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A phenomenological theory of a mixture of Fermi and Bose liquids (Fermi-Bose liquid) is formulated 
in the same spirit as was done by L. D. Landau for Fermi liquids. The energy of the Fermi excitation 
in a superfluid liquid is defined. An exact system of equations describing the properties of the Fermi
Bose liquid is derived. The acoustic solutions of this system are analyzed. 

SoLUTIONS of He3 in He4 at low temperatures are ex- and the momentum will be 
amples of quantum liquids in which Fermi and Bose ex
citations exist simultaneously. At temperatures below 
the degeneracy temperature the interaction becomes 
significant for the Fermi excitations, and the Fermi 
part of the liquid forms in this case a Fermi quantum 
liquid dissolved in a superfluid liquid. 

The diagram of state of solutions of He3 in He 4 has at 
a temperature close to 0.8° a critical point, below which 
the solutions become laminated. The lamination curve 
joins, as T- 0, the point of the pure substance (He3) at 
one end and at the point corresponding to a solution with 
He3 concentration of about 6% in He4 at the other[1J. At 
concentrations below 6%, the solution does not become 
laminated, and when the temperature is lowered the 
region of Fermi degeneracy is always reached. This is 
confirmed by measurements of the specific heat of the 
solutions, which changes linearly with temperature[2 J. 

Thus, the indicated solutions represent a sui-generis 
Fermi -Bose quantum liquid. 

We shall use the designation "Fermi -Bose liquid" 
in all cases when we have a Fermi liquid with super
fluidity. An example of a Fermi -Bose liquid should be 
also pure liquid He3 in the temperature region where it 
can become superfluid, owing to the Cooper pairing of 
the Fermi excitations with nonzero angular momen
tum [3 J. 

Many properties of solutions of He3 in He4 were con
sidered in detail in [4 J, and also in [S,BJ. The purpose of 
the present paper is to formulate a general phenomeno
logical theory of Fermi-Bose quantum liquids in the 
same spirit as was done by L. Landau for Fermi 
liquids 1 H 7 J. 

1. EXCITATION ENERGY 

Let E' and P' be the energy and momentum (per unit 
volume) of the liquid in a reference frame moving at 
the velocity of the superfluid motion Vs· Then the en
ergy of the liquid in the resting reference system will 
be 

E = E' + P'v, + pv,2 I 2, (1.1) 

1 lNo limitations are imposed, naturally, on the concentration of the 
Fermi particles, As is well known, the parameter of the series expansion 
of the the thermodynamic functions of a degenerate solution is the con
centration raised to the 1/3 power. Obviously, at a concentration order 
of 6% this parameter is not small. 

J = ,pv, + P'. (1.2) 

The same momentum J can be represented in the form 
of a sum of the momentum of the superfluid motion of 
the Bose part of the liquid, equal to p 1 v s, and the total 
momentum of the excitations, equal to jpnpdT: 

J = p1v,+) pnpdt. (1.3) 

The density p 1 of the Bose part of the liquid is 2 > 

Pt = p- m ~ np dr (1.4) 

(m-mass of the Fermi particle). Comparing (1.2) with 
(1.3) we get 

P' = \(p-mv,)npdt"= \pnp,mv d-r. 
• •' s 

(1. 5) 

Thus, the excitation momentum is expressed in the form 
of a variational derivative 

p = 6P'/6np,mv,-

Analogously, the excitation energy is (in the system 
where vs = 0) 

(1.6) 

(1.7) 

The state of our system is described by specifying 
three functions namely, the density p (or p 1), the veloc
ity v s, and the distribution function np + mv s. The exci-

tation energy can be determined as the variational 
derivatives of the density of the energy E with respect 
to the distribution function, with the other two functions 
p (or p1) and Vs constant. For the case of a solution of 
He3 in He\ the natural variable is the density p 1, and 
we define the excitation energy as that additional energy 
which is acquired by the mixture of the liquids when one 
atom of He3 is added (at a specified mass of the Bose 
liquid He 4). On the other hand, for the case of a Fermi 
liquid in which, owing to pairing, superfluidity appears, 
a more natural variable is the total density p. Hence
forth we shall carry out all the calculations first for the 
case when the variable is chosen to be the density p. 
The formulas obtained thereby are more compact. At 
the end we shall summarize the results for both cases. 

We now calculate the excitation energy Hp + mv s in 

Z) Just as in the theory of the Fermi liquid, the number of Fermi 
excitations in the solution He 3 and He4 is assumed equal to the number 
of the Fermi particles. 
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the presence of superfluid motion with velocity v 8 

(obviously, the excitation momentum here is equal to 
p + mv 8). From (1.1) we get 

(1.8) 

The energy Ep is a functional of the excitation density, 
and this dependence can be expressed in the form of the 
functional derivative 

(1.9) 

Thus, at a small deviation from equilibrium, we have 

(1.10) 

where e~> is the excitation energy in a system that is in 

equilibrium, and 

(1.11) 

(n~> is the equilibrium distribution function). The fact 

that the variation should be defined in this manner fol
lows directly from (1. 5), which can be rewritten in the 
form 

P' = ~p(np,mv -n<0>)d-c:. 
• 8 p 

We now write down the excitation energy Hp as a 
function of the momentum p. Using the definition (1.8) 
and formula (1.9), and separating in explicit form the 
terms linear in v 8 , we get 

Hp = Ep-mv, + (p- mv, v,) ~e~> + (v- rn :; , v,) 

+ ~ f (p- rnv, p') llnp'+mv, d-e:. (1.12) 

For momentum values close to the Fermi limit, we ob
tain from this3 > 

<a> ( ae ) ( ae ) F1 1 , <•> , Hp = ep + p- m-, v, - m 1 -v, --+ .l f(p,p) (np,- np )dt. ap \ op _ 3 
:1.13) 

We write the excitation energy E~l in the form 

e~) =Eo+ p2/2m', (1.14) 

where m* is the total effective mass due to the interac
tion of the Fermi particle with both the Bose and the 
Fermi parts of the liquid, and Eo is the zero-point exci
tation energy. For this concrete form of the spectrum 
it follows from (1.13) that 

p2 ( m ( F1 )) 1 (Ol 
Hp=eo+ Zm' +(pv,)\ 1--;;;•\ 1+T + j/(p,p')(np,-np··)d-r:'. 

(1.15) 
The obtained formula differs from the analogous form
ula given by Bardin, Baym, and Pines[4J both in the fact 
that the term p 2 /2m* contains the total effective mass, 
and in the coefficient preceding the term p · v 8 . In the 
presence of superfluid motion, it is impossible to use 
the Galileo principle to establish the connection between 
the bare mass (the effective mass that the Fermi exci
tation situated in the superfluid would have) and the total 
effective mass m * due also to the interaction of the 

3>we introduce the notation F(x) = (ar;ae)e = il3 f(x), where f(x) is 
the value of f(p, p') at I pI= I p' I= PF, which depends only on the angle 
x between the vectors p and p'. We expand the function Fin Legendre 
polynomials. F 1 is the first spherical harmonic 

Fermi excitations. The coefficient of the term p · v 8 in 
(1.15) has the following necessary and natural property: 
in a pure Fermi liquid 

m ( F1) 1-- 1+- =0 
m' 3 

and there is no superfluidity. 

2. EQUILIBRIUM DISTRIBUTION FUNCTION 

The equilibrium distribution function is obtained by 
minimizing the entropy 

S=-) {(1-n)ln(1-n)+nlnn}d,; (2.1) 

at specified values of the total energy E, the number of 
excitations N = J ndT, and the relative -motion mom en
tum P'. Thus, it is necessary to minimize the functional 

<I>= S- ~(E- J-lsfV- VnP') (2 .2) 

(/3, JJ.a, and Vn are the Lagrangian factors, which have 
the usual physical meaning: f3 = 1/ T, J-1. 3 -chemical 
potential, vn -normal velocity). Varying the functional 
(2 .2) with respect to Onp + mv 8 , we get 

n~lmv = [exp {(Hp+mv - pvn- (13)/T} + 1r'. 
' s 

From (2.2) it follows that the chemical potential 

!-Ia = (oE' I aN)s,P•, 

(2.3) 

(2.4) 

and the thermodynamic equation has the following form: 

dE'= TdS + 1-13dN + m4- 1 f-t4dp + (vn- v,, dP') (2.5) 

(m4 is the mass of the He4 atom). 
In the case when the independent variable is not p but 

the density p,, the thermodynamic equation assumes the 
form 

dE'= TdS + f-tJ1ldN + mc1f-t,dpl + (vn- v,, dP'), 

fljl) = f,t3 + !!!__ fl•· 
m, 

3. NORMAL DENSITY AND SPECIFIC HEAT 

(2.6) 

Let us calculate the momentum of the Fermi excita
tions in a reference frame in which the superfluid part 
)f the liquid is at rest. We have 

(3 .1) 

We use for the distribution function its equilibrium value 
(2. 3). Let us find the addition to the excitation energy 
in the presence of superfluid and normal flows. From 
(1.8) and (1.10) follows the equation 

I on(O) ( ) 
6H=(p,v,-vn)+ j/(p,p')fi'T{JH'd,;', 3.2 

from which we get 

{jfl = (p, Vs- Vn) 

1 +F,/3 . 

Using this formula, we get from (3.1) 

) on• m'N 
P'= p-bHd,;= / (vn-v,). 

OE 1 + F, 3 

The total momentum of the liquid is equal to 

( m'N ) m'N 
J = pv, + P' = p -l+ FJ/3- v, + 1 + Fd3 Vn. 

(3.3) 

(3.4) 

(3. 5) 
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Thus, the density of the normal c:omponent is 
m'N 

Pn = 1 + Ft/3; (3.6) 

Naturally, it is not equal to the density of the Fermi part 
of the liquid mN. 

The specific heat of the Fermi excitations is calcula
ted in analogy with the procedure used for the Fermi 
liquid. It equals 

c 
C=N=yT, 

The coefficient y in this formula contains the total 
effective mass of the excitation m *, and not 

(3.7) 

m *I (1 + F 1/3), as is the case in formula (3 .6) for Pn. 

4. ENERGY AND MOMENTUM CONSERVATION LAW 

Let us write down the kinetic equation for the func
tion np+mvs· We have 

iJnl»'"V• iJnp+mv. fJHp+mv.- fJni»mv. fJHpTmV. =I n (4.1) 
fJt + iJx lip lip ilx ( ). 

To derive the complete system of equations describing 
the Fermi-Bose liquid, we use the following conserva
tion laws: the continuity equation 

p+divJ=O, 

and the momentum conservation equation 

J-+ {}IJik =0 
~ axk ' 

(4.2) 

(4.3) 

where IIik is the momentum-flux tensor, which is still 
unknown. We now multiply (4.1) by Pi and integrate over 
all of phase space (for simplicity we denote the integra
tion operation by a bar). It must be borne in mind here 
that since JidT = 0, it follows that 

} p/d-r = } (p + mv,)ld-r = 0. 

We obtain in this manner 

(4.4) 

Further, subtracting (4.4) from (4.3) and using the con
tinuity equation, we obtain 

• {} -- /1 ( . iiHI»mv8 ) 

pv,l- v,; ox• (pv,. + np+mv,Pk) + 7fX;. IT;k- np+mv,Pi ---ap;;-

-np+mv fJH{Jp+mv, =• 0. (4.5) 
s XI 

We now transform the obtained equation, taking into 
account the condition curl Vs = 0. We obtain 

Transforming the last term of (4.6), we get 

iJ iJE a ( iJE ) fJ fJE O (4. 7) 
-p ilx1 flp + ilxk v,; iiVsk - vs!fJxk ilv,k = . 

Substituting the last expression in (4.6) and taking into 
account the relation 

a ( - , aE) 0 --,----- np+mv H p+mv - E + p -0 = . 
uXi s s p 

(4.9) 

From (4.9) we find the equation of superfluid motion and 
the expression for the momentum flux tensor: 

V8 + V {iJE/iJp)n,v8 = 0, (4.10) 

08 
IT;k = np+mv Pi,.---- + np+mv (p;Vsk + PkVs;) + pv,;v,. 

s upk s 

(-- iJE') (4.11) 
+ 1\ik np+mv88p- E' +P--ap · 

When account is taken of (1.1), the superfluid-motion 
equation (4.10) can be rewritten in the form 

;, + v ( i}:; + ~·) = 0. 

The pressure is defined by the usual relation 
iJE' 

P= -E'+-p+TS. 
iJp 

(4.12) 

(4.13) 

Taking this definition into account, we write the expres
sion for the momentum flux tensor in the form 

To obtain the energy conservation law, we multiply the 
kinetic equation (4.1) by Hp + mvs and integrate over the 
phase volume. As a resulf 

(4.15) 

Let us calculate the derivative of the total energy with 
respect to time: 

--~--

liE iJnp+mv, liE iJp iJE OVsk 

Tt = Hp+mv• at + Tp 7ft+ iJv,. at (4.16) 

and let us use Eq. (4.15), the continuity equation (4.2), 
and the superfluid motion Eq. (4.10). In this way we get 

iJE iJ ( iiH~»mv,) iJE . iJE 
- = --:--- np+mv H p+mv - 0-- ---;;- d1v J -J grad;;-
iJt ax. • • Pk vp vp 

. { iJHI»mv8 iJE} 
=-di-v np+mv,H~»mv,~+Jap • 1 (4.17) 

The expression under the divergence sign is indeed the 
energy flux 

iJE iiHI»mv8 Q = J -0 + np+mv HI»mv - 0-- • p • • p (4.18) 

5. FIRST AND SECOND SOUNDS 

Let us consider low-frequency acoustic oscillations 
of a Fermi-Bose liquid. In this limiting case, there is 
a hydrodynamic theory for the entire liquid as a whole, 
as well as for the Fermi part. However, for the sake 
of uniformity, we shall use as before the kinetic equa-



THEORY OF FERMI-BOSE QUANTUM LIQUIDS 1017 

tion for the Fermi excitations. We denote small devia
tions of Ilp + mv s and p from the equilibrium values by 
n1 = np + mvs - np> and p' = p - po, respectively; the 
velocity Vs itself is of the same order of smallness. 
Assume that all these quantities vary in time and in 
coordinates in accordance with the periodic law 
exp(iwt -ik·x). Then Eqs. (4.1), (4.2), and (4.10) yield 
in the linear approximation the following system: 

on<•> ( fJe I ) ( i{{i)-kv)nt+ikv-- -p'+pv,+J /{pp')n/dt' =0, 5.1) oe ap 

irop'- ik ( pv, + ~ n1pdt) = 0, (5.2) 

( s2 , ~ fJe ) fJe s2 fJ2E ( 5 3) 
irov,- ik1 -p-p + fJp n1dt = 0; V= fJp, -- • \ p - fJp2 

We introduce further the following notation and dimen
sionless variables: 

on<fJJ 
nt =--m'vF'v(x), :i= cosll, 

fJe 

F(x)= /(xl( dt) = ~ FnPn(cosx), 
de e=~a 

() is the angle between the excitation momentum p, the 
wave vector k, and f(x) is defined in footnote 3 >, and 

( fJe) VF=- , 
ap ·=~, 

(I) - p' v, 
U=- p'=-, V 5 =-. 

kVp' p Vp 

In terms of the new variables, the system (5.1) -(5.3) 
assumes the following form: 

(u- x)v(x) + x(ap' -F(x)v(x')+ xv.) = !(v), (5.4) 

- Nm' 
up'-v,+vt--'-=0, (5.5) 

p 
s2 - Nm* s2 

u'iJ,--p' + 3a----vo= 0. (5.6) 
Vp2 p Vpz 

The function v{x) can be expanded in Legendre polynom
ials 

v(x)= ~ VnPn(x), (5. 7) 

vo and 111 in Eqs. (5.4) -(5.6) are respectively the zeroth 
and first harmonics. 

The obtained system of equations is obviously valid 
for all values of the frequencies. For small values of 
w, when the characteristic collision time T satisfies the 
condition wT « 1, the hydrodynamic theory holds, as 
indicated above. In this case, the only nonvanishing 
harmonics of v{x) are the zeroth and the first (the 
higher harmonics have a relative order wT or higher). 
Equating the coefficients of Po(x) and P1(x) in Eq. (5.4), 
we obtain two equations for !'o and v1: 

uvo- 1/a(1 + Ft I 3)vt + 1/sii, = 0, (5.8) 

(5.9) 

The condition for the compatibility of the system (5. 5), 
(5.6), (5.8), and (5.9) yields the following dispersion 
equation, which determines u: 

u4 - u•{~( 1 +~-· - ((a( 1 + Ft) + 1)2 -1 )J 
Vp2 p(1 +Ft/3) \ 3 

where 

(5.11) 

For the case of small Fermi-particle concentrations, 
Eq. (5.10) has the following two approximate roots: 

s2 
{ . Nm* [ ( ( F1 ) )" l} 

Ut2 =_-;;;.- 1 + p(1 +Ft/3) \a 1 +3 + 1 -1 J •(5.12) 

1 ( Ft) [ Nm" ( ( F1 ) )" 
Uz2 =T\ 1+3" (1+fo) 1- P(1 +Ft!3) \a 1+"3 +1 J. 

(5.13) 
Formula (5.12) determines the velocity of ordinary 
(first) sound, and formula (5.13) the velocity of second 
sound. Second sound in a Fermi-Bose liquid is a sound 
propagating through the Fermi part of the liquid. 
Formula (5.13) coincides in first approximation with 
the formula that determines the velocity of sound in the 
Fermi liquid. The only difference is that Fo is renorm
alized as a result of the phonon interaction (formula 
(5.11)). 

For the case of small concentrations of the Fermi 
component, it is more convenient to express the results 
not in terms of the variables p and N, but in terms of 
the variables p1 and N. We shall write down these re
sults in terms of these more convenient variables 
somewhat later. 

6. ZERO SOUND 

We now consider the limiting case of high sound fre
quencies satisfying the condition wT » 1. In this case it 
is possible to neglect the collision integral in the kinetic 
equation. To solve the kinetic equation, we expand the 
distribution function in Legendre polynomials. For 
simplicity we assume that only the first two spherical 
harmonics of the function F differ from zero (Fo and FJ. 
Then the kinetic equation (5.4) yields two equations for 
the first two harmonics of the function v (vo and vJ: 

1 s2 -
(1:-r-Fow)vo--F,lJU.Vt +.-awp' + uw'iJ, = 0, (6.1) 

3 Vp2 

-Fouwvo +~(1 +~-F,u•w) v1 +~auwr>' -{ _!__ u2w )v. = 0, 
3 3 Vp 3 ( ) 

where 

. 6.2 

u u+1 
w=-1+-ln--. 

2 u-1 
(6.3) 

The condition for the compatibility of Eqs. (6.1), (6.2), 
(5.5), and (5.6) yields the dispersion equation in the 
high-frequency region. Inasmuch as Fo and F1 are 
small for a solution, the dispersion equation has a root 
of the order of unity. Near this root, the dispersion 
equation has the following form: 

where 

( F'tu2 ) 
1- Po+ i+Ft/3 w=O, (6.4) 

Nm* 
F'1 =F~---(a+1). (6.5) 

p 

We retain here in F1, besides the principal terms also 
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the terms of higher order in Nm*/p, since estimates 
create the impression that they make a noticeable con
tribution in the case of solutions of He3 in He4. 

Equation (6.4) determines the velocity of zero sound 
in the solution; it has undamped solutions only in the 
case when 

(6.6) 

As to Fo, this quantity is negative and of the order of 
unity (in absolute magnitude). It is more difficult to 
estimate the second term, which apparently is smaller 
than unity when u2 ~ 1.41 In this case the dispersion 
equation has no zero-sound solutions. However, inas
much as F 1 is not well known, the question of existence 
of zero sound in the solution remains open (we call 
attention to the fact that the second term in F1 is unfor
tunately negative, which is also unfavorable). 

7. TWO DEFINITIONS OF THE EXCITATION ENERGY 

We now write down several relations between the 
parameters of the theory for two different sets of varia
bles. So far we have used the set p, Vs, and c'inp +mvs 

= np+mvs -np1. We now take a second set, namely the 
density of the Bose component p 1 = p - m J ndT, the 
velocity v S• and we define the excitation energy as the 
variational derivative of the energy E with respect to 
c'illp = 11p- ~~mvs at specified values of P1 and vs. We 
have 

Hp = 6E/6np. (7.1) 

We denote by the index 1 all the derivatives calculated 
at a constant value of p1. Thus, we have for the excita
tion energy the following connection: 

Hp=(~) =(~) -m~!!_=Hp<t>-m DE. (7•2) 
llnp 0 /lnp 0 , iipt Opt 

The appearance of the second term in (7 .2) denotes a 
change in the point from which the energy is reckoned. 
Its physical meaning is clear, namely the additions of 
the excitation at a specified total density p and at a 
specified density of the Bose part p 1 are not equivalent. 
This term equals the chemical potential of the Bose 
part, multiplied by the mass of the Fermi particle : 

oE 1-4. 
m--=m-. 

opt m, 

The chemical potentials !J. 3 and IJ~1 > are connected by the 
relation 

(7 .3) 

Thus, for the differences Hp- #J.3 we have the connection 

Hp- f.ta = Hp<tJ- t.ta<t>, (7 .4) 

i.e., the excitation energy reckoned from the chemical 
potential is invariant. We next calculate the function 
f(p, p'). From (7 .2) we get 

4 lif u2 ~ I, then w = l/3u2 and Eq. (6.4) can have a solution only 
at very large values of F 1 ; apparently them are no grounds for this. 

oep<1> o2E = j<'>(p,p') -2m-+ m2-. 
op1 opt2 

(7.5) 

'We introduce the notation 

(7.6) 

Relation (7 .3) for the limiting Fermi energies yields 

3Nm s12 ( m) F = F<1> + ---- - 2at +----; . 
Pt vF• m 

(7. 7) 

The connection between the parameters a and au> can 
also be readily determined: 

p oa p (oe<1> o2E ) ps12 ( m) 
a= m·s• op = m's2 8p;- m opt• = Pts• at-m' . (7 .8) 

For Fo we have 
~· Nm' 

Fo = Fo- 3a2 - -- = F0<1> v... p 

3Nm' s12 [ m ( m) p1s2 ( m )2] +----· ---; -2at+-. ---at--; , 
pt vF2 m m pst2 m 

or, inasmuch as a2 E/ap~ = ll2 E/ap 2 , we get s 2/p = sUp1 
and 

3Nm* s12 
Fo = Fo<•>-----at2 = Fo<1>. 

Pt vr (7.9) 

We express the velocity of sound in a weak solution 
in terms of its value for the pure solvent: 

The quantity c'i!J.4 is determined from the simple rela
tion: 

(7.10) 

We thus find the sought formula 

I Nm') 
St2 ~ Str} \ 1 -f- p --;;;- , (7.11) 

For s 2 we obtain analogously 

o [ ( m ) Ntn' J s2 = -'-s1~ =,Sto• 1 + f.+~ -- . 
PI m Pt 

(7 .12) 

In terms of the new variables, the expressions for the 
velocities of the first and second sounds respectively 
are51 

lim. m { F1 ) 
-. =1--. 1-t--. 
m m , 3. 

(7 .14) 

5 >The result (7 .13) differs slightly from the result of Baym [5]. In 
the comparison it is necessary to take into account the fact that m in 
[5 ] is defined by the relation m = m* (l + F 1 /3). 
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A curious circumstance is the following: We calcu
late Fo. In analogy with the procedure used in£4J, we 
can show that the quantity 

(7 .15) 

and therefore 

(7 .16) 

The parameter a1m*/m4 equals the ratio of the specific 
volumes of the atoms He3 and He4. Indeed, 

(7 .17) 

Formula (7.16) with allowance for (7.17) gives the fol
lowing numerical value: 

Fo =·-1,15c'i•. (7 .18) 

At a concentration c equal to 6% we have Fo = -0.45. 
As is well known£8 J, the inequality 1 + Fo > 0 as the 
condition for the stability of the Fermi system relative 
to the fluctuations of the excitation density. Violation of 
this inequality would lead to an infinite increase of the 
fluctuations of the density of the excitations. This is 
seen from formula (5.13), for when 1 + Fo < 0 the veloc
ity of the second sound becomes imaginary. The fact 
that 1 + F o is small is apparently not an accident and 
should lead to an intensification of certain effects. 

The physical meaning of the function F o can be easily 
understood. Unlike Fo, which is the partial derivative 
BJ..L 3 /aN at a constant liquid density p, Fo is the deriva
tive of J..Ls with respect to N in the state of equilibrium, 
i.e., when the function J..1.4 is constant. Taking this cir
cumstance into account, we readily obtain 

( o,;) (o113 o113 (op) ] 3Nm• s2 
Fo- - -+- -- -Fo---a2-- ae ·~~. oN op aN ~· ,- P vp2' 

( :~) ~.= -( :: ) -=~· :2 . 

CONCLUSION 

So far, the temperature was assumed equal to zero 
or so low that the contribution of the elementary excita-

tions of the Bose type, such as phonons and rotons, 
could be neglected. In a system such as a solution of 
He3 in He\ at temperatures lower than the degeneracy 
temperature, i.e., in the region where the Fermi-liquid 
model takes place, the contribution of the phonons to all 
the thermodynamic quantities is negligibly small. Thus, 
the normal density of the phonons at 0.1 oK is less than 
10-8 • In the general case, however, in the presence of 
various types of excitations, of both the Fermi and the 
Bose type, it is necessary to sum also over all types of 
excitations in all the formulas containing integration 
over the phase volume of the excitations. 

So far we have said nothing concerning the spin of 
the Fermi excitations, since there was no need for it. 
The spin can be accounted for in the same manner as in 
the theory of the Fermi liquid. It is necessary to write 
everywhere (1/2)Tr a J d'T (for the case of spin 1/2) in 
lieu of the integrals of the type J dT; in addition, it is 
necessary to take into account the fact that the function 
faa'(p, p) depends also on the spins a and a'. 

In conclusion, I am deeply grateful to A. F. Andreev 
for a very useful discussion. 
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