 

Eo(r,t)= E, = (1) 

0, x sin a + y cos a t<------, 
c 

the front of which has the surface 

x sin a + y cos a = ct. (2) 

Let us write down the spectral components of the inci
dent ( E~ ), reflected ( E~ ), and refracted ( Eij') waves 
in the form 

Eow=F(w)exp(-iwt+ik0r), (3a) 

Erw = F(w)f(a,n(w)) exp (-iwt+ ikzr), (3b) 
Edw = F(w)g(a, n(ul)) exp (-iwt + ik1r), (3c) 

where n(w) is the refractive index of the medium; 

ko ={: sin a, ; cos a, 0}, k1 ={: n(w)sin ~' : n(w)cos ~' 0 }; 
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kz ={~sin a, -~cosa,o}; F(w)= -.-.--1--
c c 2nt(w-ulo) 

sina=n(w)sinj3; 

cos a- Yn2( w)- sin2 a 
!(a,n((i)))=- _ ; 

cos a+ l'n2(<d)- sin2a 

2 cos a 
g (a, n (w) ) = _ 

cos a+ ynz((i))- sin2a 

are the Fresnel coefficients for the reflected and re
fracted waves. By summing the spectral components, 
we can easily find the total field. 

(4) 

The steady state of the process, established after 
the lapse of a time interval longer than the transient 
times characteristic of the medium, satisfies the ex
tinction theorem of Ewald and Oseen[a,"J. In this case 
two waves are formed in the medium, a refracted wave 
whose phase velocity equals c/n, and a non-refracted 
wave propagating with velocity c. This second wave 
exactly cancels out the field of the incident wave in the 
medium. However, during a time interval comparable 
with the characteristic times, the refracted and non
refracted waves still do not have time to form. A fore
runner is then produced in a region sufficiently close 
to the front and propagates with velocity c in the direc
tion of the incident wave. 

The field of the signal in the medium is obtained by 
summing its harmonics. Each harmonic is a stationary 
signal, which ''knows nothing'' of its origin from a 
limited wave train, and behaves as a plane wave in a 
dispersive medium. Its propagation is described by 
the stationary refractive index and by the boundary 
conditions (Fresnel formulas), which are also station
ary. The optical characteristics of the medium are 
determined by the natural frequencies we of the bound 
electrons and their relaxation times Te. During a time 
shorter than 1/ we or r e from the instant of arrival of 
the front at the point under consideration, the excita
tion and relaxation processes play a secondary role. 
For the damped classical oscillator model, this means 
that the electron does not have time to acquire neither 
a velocity nor a displacement from the equilibrium 
position. Therefore, if we use for the stationary har
monics the plasma index 

n2 (w) = 1- Q 2 /w2, (5) 

where Q is the electron plasma frequency, then the 
obtained expressions should describe accurately the 
part of the signal close to the front. It is utterly mean-
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ingless to speak of a refractive index for harmonics 
of too high a frequency (wavelength of the order of the 
interatomic distances). 

We can now write expressions describing the first 
stage of the transient process, i.e., the forerunner, the 
field of which for the refracted and reflected wave is 
described, in accordance with the foregoing, by the 
expressions (a 2: 0 ) 

1 ia+co 2w 
Ed = - -- ~ ->::;:;=~=-:;:= 

:lni ia-=(w- wo) (w + }w'- Q 2/cos2 a) 

{ . ( x sin a y cos a . . _ ., )} 
X exp - uo t- -~- --·- -c-1 w2 - S1"/cos2 a (6a) 

Xexp - iw 
t _ x sin " -1- y cos c: \)\ 

c J (6b) 

To calculate these integrals we use the procedure em
ployed by DenisovP0 l. Namely, we make a successive 
change of variables: w = ip, p = 0(1/z- z )/2 cos a, 
and then z = - yw in the integral (6a) and z = -w in 
the integral (6b). The integration contour in the w 
plane is then a circle with center at the origin; this 
circle does not enclose any singularities, and is 
directed counterclockwise. Separating in the integrand 
the factor exp{ q( w - 1/w )/2 }, which is the generating 
function for the Bessel functions 

1 ·\' . 1 
Zni •· exr{ q(w- w-)/z}wkdw= (--1)k+1Jk+1 (q) = !_k-t(q), 

and expanding the remaining part of the integrand in 
powers of w, we obtain the solution in the form of a 
series of Bessel functions 

~ 1 1 
Ed= lo(~)- y'J, (!-') + ~ [ (w')h + (w")k l ( -1)k (h(ft)- y'.lk+2(ft) ), 

h~, (7a) 
where 

, . wo 1 v w02 cos2 a w = -1-cosa--- 1----
2y y ' Q2 ' 

1 / ct - x sin a - y cos a 
y = v ------- ----

ct - x sin a + !I cos a 

II • Wo 1 v---wo2cos2 a 
w = -1-cosa+- 1-----

2y y Q2 

ft=-?--V(t- xsina )'-(!1_-cosa)'. 
cos (_;: c c 

Q ( .r sin a+ y cos a ) . w0 v wo2 cos2 a 
X=-- t- ,Wt=-!-COSa- 1----, 

cos a c Q Q' 

wo o/ wo2 cos2 a W2= -i-cosa+l 1----
Q Q2 . 

Near the wave front, 11. and x are small, and, as can 
be seen, we can retain in (7a) and (7b) only the first 
terms: 

Thus, for example, the field intensity of the forerunner 
in the passing wave oscillates rapidly and decreases 
like J o( 11. ). On the other hand, in the reflected wave the 
forerunner is delayed by a time ~t, which is deter-

mined by the position of the first maximum of the func
tion J 2(x). For normal incidence, ~t ~ 3/0. If we 
assume 0 ~ 1016 , corresponding to an electron con
centration 10 22 em -3, then the depth of the region in 
which the forerunner of the reflected ray is produced 
is ~Z = c~t/2 "'=' 5 x 10- 6 em, i.e., of the order of an 
optical wavelength or of the skin depth in metals. 

The front 11. = 0 of the incident wave propagates in 
the medium without being refracted and is accompanied 
by a forerunner. 

3. To obtain the spectral and energy estimates of 
the forerunner, it is convenient to consider the more 
realistic problem of the passage of a light pulse 
through a plane-parallel plate. The problem is formu
lated in the same manner as the preceding one, except 
that the expression for the spectral component Ef of 

the transmitted wave contains an additional phase shift 
over the thickness d of the plate, and one more 
Fresnel coefficient g( {3, 1/n( w )), corresponding to the 
emergence of the light from the plate into the vacuum 
(inasmuch as we are interested only in the transient 
process, multiple reflections in the plate are disre
garded). In this case we have 
E,w = F(w)g(a,n(w))g(~, 1/ n(w)) exp {-iwt + ik0r + i(kt- k0 )6}. 

Here 
(8) 

6 = {dtg ~, d, 0}, 

ia-t-oo 
E, = __ 1_ ~ . 4wl'w2_- Q 2/cos'a 

2:nii ia'-= ( w - w o) ( w + l' w 2 - Q 2/ cos2 a) 

xexp {- iwT + i~l'w 2 - Q2/cos2 a}, (9) 
where 

~= (d/c)cosa, T=t-[xsina+(y-d)cosa]lc. 

Calculating the integral, we obtain 
"" 1 1 

E, = lo(fJ)- o'h(fl)+ ~ (;;-;;-+ ;k) (-1)"(h(t])- o4hH(fJ)), 
l<~t a b (10} 

where 

Wo 1 v----roo'cosia 
w = - i --cos a-- 1 - ---

a aQ ()' Q2 , 

wo 1 v w 02 cos2 a Wb= -i-cosa+- 1----
uQ u Q' ' 

f1 = _Q - v T'- ~'. 
cos a 

u =~~T- ~. 
'I T+~ 

Since the plasma is optically less dense than the 
vacuum, a monochromatic wave of frequency w 0 , 

emerging from the plate, can experience total reflec
tion. To this end it is necessary to have a 2: acr and 
sin acr = n(wo ). For a flat plate, at a = acr, the 
Fresnel coefficient at the second boundary g(/3, 
1/n( w0 )) = 0 and there should be no stationary field 
behind the plate. Therefore the expression obtained 
from formula (10) with a = acr should describe only 
the forerunner. Owing to the universality of the proper
ties of the medium with respect to the forerunner, this 
conclusion is valid for any medium. In this case 

E, = lo(t]) - 2cr'/2 (t]) + u'l.(t]) - 2i ( u/1 (t]) - u3/a(t]) ). (11) 

The real part of (11) corresponds to a signal begin
ning with t = 0, since cos wt is imaginary, like sin wt. 

It is easy to see that if w 0 = 0, total reflection oc
curs already at normal incidence. Then 
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s = d/c, 11 = Q)' (t- (Y- d)/c)2 -'(d/c) 2, 0 _ v t-yjc 
t- y/c + 2d/c 

Near the front we have 

11::::: Q)'2(t-yfc)d/c = Q)'2,;d/c. 

The distances between the zeroes of the Bessel func
tions are approximately equal to rr. Therefore, the 
distance between the m-th and (m + 1)-st zeroes of the 
forerunner is t..Tm Rj rr'1nc/0 2d, and consequently the 
"running" frequency of the forerunner is wm 
= 2rr/2t..Tm = 0 2d/rrmc. Since 0../2rmd/c ?.': rrm, we 
have 

{J)m~Q)'d/2r-r. 

It is seen from the last formula that the thicker the 
plate, the closer the zeroes at the front of the signal 
emerging from the plate. 

Since the parameter CJ is small at the front, and the 
values of the Bessel functions decrease rapidly away 
from the front, we can confine ourselves in the calcula
tion of the total spectrum of the signal behind the plate 
only to Jo(1J ). A simple calculation shows that the 
maximum of the total spectrum lies, as expected, at 
the plasma Langmuir frequency n. 

Let us estimate the energy corresponding to the 
transient. For a cosinusoidal signal, the energy flux 
through a unit area on the plane y = d equals 

8dle 
cos c ( W, = 8) {Jo(£)- 2rfh(£)+ p•J,(;)}2dt, 

J1 d/c 

and for a sinusoidal signal 

where 

3dfc 
sin c r w, =- 4 J {plt(s)- p3la(6) }"dt, 

lln die 

_ 1/ t-d/c 
p- V t+ dfc · 

(12) 

(13) 

The upper limit of the integral, 3d/ c, is chosen such 
as to cut off all the multiply reflected rays. Using the 
theorem of the mean, noting that Od/c ~ 105 when 
d = 1 em, and using the asymptotic expression for 
Bessel functions, we obtain 

w:ln I w,oo•:;::;: c/ 4nQ H W,/Wo ~ Q-'. 

The presently attained laser powers and optical
radiation receiver sensitivities make a direct observa
tion of the forerunner possible. 

In the foregoing approximation, the forerunner 
propagates in the medium without damping. In an ideal 
plasma, damping can be due only to collisions. The re
fractive index with allowance for collisions[sJ is 

( ' gz 1 )''• n(oo)= 1- · 
oo 2 •1-iv/oo ' 

(14) 

where T = 1/v is the average time between collisions. 
The argument of the exponential factor in the integral 
of (9), which contains the refractive index, reduces in 
this case to the form 

«D = i~oon(oo)= _ ~~(~+ z){ 1- 2v(1/z- z)/Q(1/z + z)2}'". 
2 z 1-2v/Q(1/z-z) 

Since the integration circle on the z-plane can have an 

arbitrarily small radius, the expression in the curly 
brackets can be expanded in a series: 

<I> ::::: - ~ ~ ( : + z) - 2v~•. 
This produces under the integral sign an additional 
damped exponential factor exp ( -2vl;z 2 ) Rj 1 - 2vi;z2 

which leads to the appearance of a series of additio~al 
terms in (10), starting with J 2• For the case of total 
internal reflection, formula (11) assumes the form 

Et::::: lo + 2o2(1- vs)Jz- o'(1 + 4v~)J. + 2i(oJ1 - o3(1 + 2v~)J3 ). 

For not too thick plates, the parameter vi: = vd/c is 
small and the contribution of the collisions is accord
ingly small. 

The refractive index for a magnetoactive medium 

n({J)) = (1- Q2 1 )''• 
,Cllz •1 ± CllH/Cll 

has the same form as (14), from which we see that the 
optical activity of the medium has practically no effect 
on the forerunner. 

For an experimental observation of the forerunner, 
the most convenient schemes are those permitting 
separation of the forerunner from the stationary signal. 
It is possible to use for this purpose a total-internal
reflection prism, crossed Nicol prisms, a Kerr cell, 
etc., which transmit only the forerunner in the forward 
direction. It should be borne in mind here that the 
maximum of the forerunner intensity does not corre
spond to the main signal frequency, and is shifted 
towards frequencies closer to the Langmuir frequency 
of the given medium. 

The authors consider it their pleasant duty to thank 
E. K. Zavo1ski1 and S. D. Fanchenko for useful discus
sions of the process, which simulated our undertaking 
of this investigation. 
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