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Fluctuations of acoustic and coupled longitudinal electromagnetic waves in piezo-semiconductors are 
considered for the case of space and time dispersion of the electron-hole plasma carriers. It is 
shown that the effective correlation range of the fluctuating elastic displacement components is de­
termined by the reciprocal damping constant per unit crystal length of the corresponding elastic 
waves in the piezo-semi-conductors. Phonon drag by subsonic carrier drift is considered and a 
general expression is found for the spectral density of the phonon energy flux. It is shown that for 
small values of the electron drift the flux is simply proportional to the drift velocity. Drag of longi­
tudinal and transverse sound waves is considered and the angular distribution of the dragged phonons 
is investigated. 

Spontaneous generation of acoustic waves occurs during supersonic electron motion. The spectral 
intensity of generated acoustic noises is found by solving the boundary problem for this case. It is 
shown in particular, that irrespective of the crystal orientation the generation threshold is always the 
same as the velocity of the transverse sound waves. The explicit form of the correlation function for 
random inductions in a nonequilibrium medium with carrier drift is found in the long-wave approxi­
mation and it is shown that it can be expressed in a natural way in terms of the nonequilibrium die­
lectric tensor of the medium. 

IN connection with the intensive investigations of the 
effects of amplification and generation of sound waves 
in semiconductors, it is of interest to consider the 
question of the fluctuations of acoustic waves and of the 
electromagnetic waves coupled to them in piezo-semi­
conducting crystals. For systems in the stationary and 
thermodynamic-equilibrium states, a general method 
of solving such problems was developed by Callen and 
Welton, [1, 2 J who have shown that the fluctuations in the 
system are determined by the dissipative part of the 
general response of the system to the corresponding 
external action (the so-called fluctuation-dissipation 
theorem). For a non-equilibrium medium in the sta­
tionary state, the theory of fluctuations of acoustic 
waves in piezo-semiconductors can be constructed in 
closed form, if one knows the correlation function for 
the random forces entering in the right sides of the 
corresponding equations. In the presence of a directed 
electron flux in the semiconductor, only the electronic 
subsystem is not in equilibrium, so that it suffices only 
to know the correlator of the random currents (or in­
ductions) for a non-equilibrium plasma medium with 
drift. For long-wave fluctuations, an explicit form of 
this correlator is found in Sec. 5 of the present paper, 
and it turns out that it is expressed in natural fashion 
in terms of the non-equilibrium dielectric tensor of the 
medium. 

We first construct a theory of thermodynamic-equi­
librium fluctuations of acoustic waves and the electro­
magnetic waves coupled with them in piezo-semiconduc­
tors, and then the theory of non-equilibrium stationary 
fluctuations, when there is a directed carrier drift in 
the plasma medium. The entire analysis, unlike that of 
Gurevich, [3J takes into account spatial and temporal 
dispersions. The correlation function of the random 

inductions for the electron subsystem, as well as the 
dielectric constant of the medium itself, are not speci­
fied concretely, so that the results of the calculation 
are applicable to both low and high frequencies. The 
only assumption used here is connected with the homo­
geneity of the system (see (2.1) and {3.1)). If the di­
rected velocity of the carriers is smaller than the phase 
velocity of the waves, then the dielectric constant of the 
medium and the correlation function of the random in­
ductions, taken at two different points of space, will de­
pend on the difference of the coordinates of these points; 
on the other hand, if the carrier drift velocity exceeds 
the wave phase velocity, so that a spatial buildup of the 
fluctuations takes place in the system, the choice of the 
difference dependence in the arguments means only neg­
lecting the influence of the growing fluctuations at the 
ground state of the carrier plasma. Obviously, such an 
approach is valid within the framework of the linear 
theory. 

In a number of piezo-semiconductors, such as cad­
mium selenide and cadmium sulfide, and also tellurium, 
there is a sufficiently strong interaction between the 
acoustic lattice vibrations and the carrier plasma, and 
in a number of cases it is precisely the plasma and not 
the lattice damping which plays the decisive role. It is 
therefore clear that the correlation between the compo­
nents of the elastic displacement in such crystals will 
be determined by the plasma part of the damping of the 
corresponding sound waves, and consequently the effec­
tive correlation radius will simply equal the recipro­
cal of the damping decrement of the sound waves per 
unit length of the crystal. This result is obtained in gen­
eral form in Sec. 2. 

We consider also the effect of electron dragging of 
the phonons by the drifting subsonic electron flux. Ow-
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ing to the strong interaction between the phonons in the 
piezo-semiconductor and the carrier plasma, a fraction 
of the directed electron momentum will be transferred 
by the phonons and a flux of acoustic energy will appear 
as a result. Expressions are obtained for the density of 
the energy flux of such a phonon flux and it is shown that 
its magnitude is determined primarily by the ratio of 
the carrier velocity to the velocity of the corresponding 
sound wave, and by the derivative of the electronic ab­
sorption decrement with respect to the dimensionless 
drift velocity. 

In the case of supersonic motion of the carriers, 
acoustic waves are generated and the fluctuations of the 
acoustic waves increase in space. By solving the prob­
lem for a semi-infinite medium in general form, we ob­
tain the spectral density of the generated acoustic noise, 
and its angular and spatial distributions. It turns out 
here that the threshold for the occurrence of spontane­
ous noise oscillations always corresponds to the veloc­
ity of the transverse sound waves, regardless of the 
crystal orientation. 1 > This result allows us to interpret 
a number of experiments on current saturation in piezo­
semiconductors in electric fields, corresponding to the 
velocity of the transverse sound waves. 

Section 5 is devoted to the question of the correlation 
function of the random inductions in a non-equilibrium 
medium with drift. It is shown that this function can be 
expressed in terms of the non-equilibrium value of the 
dielectric tensor of the medium in the presence of 
drifts. 

1. GENERAL ANALYSIS OF FLUCTUATIONS IN 
SEMICONDUCTORS 

On the basis of the general fluctuation theory devel­
oped by Callen and Welton l lJ it is possible to consider 
fluctuations of acoustic oscillations and of the electric 
field intensity in piezo-semiconductors. Owing to the 
presence of the piezoeffect in the medium, there are 
two sources, i.e., two types of "random forces" lead­
ing to fluctuations of the displacement vector: first, 
spontaneous or, as is customarily said, random oseil­
lations of the elastic stresses in the medium al:>(r, t), 
and second, random or spontaneous oscillatiOns of the 
electric current j<S>(r,t) = (41T)-1 an<S>(r, t)/at, where 
D(r, t) is the random induction. These quantities play 
the role of "external forces" in the corresponding 
equations of elasticity theory for the fluctuating dis­
placement vector u(r, t) and in the equations for the 
fluctuating electric field E(r, t):l 2 • 4 J 

ii2u; auzm a2Uzm aE, a (s) 
P-a12 -A.;kzm-a--Jl;kzm-at'· -Pz,;"~a =-a au. (r,t), (1.1) 

rk ork rk rk 

'E t 
eo -0 _' i - 4n I dt' \ d'ra;; (r, r', t- t')E; (r, t) 

ot ~~ J · 

(1.2) 

Here p is the lattice density, Aiklm is the elastic­
modulus tensor, J.l.iklm is the viscosity tensor (its sym­
metry properties coincide with those of the tensor 

1 l Of course, without allowance for the viscous or any other non­
electronic mechanisms of sound-wave absorption (see section 4 ). 

Aiklm), /3i kl is the tensor of the piezo-moduli "in 
deformati~n," e0 is the dielectric constant of the lat­
tice, and O"ij (r, r~, t - t') is the conductivity tensor of 
the medium. The electric field accompanying the sound 
wave in an unbounded piezo-electric medium is poten­
tial, and it is therefore necessary to add to (1.2) also 
the condition curl E = 0. In order to satisfy this condi­
tion, we introduce immediately the electric-field poten­
tial cp(r, t), so that E = -acp;ar. 

The correlations between the fluctuations of the dis­
placement vector u(r, t) at different instants of time 
and at different points of space are characterized by a 
correlation function 

IP¥t (r, r', t, t') = 1/s (ul (r, t) Uj (r', t') + u; (r', t') u;(r, t)), (1.3) 

where the angle brackets denote averaging with the aid 
of the exact wave functions of the system, and the quan­
tities u(r' t) should be regarded, in accordance with the 
rules of quantum mechanics, as operators. In exactly 
the same manner, we can introduce correlation func­
tions for the fluctuations of the electric field intensity 
cp~E and "mixed" correlators cp'\l.E and cp~u We in-lJ• lJ lJ• 
troduce furt)ler the Fourier components of the operators 
u(r, t) and E(r, t) in accordance with the relations 

~ 1 ~ ~ u;(r,ro)=- dtei"tu;(r,t), 
21T 

We shall assume that the system is in the stationary 
state, and then the correlation function (1.3) will depend 
only on the difference T = t - t 1 • To use immedi­
ately the fluctuation-dissipation theorem and to find the 
correlation functions, we proceed in the following man­
ner. We write the closed system of the equations of 
elasticity theory and Maxwell's equations for the longi­
tudinal electric field (1.1) and (1.2) in the form2> 

) a<>a(r,r',ro)¢a(r',w)d3r' = c~> (r, w), (1.5) 

where I/J01 (r, w) is a four-dimensional row matrix with 
components Ui(r, w) and cp(r, w), i.e., 1/J = (ut, cp), and 
G~> is a column matrix of random forces with compo­
nents 

(s) a (s) 
G, =-a a;• (r,w), 

rk 
(s) 1 a (s) 

G, = ---,-D; (r,w), 
4n or; 

01 ot{?(r, r 1, w) is the matrix of the kinetic coefficients 
of the system 

a;dr, r', ro) =- [ pro21l;" + (A;plk- iwf.hpzk) ar:•arJ ll(r- r'), 

( f 1 a2 ( I ) 1 I( 1 a"r,r,•ro)=--4 -a a ,8i;r,r,ro ==--4 p- r,r,ro), 
n ri ri n: 

f I iJ2 I 
a.;4 (r,r ,ro)= O..;(r ,r,.ro)= P4im-a iJr ll(r-r ), 

rz m 

(1.6a) 

(1.6b) 

(1.6c) 

and equality (1.6c) is the consequence of the symmetry 
of the piezo-electric tensor with respect to the last two 
indices; E:ij(r, r', w) is the dielectric tensor of the me­
dium with allowance for the carrier plasma: 

B;;(r,r',ro)= soll;;ll(r-r')- 4n a;;(r,r',w). 
lW 

(1. 7) 

2>The Greek indices a, (J, and-y, unlike the Latin ones, take on the 
values 1, 2, 3, 4; summation from 1 to 4 is carried out over repeated 
greek indices. 
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Thus, the matrix 01 01(3(r, r', w) is symmetrical, which 
is of course the direct consequence of the Onsager 
principle of the symmetry of the kinetic coefficients. 

Equations (1.5) play the role of the relations 

in the general theory of thermodynamic fluctuations of 
several quantities (see [4 l, sec. 127), so that we can 
write down immediately the correlation functions of in­
terest to us: 

iii (hro) -1o · (1jlc.o(r', ro)¢~ (r, w)) = 4ncth 2f {a~,. (r, r1, w)- a~-l(r', r, w)}, 

(1.8) 
and consequently the problem reduces simply to a cal­
culation of the inverse matrix (T is the temperature of 
the system in energy units). Expanding (1.8) separately 
for the elements u(r, w) and E(r, w), we can easily ob­
tain general expressions for the correlation functions 
cpuu, cpuE, and epEE. We present only the expression 
for cpuu: 

ih (hro) , -t• (u1(r,ro)u;(r',ro)) =yoth T (I1;-1(r,r,w)-L;1 (r',r,ro)), 
It 2 (1.9) 

where the tensor of the generalized susceptibility Lik is 
given by 

, 1 a'p(r,r',ro) (110) 
L1h(r,r,w)=a1h(r,r,ro)+4n~z,;p~s,hq a a - a · • 

rp rl Or8 rq 

In exactly the same way we can obtain the correlation 
functions for the "random forces": 

aD (s)o I an(•) I , (r, w) h (r, w) ) 
\ ---·-------
' ar,' ark 

= ihcth (:; )<rt(r,r',ro)- p-l'(r1,r,ro)), 

- (s)o ( ' ) a (s) ( ) ·~ ~ < o·cr;k r,w cr3m r,ro )= --~cth( ~~ 
ark' orm 4n \ 2T I 

X (aii(r,r1 ,(1))- a;;' (r',r,.w) ), 

(a) <D.<•>• ( )acr;; (r,ro)) _ O 
l l,(i) arj - ' 

where the last relation is a direct consequence of 
(1.6c). 

(1.11) 

It is easy to see that the expressions obtained for the 
Fourier transforms of the correlation functions (1.9)­
(1.13) in the absence of an interaction between the elas­
tic waves and the electron-hole carrier plasma, i.e., 
as f3i, kl ....... O, give the known expressions for the cor­
relators. Thus, in an elastically isotropic medium (for 
example, a liquid), formulas (1.9) and (1.12) for the lon­
gitudinal displacement go over into the well known re­
sult of Landau and Lifshitz;[ 5 l at the same time, for­
mula (1.11) gives the correlator for the longitudinal 
electric induction, given for example in the book by 
Silin and Rukhadze[ 6 J (see Sec. 9). 

The correlation functions obtained above make it 
possible to determine different statistical characteris­
tics of the acoustic and longitudinal electromagnetic 
waves in piezo-semiconductors under conditions of 
thermodynamic equilibrium. 

2. FLUCTUATIONS IN A HOMOGENEOUS 
PIEZO-SEMICONDUCTOR 

By way of an example of the application of the gen­
eral formulas (1.9)-(1.13), we consider the fluctuations 
in a homogeneous piezo-semiconductor, when the ten­
sors of the generalized susceptibility of the system are 
functions of the coordinate difference. It is then conven­
ient to use the Fourier transformation with respect to 
the coordinates: 

f(R)=~(~~)8 eiqRJ(q), /(q)=~d3Re-iqRJ(R), (2.1) 

where f(R) should be taken to mean any of the quanti­
ties that depend on the coordinate difference. The nor­
malization volume is set equal to unity throughout. 
With the aid of (2.1) we can obtain an explicit form for 
the correlators in a homogeneous medium: 

(u, (r, w)u;(r1 , ro)) 

iii ( ~ ) ~ d3q ' ( -t• (2 2) =-cth - --eiq(r-r) £ .. -l(ro q)-L·· (:.> q)) • 
4n , 2T · (2:rt)3 '' ' " ' ' 

where the Fourier component of the tensor Lij ( w, q) 
is given by 

. 4lt~z, miPp, qj!lm!ll!lp!lq 
L;;(ro, q) =-pro"<'';; +(i.;hz;- IWJ.Lihl;)!lh!ll + ( ) 

q,q.e,. ro, q 

The remaining correlation functions are expressed 
analogously. 

(2.3) 

Let us consider further a piezo-semiconductor crys­
tal in which only one piezo modulus differs from 0, say 
f3x, XX• and the elastic properties are isotropic. Strict­
ly speaking, such a situation is impossible, but in order 
not to complicate the entire calculation, it is necessary 
to introduce such a non-fundamental assumption. We 
assume further that the viscous absorption of the sound 
waves is small compared with the plasma absorption. 
Then expression (2.3) is simplified appreciably: 

L;;(ro, q) =- pro"<''t; + pv.L2II;;!l2 + p (vu2 - VJ.2)q1q; + ~~(' xx!l;' ll;xll;x, 
q eu ro, q (2.4) 

where vu and Vl are the velocities of the longitudinal 
and transverse sound waves, Eu(w, q) = qiqj Eij/q2 is 
the longitudinal dielectric constant of the medium. In 
the absence of electric and magnetic fields, the elec­
tronic properties of the system are also isotropic, and 
consequently the dielectric tensor of the medium should 
not depend on the direction of the wave vector. We 
therefore obtain for the correlation of the x-components 
of the displacement vector 

I h ( h!Jl ) T] 2Vu2 r de Sill e 
(ux(r,w)ux(r,(l)))= 4:n:cth\ ZT pro' ~ {2;i)4 

XReTdq' eiqR coseq•cos•eZ(ro, q)Im(eo/eu(w, q)) 
~00 ·1 (1- q2vu2/(1)2 ) (1- q•v.L•iw•>- 11•q2v112 cos• ez (w, q)/ro2e11 (ro, q) 12 

(2.5) 
where R = lr -r'l, 1] 2 = 4rrf3x xx/pvf,E0 is the square 
of the electromechanical-coupling constant for longitu­
dinal waves, and 

q•v .Lz qzv11z z ( ro, q) = 1 - ---;;;o- cos2 e -----;;.-- sin2 e. 

The denominator of the integrand in (2.5) is the disper-
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sion equation for the propagation in a piezo-semiconduc­
tor of sound waves that interact with the carrier plas­
ma. It is seen from (2. 5) that for the complex variable 
q there are four poles in the upper half-plane two of 
which correspond to longitudinal sound waves 'and two 
to transverse waves, propagating in two mutually oppo­
site directions. The fact that the transverse waves cor­
respond to only two rather than four poles is due to the 
fact that the transverse wave with a polarization per­
pendicular to the plane containing the wave vector q 
and the x axis does not interact with the carrier plas­
ma if only one piezo modulus f3x xx is different from 
zero. Closing the contour of inte~ation with respect to 
q from above and assuming the relative plasma damp­
ing of the sound waves to be small, i.e., assuming that 
IRe q I » I Im q I at the poles of q, which is always the 
case, owing to the condition 1J 2 « 1, we get 

< ' liw ( /i.w ) r d8 sin 8 ux(r,w)ux(r,w))=-cth- J ---
4p 2T 0 (2n)2 

{ I w ) cos2 8 X e-v~~O)R coso cos I - R cos 8 ---
\ VII V113 

( ro ) sin2 e} + e-V_c(O)R cos ° COS -R cos 8 -- , 
v...L v, 3 

(2.6) 

where Yti(B) and n(B) are the damping decrements of 
the longitudinal and transverse sound waves respec-
tively ' 

(2.7) 

Thus, it follows from (2. 7) that the effective "correla­
tion radius" of the elastic displacements is determined 
simply by the reciprocal damping decrement of the 
sound waves in the piezo-semiconductor. 

Let us examine the limiting transition of formula 
(2.6) as R- 0, which makes it possible to obtain an 
expression for the spectral energy density of the radia­
tion of the elastic oscillations. Indeed, it follows from 
(2.6) (see Sec. 91 of the bookl 23 ), that the thermodynam­
ic-equilibrium value of the energy density of the elastic­
oscillation radiations (i!J w) will be 

(2.8) 

as r'- r. 
The first term in the parentheses of (2.8) is due to 

the zero-point oscillations of the phonon fields; the sec­
ond term gives the energy of the thermodynamic-equi­
librium "phonon radiation" in a non-absorbing medium 
(in analogy with the black-body radiation of the electro­
magnetic field). The coefficient 1/ 3 in (2.8) is connected 
with the fact that in place of (u • u) w we consider only 
the x-component of the displacement vector. Formula 
(2.8) could of course be obtained also without consider­
ing the fluctuations, simply by a suitable generalization 
of the Planck formula for the thermal radiation of the 
phonons in a non-absorbing medium. 

3. EFFECT OF ELECTRON DRAGGING OF THE 
PHONONS 

If a subsonic directed stream of electrons flows in a 
semiconductor or in a semimetal, then the equilibrium 
distribution of the phonons differs from the Planck dis­
tribution and an anisotropy should appear in the phonon 
distribution function. For example, as shown by Kel­
dysh, l 7 J when the distribution of the electrons is de­
scribed by the Fermi distribution function, which is 
"shifted" by an amount equal to the drift vector in ve­
locity space, then the stationary distribution of the pho­
nons that are in equilibrium with the electrons is deter­
mined by a Planck function "shifted" by the same drift 
vector (without allowance for umklapp processes[ 83). 

Thus, part of the directed momentum from the electrons 
is transferred to the phonons, giving rise to a directed 
flux of acoustic energy. We emphasize that this occurs 
at an electron-drift velocity smaller than the phase ve­
locity of the sound waves, and consequently the Ceren­
kov mechanism of sound-wave amplification does not 
come into play here.l 9 l 

To determine the energy flux of the acoustic wave 
it is necessary to know the correlation functions of the 
random inductions and of the random elastic stresses 
in a system with carrier drift. It is clear that the cor­
relator of the random elastic stresses will be deter­
mined as before by formula (1.12), since it contains 
none of the non-equilibrium properties of the medium. 
As to the correlator of the random inductions, by virtue 
of the homogeneity of the medium it is given by 

< iJD/s) (r, t) iJDks) (r', t') ) _ 1 , 

iJr; iJr, -cp(r-r,t-t), (3.1) 

where cp is a certain positive function, the explicit form 
of which can be established only with the aid of the elec­
tron distribution function [lo, 113 (see Sec. 5 below, for­
mula (5.12)). 

The acoustic energy flux Q in the crystals, in the 
presence of spatial and temporal dispersions, is no 
longer determined by the simple relation Qi = a ik u k, 
and should be obtained from the law of energy conserva­
tion in the medium. l 123 Following the same derivation 
procedure as in l 12 ' 13 3 , it is easy to show that the flux 
density of the acoustic energy in a dispersive medium 
will be Q = Vg fff w, where Vg is the group velocity and 
& w the energy density of the acoustic waves. For the 
spectral density of the acoustic-wave energy flux we 
obtain therefrom 

i d3qd3q' 
Q(w)= 2pw2 J (2rr)" ei(Q-Q'l'vg(u"(w,q)u(w,q')). (3.2) 

Substituting in (3.2) the values of the correlators from 
(1.12) and (3.1), we get 

2 2 i d3q qx4 

Q(w)= 2pw ~x,xxJ (2rr)' Vg(w,q)~IL;x-'l 2cp(oo,q)/lgii(W,q) 12 

li ( lioo \ i d3q +-cth - lpro'J --vg(w q) 
n 2T / (2rr) 3 ' 

x { IL;;-'I"Il.Lq' +(I'll- ll.L)L;r'q;L'"1" q.}, (3.3) 

where, as before, we consider an elastically-isotropic 
crystal in which only f3x, xx differs from 0, and the 
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electron drift is directed along the x axis, 

In the absence of electron drift, the medium is isotro­
pic, so that the dielectric constant ~ 11 ( w, q) and the 
correlation function cp( w, q) depend only on the modu­
lus of the wave vector q, and therefore the flux of the 
acoustic energy vanishes. The latter is simply the con­
sequence of the condition J qm dn = 0, where dn is the 
solid-angle element in q-space. 

From the expression (3.3) for the flux we see that Q 
vanishes when the electron-phonon interaction constant 
f3i, kl tends to 0 (when J.LII, IJ.l "f. 0). On the other hand, 
if the viscosity is first allowed to tend to 0, then the ex­
pression for the flux of the acoustic energy turns out to 
be independent of the electron-phonon interaction con­
stant. Physically this is connected with the fact that in 
the hydrodynamic model for the phonons, i.e., in the ap­
proximation of the elastic continuum, the viscous ab­
sorption of the sound determines the phonon mean free 
path, which becomes infinite as 11 - 0. Under these 
conditions, even an infinitesimally small interaction be­
tween the electrons and the phonons leads to a finite 
value of the momentum transfer, and consequently to a 
finite value of the flux. 3 > This uncertainty indicates that 
in this case it is necessary to take into account the vis­
cous absorption of the sound waves, and in a more rig­
orous analysis also the umklapp processes. [ SJ 

If the electron drift Vd is directed along the x axis, 
then the flux components Qy and Qz are equal to 0, 
and we are left with only Qx. To find the explicit form 
of Qx it is necessary to integrate in (3.3) over the wave 
vector q, so that it is necessary to refine the form of 
the longitudinal dielectric constant of the medium 
~tt(w, q) and the correlation function cp(w, q) in the 
presence of the electron current. The dielectric con­
stant of a plasma medium in which there is a directed 
current of charged particles (electrons or holes) can 
always be represented in the form 

en(w,q) =f(w,q',w-qvd), (3.4) 

where f is a certain function, the explicit form of which 
is already determined by the concrete properties of the 
plasma medium. [ 9 ' 14 - 161 It is obvious that a relation of 
the type (3.4) is valid also for the correlation function 
cp(w, q). Transforming in (3.3) to spherical coordinates 
and integrating by taking residues, we obtain for the flux 
component Qx 

Ul1] 2 11 
{ , V112 . l Qx(w) =- J dl 13 (1Jlll+ -'ljlll-) + ~1(1- 12) (1jJ_1_+ -ljl_!_ -) ' 

4 -1 vr J 

(3.5) 

where 

3 lThe situation is the same here as in the calculation of the phonon 
thermal conductivity of crystals, which becomes infinite if no account 
is taken of the umklapp process or of the scattering of phonons by im­
purities, dislocations, etc [8 ]. 

and t =cos e. In the derivation of (3.5) it was assumed 
that the relative change of the phase velocity of the 
sound waves is small, and in addition the possible ap­
pearance of "coupled" acousto-plasma waves was neg­
lected. 

The total sound-energy flux will obviously be 

P = ~ dwQ(w), (3.6) 

where w m is the end-point frequency of the acoustic 
phonons. 

Let us estimate the total flux. In the classical limits 
its value is 

P~T~(~iif) 
vl \ r ii~ ~. (3. 7) 

where r is the total damping decrement, and w0 the 
characteristic frequency at which the dragging is max­
imal. At room temperatures and at the frequency w0 

= 3 x 109 sec-1 we have Vs = 2 x 105 em/sec, f3 = %, 
P "'10-4 W/cm2, and the effect apparently can be easily 
observed experimentally. 4 > 

Formula (3.5) is valid at an electron-flux velocity 
Vd smaller than the velocity Vs of the sound waves; if 
Vd > Vs, then expression (3.5) describes the flux pro­
duced by the phonons with wave vectors outside the am­
plification cone. Integration with respect to the angle () 
must then be carried out between the limits 80 and 1r, 

where 80 determines the amplification cone. The latter 
is determined from the condition :q IT 1 (80 ) = 0, and :91.1(8 0) 

= 0 respectively for the longitudinal and transverse 
waves. 

We note that in a magnetic field, when the conditions 
for the cyclotron [ 17 J and geometric[ 18 J resonances are 
satisfied, or for quantum oscillations l 19 J connected with 
the Landau levels, the dielectric constant of the medium 
and the correlation function of the random inductions be­
come oscillating functions of the magnetic field, and 
consequently the flux of dragged phonons will also oscil­
late as a function of the magnetic field. 

4. GROWTH OF FLUCTUATIONS IN A SYSTEM 
WITH SUPERSONIC CARRIER DRIFT 

If a carrier drift is produced in the crystal, for ex­
ample by an external electric field, then at a drift ve­
locity exceeding the phase velocity of the wave, ampli­
fication and generation of acoustic waves become pos­
sible. 

In investigations of fluctuations that grow in space it 
is no longer possible to use, as before, the spatial Fou­
rier transformation, since the sought functions diverge 

4 lrt is expedient to perform the experiment in the following manner: 
the semiconductor crystal is divided into two regions, and the constant 
drift field is applied to one of them. The experimentally observed quan­
tity is the potential difference across the second part of the crystal, due 
to the acousto-electric effect of the acoustic flux from the first part of 
the crystal. 
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as x- +oo. Obviously, the divergence of these func­
tions has an exponential character, so that it is always 
possible to introduce a certain parameter s > 0, such 
that a function of the type e-sx lf;(x) will already be con­
verging when x - oo. As is well known, to these func­
tions it is already possible to apply a Fourier transfor­
mation (or a Laplace transformation, see [ 20 l, Sec. 4.8), 
but when making the inverse transformation, i.e., when 
finding !f;(x), the integration contour must be moved to 
the upper (or lower) half-plane of the corresponding 
complex variable. 

We shall assume that the carrier drift is directed 
along the x axis. Then it is obvious that the growth of 
the fluctuations is possible only in the x direction; in 
directions perpendicular to the drift, i.e., to the x 
axis, there is no growth of the waves. The latter means 
that it is sufficient to introduce one parameter s > 0, 
which shifts the integration path in the complex plane 
11x; on the other hand, in integration with respect to qy 
and ctz, the path of integration can be chosen along the 
real axis. 

In the investigation of fluctuations that grow in space, 
it is necessary to consider a boundary-value problem, 
since in an infinite medium the amplitude of the fluctua­
tions is unbounded at any point of space. Therefore Eqs. 
(1.1} and (1.2} for the fluctuating quantities must be re­
garded only in the region x ~ 0, and the medium will be 
considered to be unbounded in the y and z directions. 
Integration with respect to x in (1.2} should be per­
formed from 0 to oo, but, recognizing that in a medium 
with a drift in the positive x direction the fluctuation of 
any quantity at the point x is weakly correlated with the 
fluctuations of the same quantity at the point x' which is 
larger than x, the integration in (1.2) can be carried out 
between 0 and x. Such an assumption is equivalent to 
neglecting the influence of the region x' > x on the 
growing fluctuations in the region 0 =s x < x', an as­
sumption which is physically quite obvious since the 
acoustic waves attenuate rapidly in the direction to the 
drift. Mathematically this assumption means that in­
stead of using the Wiener-Hopf method to solve (1.2) 
it is possible to use the Fourier transformation with 
respect to the coordinate x: 

As the boundary conditions we choose 

OfLm=OlLm=O (IP(O)=O), (4.2) oy oz 

which correspond to a free boundary, on which the sur­
face forces equal 0. Assuming the medium to be qua­
sihomogeneous (i.e., its properties to change little over 
dimensions on the order of the wavelength of the acous­
tic fluctuations) and changing over to Fourier compo­
nents with respect to the coordinate and the time with 
the aid of (1.4) and (4.1), we obtain from (1.1) and (1.2), 
with allowance for the boundary conditions (4.2), 

L;j ( w, q) Uj ( w, q) = - iqma~~ ( w, q) 

qpD~> (w,q) 
-~l,ihqhql 2 ( ) +iP;m(w,q)um(X=O), (4.3) 

q Bii W, q 

where 
2 

P ( 4n~x, xx 3) 
im(w,q)=i Aixxmqx+ ( ) qx 6(qy)b(q,). 

\ Bxx W, q 

With the aid of the inverse Fourier transformation we 
obtain the fluctuating displacement 

(4.4) 

at x ~ 0. 
As before, we consider an elastic-isotropic crystal 

with only one nonvanishing piezo modulus f3x xx· Fur­
thermore, we set up a bilinear combination ' 
u!(r, w)ui (r, w) and obtain its statistical average, us­
ing the values of the correlation functions (1.12) and 
(3.1). After straightforward but cumbersome transfor­
mations, we can obtain a final expression for the spec­
tral density of the radiation energy of the acoustic 
noise 

ft.,=-~ "f d8sin8(i-ex/ _ 2f_j_(8)x )) 
4ttv_j_3 } 2rr \ cos 8 , 

0 

w { Wf.t_j_ liw e0 vrr~ sin2 8 ccs~ 8!p (w, w/v _1_, 8) } 
X ---- cth - + '1'] 2 --:-:':---:----:-7---__:_;-,----,----:-:-~ 

f_!_(8)zi_!_ pv_1_2 2T 21iw2V_j_2 lerr(w,w/v_j_,O) I' 

liw3 'P d8 sin 8 1 ( 2frr(9)x ))' +---} 1 1-exp ----
4:rtvu3 0 2n \ cos 8 

w { WJ.III h llw + 2 eovu2 cos• 8!p ~o>, w/ vu, 8) ·1 x--- --ct- TJ f 
frr (8) vrr . pvrr" 2T 21iw2 lerr ( w, w/vrr, <l) I' 

+ 2pw2 1 u,-(0) l 2e-2rrfOJx. (4. 5) 

The last term of (4.5) describes the growth of longitudi­
nal waves, the displacement vector of which is specified 
at the boundary x = 0, on going away from the boundary. 
The shear deformations in the x = 0 plane always lead 
to the appearance of transverse waves with a wave vec­
tor along the x direction, but under conditions when only 
f3x xx "/- 0 the transverse waves "from the boundary" 
ar~ not amplified in the x direction, and therefore (4.5) 
will not contain a term that grows in space and corre­
sponds to transverse waves. 

In spite of the fact that formula (4. 5) contains the 
Fourier transform of the correlation function (3.1), 
nonetheless the main physical conclusions can be drawn 
without using the explicit form of the correlation func­
tion. 

First of all, it is seen from (4.5) that "oblique" 
transverse waves, with a directivity pattern comprising 
two lobes located inside the Cerenkov amplification 
cone will be initially generated in the medium. It is 
known that a number of experiments[ 2l-Z4J have re­
vealed saturation of the current on the current-voltage 
characteristics practically in all cases, regardless of 
the crystal orientation, when the carrier drift velocity 
exceeded somewhat the velocity of the transverse sound 
waves, but was considerably smaller than the velocity 
of the longitudinal sound waves. Physically this phe-



THEORY OF FLUCTUATIONS OF ACOUSTIC WAVES IN PIEZO-SEMICONDUCTORS 947 

nomenon can be attributed to the generation of noise, 
whose threshold, as shown above, always corresponds 
to the velocity of the transverse sound waves. For a 
quantitative analysis of this effect it is necessary, fol­
lowing Hutson, [ 25 J to calculate the acousto-electric 
current produced as the result of generation of the 
acoustic noise. 51 This problem will be considered sep­
arately. 

At a drift velocity exceeding the velocity of the lon­
gitudinal sound waves, i.e., when vd > VJI, one more 
mechanism that leads to the growth of acoustic fluctua­
tions comes into play, and is connected with generation 
of longitudinal sound waves. 

It is seen from (4.5) that the spatial growth of the 
acoustic waves is determined by the corresponding to­
tal increments rll (e) and r l(e), whereas the initial 
fluctuation level is determined by the correlation func­
tions. Under conditions of thermodynamic equilibrium, 
when the correlation function of the random inductions 
is determined by (1.11), we get from (4.5) Planck's for­
mula if we go away from the boundary x = 0 a distance 
much larger than the reciprocal damping decrement of 
the acoustic waves. It is important, that the Planck dis­
tribution follows from ( 4. 5) at any thermodynamic­
equilibrium value of the dielectric tensor of the 
medium. 

5. CORRELATION FUNCTION OF THE RANDOM 
INDUCTIONS IN A NONEQUILIBRIUM MEDIUM 
WITH DRIFT 

The expressions obtained above for the spectral en­
ergy density and for the noise energy flux contain the 
correlation function of the random inductions in a non­
equilibrium medium with drift. To determine the cor­
relation function in explicit form, we consider, follow­
ing Angeleiko and Akhiezer/ 27 J the kinetic equation for 
the electrons with a "random force" 

&f &f eE aj ~ 
at+vo;+-;;;_- av = St {/- y}, (5.1) 

where f is the electron distribution function, ~{ ... } 
is the collision integral with a random force chosen 
such as not to violate the conservation law for the num­
ber of particles, and E (r, t) is the total value of the 
electric field. 

Using (5.1), we can represent the time derivative of 
the entropy of the system in the form[ 27 J 

. r ar (r, v, t) t'(r, v, t) 
S ( t) = - J d3rd3v -----,,----- --:--,-e-- ~ d'rd•vx(r,v,t)X(r,v,t), 

dt fo(v) 
(5.2) 

where f'(r, v, t) is the deviation, due to the action of 
the random forces, from the equilibrium function f0(v), 
and X(r, v, t) = -f'(r, v, t)/f0 (v) and x(r, v, t) 
= 'St{f'- y}. In the absence of random forces, the • 
change of the entropy of the system per unit time, S is 

5 lExpression (4.5), unlike the analogous formula in the paper by 
V. L. Gurevich [3], contains the contribution due to the generation of 
transverse waves, which play the decisive role in many effects. In partic­
ular analysis of the current-voltage characteristic of a piezo- semi-conduc­
tor, carried out by V. L. Gurevich and V. D. Kagan [26 ] and based on 
the results of [3 ), is in error since it does not take into account the gen­
eration of "oblique" transverse waves. 

a bilinear function with respect to the deviations of the 
distribution function from the equilibrium value, so that 
we can use the general method (see [4 J, Ch. XII) for de­
termining the correlation function for the random 
forces. According to this method, the quantities x(r, v, t) 
should be represented in the form 

i(r,v,t)= ~ d•vy(v,v')X(r,v',t)+y(r,v,t). (5.3) 

The kinetic coefficients y(v, v') will determine the cor­
relation of the random forces (see [4 J, Sees. 121-127): 

(y(r, v, t)y(r', v', t')) = {y(v, v') + y(v', v)}ll(r- r')ll(t- t'). (5.4) 

To determine the coefficients y(v, v') it is necessary 
to use the explicit form of the collision integral 
'St{ ••• }. At low frequencies, when w «Oil, where ll is 
the effective frequency of the collisions between the car­
riers and the scattering centers and o ~ 2m/M is a pa­
rameter characterizing the fraction of the energy trans­
ferred in each elastic collision between the electron and 
the center with mass M (see [ 28l, Sec. 38), we can use 
the Davydov diffusion collision integral[ 28 , 29 J 

~ 1 iJ ( { iJfo T )) Sto{fo}=----iJ vl\v --+vfo , 
2mv2 v , , iJv m 

where f0 and f1 are the zeroth and first harmonics of 
the expansion of the distribution function in spherical 
functions. Substituting further (5.5) in (5.2) and noting 
that x(r, v, t) = oS/oX(r, v, t), we can easily establish 
the explicit form of y(v, v') and by the same token de­
termine the correlator (5.4) (for details see [ 27 J). We 
shall need in what follows only the correlator of the 
first harmonics of the random forces, which is given 
by: [ 27] 

( > 3 /o(v) , , ( ') (5 6 ) Yii(r,v,t)Yt;(r,v,t) =---lli;6(v-v)6(t-t)li r-r .• 
2:rt v2v 

Here f0 (v) is the zeroth harmonic of the distribution 
function with allowance for the constant electric field 
Ed in the system:[ 2BJ 

I no )''• ( mvz ) 
fo(v) = \ 2nT. exp - 2Te , ( ezEd• ) r. = r 1 + -- . (5. 7) 

3m6v2T' 

From the kinetic equation (5.1) it is easy to obtain 
equations for the zeroth and first harmonics of the ex­
pansion of the distribution function. Using subsequently 
the customary procedure for taking moments, we can 
obtain the hydrodynamic equations with account taken 
also of the random forces. If we confine ourselves to 
the low-frequency region w « Oil, then the hydrody­
namic system is 

iJn 
iii+ div nv = 0, 

eE 1 iJ P 1 
------vv+-Y=O. 
m niJrm n 

(5.8) 

The first equation is the ordinary continuity equation 
and the second is the Navier-Stokes equation in the re­
gion of low frequencies w << Oil with allowance for the 
random force 

00 

Y (r, t) = ~ ~ v3yt(r, v, t)dv 
3 0 

and the electron-gas pressure 

1 "" 
P == "3 ~ f' (r, v, t) v'dv ~ nT., 

0 

(5.9) 
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where the electron temperature T e can be regarded as 
constant and independent of the coordinates and the 
time in the region of low frequencies. 

With the aid of (5.6) it is now easy to establish the 
explicit form of the correlator for the "hydrodynamic" 
forces Y(r, t), and by the same token determine the 
correlation function of the random inductions of interest 
to us. The solution is obtained in the following manner. 
The system (5.8) is used to determine the small devia­
tions from the stationary values of the electric field, 
the concentration, and the electron velocity, due to the 
action of the random forces Y(r, t). The self-consistent 
electric field is eliminated with the aid of the Poisson 
equation. Then 

where 

(qD(sl(w, q)q'D(sJ(w, q')) 

16rr2e2 

= -·--.- EJI(W, q)e11(w, q') (n~(w, q)n~(w, q')>, (5.10) 
eo2. 

1 [ 4:rte2no l 
n~(w, q) = qY(w,q) 1, v(w- qvd)-·--i(1 + q2r02) . , 

mE.o J 

r 0 is the Debye radius of the electrons, and the random­
force correlator is 

(Yi(w,q)Yj(w',q')>=no vT, (2:rt) 26(co+w')6(q+q')<'i;;. (5.11) 
2m 

Substituting (5.11) in (5.10) we obtain for the function 
cp(w, q), which determines the correlation of the ran­
dom inductions, 

IT ,q2 4:tcr0/ w 4T,.q2 

Cf(w q)=--- --=---ImEi•(u> q) 
' w (1-qv,z/w)'+q'vT'/uJ2v2 w-qvd ' ' · 

(5.12) 
Comparison of (5.12) and (1.11) shows that the correla­
tion function (5.12) for a nonequilibrium medium with 
drift can be obtained in the classical limits from the 
equilibrium function with the aid of the formal substitu­
tions w- w- qvd, c~q(w, q)- cnoneq(w, q). 6 ) When 
the carrier drift velocity exceeds the phase velocity of 
the wave, the imaginary part of the dielectric tensor of 
the medium, i.e., the conductivity, becomes negative,[l6 J 

so that the correlation function as a whole remains a 
positive quantity, as it should. 7 ) 

A formula of the type (5.12) can also be obtained for 
the high-frequency region, when w » v, if it is assumed 
that the distribution function in the presence of the 
electron drift is Maxwellian but shifted by an amount 

6 l We note that the choice of the correlation function for the random 
currents (or inductions), made by V. L. Gurevich [3] in the form (jj)­
a0 , where a0 is the de conductivity, is incorrect since it does not take 
into account the spatial and temporal dispersions in the carrier plasma 
which, on the one hand, are very important for the analysis of the ef­
fects of amplification and generation of acoustic waves. The method 
itself of obtaining the kinetic equation for the mean square of the fluct­
uating displacement is based on the fact that in expressions ( 4.6) and 
(5.14) of [3 ] it is possible to omit a number of terms proportional to the 
random current; in general, there is no justification whatever for such a 
procedure. 

7 lIt is seen in particular from expression (5.12) that a non equilibrium 
medium with a drift, for waves whose phase velocity is smaller than the 
drift velocity, is formally equilavent to a medium with negative temper­
ature. It is then easy to see that the transition from "positive" to "nega­
tive" temperatures can be effected in a continuous fashion only through 
the region T = ± oo, as in the case of the magnetic moments [4 ). 

equal to the drift vector in velocity space. The corre­
lation function then has the form (5.12) (the last equa­
tion). In this equation, c 11 (w, q) should be taken to 
mean the high-frequency dielectric constant of the me­
dium in the presence of drift. 

Substituting now (5.12) in (4.5) and (3.5) we obtain the 
final expressions for the spectral energy density of the 
radiation of the acoustic noise and the energy flux of 
the dragged phonons. 

We have investigated here only the linear problem, 
and assumed that the energy of the acoustic noise has 
not increased enough to change the ground state of the 
system. It is clear that the change of the ground state 
of the system as a result of the growing noise can be 
accounted for within the framework of the linear theory, 
but then the carrier density, the drift velocity, and the 
drift electric field are already slow functions of the co­
ordinates. This possibility of making the problem self­
consistent is brought about by the fact that the intensity 
of the growing fluctuations does not change noticeably 
over the characteristic wavelengths, and this in turn 
makes it possible to use the well-known method of geo­
metrical optics. [2SJ However, when the electron energy 
in the field of the sound waves becomes comparable 
with its average energy, the problem already calls for 
a nonlinear approach. 

In conclusion, I am deeply grateful to V. L. Ginzburg 
and the members of the seminar under his direction for 
a useful discussion and valuable remarks. I am particu­
larly grateful to L. V. Keldysh for advice and useful re­
marks, which have contributed greatly to the perform­
ance of this work. 
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