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The nature of the magnetic ordering in a number of binary ferromagnetic alloys of the type Ni-Mn, 
Ni-Fe, pt-Mn, Pd- Fe, etc. is investigated. A characteristic of these alloys is that the exchange 
interaction between atoms of the first component or between these atoms and those of the second 
component is ferromagnetic, whereas the interaction between atoms of the second component is 
antiferromagnetic. A Heisenberg ferromagnetic crystal with a pair of impurity atoms which inter­
act antiferromagnetically is considered as the simplest element of such an alloy. The ground-state 
problem for such a system is solved exactly. In particular, re.gions of variation of the exchange 
parameters are determined in which the state of the system with maximum spin is unstable and 
goes over to a state with smaller spin. The results of the investigation of the behavior of a pair of 
impurity atoms in a ferromagnetic matrix can provide a qualitative explanation of the magnetic 
structure of the indicated alloys. 

1. PRESENTATION OF THE PROBLEM 

A number of transition-metal alloys (including Ni--Mn, 
Ni-Fe, Pd-Fe, Pt-Mn, and others) have strange 
magnetic properties. They are all ferromagnetic in a 
broad range of concentrations c of the second compon­
ent from zero to some concentration c0 beyond which 
the spontaneous moment in the system disappears. Fig­
ure 1 shows the average saturation magnetic moment 
per atom of the alloy as a function of the concentration 
c. [1J This is a typical curve characteristic of all the 
above alloys with co changing from alloy to alloy and 
having values of 27 percent for the disordered Ni-Mn 
and pt-Mn alloys and 75 percent for the Ni-Fe and 
Pd-Fe alloysY-41 

In order to explain the concentration dependence of 
the total magnetic moment, frequent use is made of 
ideas concerning the concentration dependence of the 
individual magnetic moments, it being assumed that 
the magnetic moments of the atoms of both components 
are collinearly oriented. This has, however, led to an 
improbably rapid change of the atomic magnetic mo­
ment of the second component within a very narrow 
•range of concentrations, not only in the magnitude of 
the moment but also in the sign of its projection on the 
direction of the spontaneous mafnetization (see for ex­
ample the work of Loshmanov[ 5 on Ni-Mn with the 
attempt to interpret in this manner the data of neutron 
diffraction investigations). Obviously, the explanation 
of the course of the concentration dependence of the 
spontaneous moment of an alloy should be sought in the 
peculiarities of its magnetic structure. 

It is important to note that all the alloys mentioned 
above have a cubic lattice and the following character­
istic of their exchange interaction: 

I"> 0, I,.> 0, I22 < 0, (1.1) 

where I11 is the exchange integral between nearest 
neighbors in the solvent matrix, I12-between the atoms 
of the second component and the atom of the matrix, 
and 1:!2 is the exchange integral between the atoms of 

FIG. I. Dependence of the 
average magnetic moment per atom 
of the alloy ILB for disordered Ni­
Mn alloys on the manganese con­
centration. [ 1] 
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the second component which are nearest neighbors. By 
virtue of the condition I12 > 0 for small concentrations 
of the second component their atomic spins are directed 
along the ferromagnetic ordering in the matrix. For 
larger concentrations the atoms of type 2 are not only 
surrounded by the atoms of the matrix but also by 
their own atoms, and there appears thus a competition 
between the ferromagnetic interactions tending to line 
up their spins along the ferromagnetic ordering of the 
matrix and L!2 interactions tending to orient the spins 
antiparallel to the type-2 neighbors. Sidorov and 
Doroshenko[2J were the first to draw attention to this 
circumstance and proposed that there exists in the 
indicated alloys an inhomogeneous noncollinear mag­
netic "structure" in which the atomic spins are turned 
at various angles (depending on their surroundings) 
relative to the direction of the spontaneous magnetic 
moment and the degree of this ''turning'' various with 
changing concentration. By means of statistical 
methods they were able to calculate the concentration 
dependence of the total z projection of the atomic spins 
in such a structure and to obtain curves of the average 
moment which are in good agreement with the experi­
mental ones (Fig. 1) when a appropriate choice is made 
of some phenomenological parameter. This conception 
also led to the explanation of a series of other ano-
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malies in the properties of these alloys; however, it 
suffers from two deficiencies: first, it employs the 
concept of atomic spins as classical vectors, and, 
secondly, it contains no energy conditions indicating 
for what relation between the exchange interactions 
such an inhomogeneous ferromagnetic structure is in 
fact possible. 

In this paper we attempt to set up a quantum theory 
of the ground state of a system of spins in the Heisen­
berg model under condition (1.1). In view of the fact 
that it is impossible to carry out a calculation for ar­
bitrary concentration c, we consider first one very 
simple element of such an alloy: a pair of type-2 
atoms which are nearest neighbors in a ferromagnetic 
matrix. It turns out that the ground-state problem of 
such a system can be solved exactly, and then using the 
obtained results one can make qualitative assertions 
about the structure of the indicated alloys. As the sol­
vent crystal we have chosen a simple cubic lattice, 
since a detailed investigation of the single impurity 
problem is in this case available. ra, 7 ] 

2. A DIATOMIC "MOLECULE" IN A FERROMAG­
NETIC MATRIX 

It is convenient to split the spin Hamiltonian of a 
ferromagnetic crystal containing two replacement im­
purity atoms which are nearest neighbors into two 
parts: 

:;e =:Jed- {ff,, (2.1) 

n " 

' Jf, =- 21,2 (81'8~) + 2J (8182 ) -2112 2} ~ (Sz'S1+") 
l=1,2 d 

+ 2! 2} :;3' (S,S,+")- g[-loH (St'' + S,'z- S,z- S,2), I (2. 3) 
l=l, 2 .~ 

in which Jfo describes an ideal crystal and Jt1-the 
perturbation introduced in it by a pair of impurity 
atoms. Here ~n denotes summation over all lattice 
sites, ~a -over z nearest neighbors; Sn denotes the 
spin operator of an atom of the matrix having spin S, 
and s~ and s~ are the spin operators of the impurity 
atoms having spin S' (Fig. 2). The prime in the sum 
~ ~ means that in summing over nearest neighbors of 
the impurity atom 1 (or 2) the second impurity atom is 
not included; finally, H denotes a magnetic field ap­
plied along the spontaneous magnetic moment of the 
crystal, directed along the z axis. 

The problem eonsists in finding the ground state of 
the system described by the Hamiltonian (2.1). It is 
well known that the operator of the total spin commutes 
with the exchange Hamiltonian; consequently, the 
ground state of our system should be characterized in 
addition to an energy also by a magnitude of the z 
projection of the total spin S0 (the z projection of the 
total spin also commutes with the Zeeman energy). The 
spectrum of possible values of S0 runs through the 
values: (N- 2)8 + 2S', (N- 2)S + 2S'- 1, (N- 2)S 
+ 2S' - 2, etc. The spectrum of eigenvalues of the 
system can correspondingly be classified by the eigen­
values of S0 • We shall denote the energy of the state 

FIG. 2. The numbering of the atoms of 
the impurity pair and their nearest neighbors 
in a primitive cubic lattice 
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with S~ax = ( N - 2 )S + 2S' (when all the spins of the 
system are "parallel") by Eo, and the energies of the 
states with S0 = S~ax - 1, S~ax - 2, etc. by E,, 
Ez, ... respectively. 

In order to determine the energy of the ground state, 
we should in principle find the eigenvalues of the en­
ergy Eo, E,, Ez, ... and compare them with one another. 
The state with total spin S~ax corresponds to a single 
energy level Eo, whereas states with smaller total 
spin correspond to entire energy bands (for example, .to 
spin waves in an ideal ferromagnet). If one of the 
levels E 1 will be below Eo and below all the remaining 
levels Ez, E3 , ••• , then precisely it will correspond to 
the ground state of the system. We shall restrict our­
selves to a calculation of E0 and E 1 and show that for 
certain values of the parameters of the exchange 
Hamiltonian one of the levels E 1 can have an energy 
lower than E0 • Consequently in a certain range of 
parameters a ground state can exise> with S0 = S~ax 
-1. 

We denote the wave functions of the system which 
correspond to the eigenvalues Eo, Eb ... , by -.Jlo, 
-.Jl,, . . . . It is readily seen that the function >llo corre­
sponding to the state with parallel spins corresponds 
to the energy 

Eo= -I[Nz- 4(z- 1) - 2]S'- 4/12(z- 1) SS'- 2/22(S')' 

- gf-loH[ (N- 2)S + 2S'J. (2.4) 

In order to find E,, one must solve the Schrodinger 
equation 

(2.5) 

for this purpose we expand >¥ 1 in a series of wave 
functions I j) of single-particle spin deviations local­
ized on the crystal sites j ra,a]: 

N 

'¥,= ~c;Jj). 
j=i 

The functions I j) are obtained by the operator S j 
acting on the wave function >Va: 

li> = (2S;)-''•Sr'I'o. 

(2.6) 

(2.7) 

Since the I j) constitute a complete set of functions 
describing the state of the system with S0 = S~ax - 1, 
the expansion (2.6) for -.v, is exact. 

Equation (2.5) corresponds to an equivalent system 
of equations for Cj: 

(2.8) 

l)In principle it may turn out that in another range of parameters 
E2 < E1 < E0 . However, in view of the fact that the study of this 
problem requires a knowledge of the value of E2 (and subsequently 
values of E3 , E4 , etc may be required), we shall not study the loss of 
stability of the state with spin S0 = S~ax - I, concentrating all our 
attention on the loss of stability of the state with S0 = S~ax· 
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where the matrix elements of the Hamiltonian (2.1) can 
be calculated using the definition (2. 7) for the functions 
I j) as well as the definition of the function %: 

{2.9) 

where Sj = S for the sites of the matrix and S' for the 
sites occupied by impurity atoms. Thus we find that 
Eq. (2.8) is 

~[(S'- gltoH -2!Sz)6;;+21S 2; .Si+<>,;]c;- 2; V;;c; = 0, (2.10) 

" 
where Yij is a 12 x 12 symmetric perturbation matrix 
with nonzero elements (see Fig. 2): 

Vu = v22 = 2/S[ (z- 1) e +H. v12 = --218£, 

"V23 = v •• = ... = V12, 12 = 2/Sp, 

V13 = F,. = V, = Vts = V,,H = V,, = Vzs = v,. 
= Vz,to = V2,12 = -2/Sy. (2.11) 

Here the quantities E, p, y, and ~ are perturbation 
parameters: 

y = 1;' v {-- 1, {2.12) 

(2.13) 

It is characteristic that the parameters E, p, and y 
characterize the interaction of one of the impurity 
atoms with the matrix and coincide with those which 
appear in the theory of isolated impurities in ferro­
magnets, [6 , 7 l whereas the new parameter ~ charac­
terizes the interaction between the two impurity spins. 

Another notation has been introduced in Eq. (2.10): 

metrized combinations, as was first done in the work 
of Wolfram and Callaway[sJ in the analysis of an im­
purity atom in a ferromagnet. In our case one can set 
up from the twelve localized functions 11), 12), ... , 
112) symmetrized combinations transforming in ac­
cordance with the following irreducible representa­
tions [sJ: 1J. = A1g, A2u, B1g, B2u, Eg, Eu of the group 
D4h which also determine the sought unitary matrix 
{braces denote groups of columns of the unitary matrix 
which give rise to combinations transforming accord­
ing to the given group representation): 

a 0 0 a 0 0 0 0 0 0 0 0 
a 0 0 -a 0 0 0 0 0 0 0 0 
0 b 0 0 b 0 b b d 0 0 d 
0 b 0 0 b 0 b b -d 0 0 -d 

0 b 0 0 b 0 -b -b e -a d 0 
0 b 0 0 b 0 -b -b 0 d -d 0 

u = 0 b 0 0 -b 0 b -b --d 0 0 d (2.18) 
' 0 b 0 0 -b 0 b -b d 0 0 -d 

0 b 0 0 -b 0 -b b 0 d d 0 
0 b 0 0 -b 0 -b b 0 -d --d 0 
0 0 a 0 0 a 0 0 0 0 0 0 
0 0 a 0 0-a 0 0 0 0 0 0 
'--.--' 

A,g A,u B,g H2u E g E,. 

where a = 1/ft, b = 1/18, and d = 1/2. 
If one introduces the rectangular matrices T ( A1g), 

T (A2u) etc., corresponding to the columns joined by 
the braces, then U can be represented in the form of 
a symbolic sum [ 10 l 

(2.19) 

S' = E,-Eo. (2.14) The determinant D ( & ) separates into a product of 

It is readily seen that the expression in square brack­
ets in (2.10) is the reciprocal Green's function 
[ G0-1 ]ij of single-particle excitations of an ideal ferro­
magnet. Taking this into account, we write Eq. (2.10) 
in the compact form: 

(2.15) 

where 

(2 .16) 

( Ek is the energy of the spin wave in an ideal crystal). 
The spectrum of possible values of the energy fff in 

a system in the state \{11 is determined by the zeros of 
the determinant of the system of equations (2.15): 

D(&) = detj1- G0 (iil') VI, (2.17) 

which indeed has dimensions of 12 X 12. In order to 
factorize the determinant, one must use symmetry 
theory. A diatomic "molecule" in a primitive cubic 
lattice lowers the point symmetry of the crystal to the 
group Dm (with a center of symmetry at the middle of 
the line joining the atoms 1 and 2). In calculating the 
determinant we can go over to a representation of 
symmetrized combinations of wave functions I j) which 
transform like the bases of the irreducible representa­
tions of the point group of the symmetry of the system. 
It is simplest of all to use the symmetry by setting up 
the unitary transformation matrix which effects the 
transition from the site representation to the sym-

factors 

D(ll')=Tl {1-(T+(ft)G0 (&)T(ft))(T+(ft)VT(rt))}, (2.20) 

corresponding to the various irreducible group repre­
sentations. In our case 

D(fff) = D(Atg, &)D(Azu, &)D(Btg, 8) 

D(Bzu, f&)D 2 (E,, 8)D2 (Eu, 8), (2.21) 

where D ( A,g, [{f) and D ( A2u, & ) represent third- rank 
and D(B1g, &), D(B2u, 8), D(Eg, ({f), and D(Eu, 8) 
first-rank determinants. The squares in the last two 
factors are due to the fact that the representations Eg 
and Eu are two-dimensional. Individual factors in 
(2.21) denote the corresponding factors in the product 
(2.20). 

It turns out that only D ( A2u) includes the parame­
ter ~ (2.13); the other factors in (2.21) include only E, 

p, and y. Since I12 > 0, then the zeros of these factors 
will determine the values of the energy 8 only in the 
region & > 0, the position of these levels not depend­
ing on the value of the exchange integral b {which 
comes in only through ~ ). It is hence clear that only 
the factor D ( A2u) which depends on 1:!2 < 0 can in 
principle yield a solution with fS < 0, i.e., E1 <Eo. In 
this case the state with S0 = S~ax - 1 would be ener­
getically advantageous compared with the state S0 

= S~ax· 
The quantity D ( A2u) represents a 3 x 3 determinant 

of the form: 
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1(100') (T RX)(e(z--1)+2£ 
= det 0 1 0 ~ 2/ S R W Y ~ 2y 

,0 0 l X Y Z , ~y 

~2y ~y)l 
p o I. 
o p I 

(2.22) 

Here the latter matrix represents T+ ( Azu )VT ( A2u) 
and that preceding it--T+ ( A2u )G0T ( A2u) where G0 is 
a 12 x 12 block of the complete Green's matrix for an 
ideal ferromagnet; for brevity we have used the nota­
tion: 

Y = 2(G32' ~ C,s0), Z = G11° ~ Gu~12, 
W = G11° + G,.0 + 2G32° ~ G,1° ~ G,s0 - 2G3f!0, (2.23) 

A relation exists between the different matrix ele­
ments of the Green's function of an ideal crystal of 
cubic symmetry: 

"' Q 1 [g ~ gf!olf 
LJCn,m+\({g) = -.2JS 8nm + (L- 218 )Cnm0 (&), (2.24) 

" 
by the use of which one can decrease the number of in­
dependent G~m appearing in (2.23) to three which must 
be calculated numerically. These are conveniently 
chosen as G~1, G~2 (they are tabulated in[sJ) and Ggg 
(which we have calculated on a computer). The remain­
ing problem reduced to the analysis of the solutions of 
Eq. (2.22). 

3. THE ENERGY OF THE GROUND STATE 

First of all let us obtain the condition under which 
one of the roots ft of the equation 

D(A,u, &) = 0 (3.1) 

passes through zero and becomes negative. For this 
purpose we substitute in expression (2.22) T, R, W, X, 
Y, and Z for the value 18 = 0, using calculated values 
of 2ISG~m ( 0 ). Equation (3.1) will then yield the rela­
tion between all the parameters determining the solu­
tion & = 0. Figure 3 shows the results of a numerical 
solution of this equation. The curves plotted in the 
plane l12/l and l2di for three values of S' /S = 4, 1, 
and 1/4 separate the regions of values of the exchange 
parameters l12/l and lz2/l for which the state 8° 
= S~ax is stable (this region turns out to be below the 
corresponding curve). In the remaining region the 
state A2u with a total spin S0 = S~ax - 1 lies below 
the energy of the state with parallel spins. As is seen 
from the Figure, the regions of stability of the states 
with S0 = S~ax depend very appreciably on the ratio of 
the spins S' /S. The smaller this ratio, the more stable 
(with other conditions the same) this state. 

In the general case the roots of Eq. (3.1) can only 
be found numerically; however, for very low-lying 
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FIG. 3. Stability regions of the state with 
maximum spin of the system S~ax for various 
ratios of the atomic spins. 

levels one can obtain an approximate analytic expres­
sion by the use of the asymptotic form of the Green's 
functions (2 .16) for large / & I such that 

4ISz II ft I ~ 1, (3.2) 

where 41Sz is the width of the spin-wave band of an 
ideal crystal. Under this condition 

C,.m0 (ft) ~= ~ <'lnm+ z;; [ Z/lnm- ~On,m+<>] + ... , (3.3) 

" where the 15 nm and others are Kronecker symbols for 
a discrete argument. To an approximation accurate up 
to square terms in 1/ fC we obtain the solution of Eq. 
(3.1): 

ft s z+1 1 
--=-+--e+-. 
4!Sz z 2z 2 

(3 .4) 

The last two terms here are of the order of unity; thus 
condition (3.2) is fulfilled for I~ I» z, and 6 is nega­
tive for negative ~. Taking into account the definition 
of ~ (2.13), one can write an approximate expression 
for the energy of a level lying very deep below the band 
and belonging to the state A2u, and for the condition of 
its appearance: 

0-::::: 4J,,S', /!22 /S'/ IS ~z -1. (3.5) 

Such a level appears for strong negative exchange in­
teraction of the spins of the impurity pair. 

In the general case the position of the energy of the 
ground state can only be obtained by numerical solution 
of ( 3.1). Figure 4 shows the results of such calculations 
for the case S' = S = 1/2. The solid curves show the 
dependence of the energy of the ground state on the 
parameter Izz/1 for fixed values of the parameter I12/I. 

FIG. 4. The energy of the ground state 
of a crystal containing an impurity diatomic 
"molecule" as a function of I2 2 /I for the 
case S' = S = Y2 and for values of the para­
meter I22 /I: I- 0.5; 2- 1.0; 3- 1.5; 
4- 2.0. 

Each curve consists of an ascending and descending 
branch. The ascending branch (together with the dashed 
continuation) yields the energy Eo of the state with 
maximum spin S~ax calculated in accordance with 
Eq. (2.4). The descending curve gives the energy E1 of 
the state with spin S~ax - 1 calculated on the basis 
of the solution of Eq. (3.1). It is seen that on increasing 
I l22 I the state of the system with S0 = S~ax - 1 lies 
below the state with parallel spins, the difference in 
the energy increasing with increasing /lzz /. Thus the 
points of inflection correspond to a loss of stability of 
the state with S0 = S~ax· The position of these points 
in the plane of the variables l12/l and lzz/1 has been 
depicted in Fig. 3 (on Fig. 4 the zero of the energy 
corresponds to Eg = -NizS2 --the energy of the ground 
state of an ideal crystal). The dashed line a intersect­
ing the prolongation of the straight lines for the ener­
gies Eo corresponds to the classical configuration for 
which the spins of the impurity atoms are antiparallel. 
The energy of such a classical state is given by the 
formula 
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EKJI = -I[Nz- 4{z -1)-2]82 + 2122{8') 2. (3.6) 

The dashed line a on Fig. 4 corresponds precisely to 
this formula for S' = S = %. We note that the energy of 
the true quantum-mechanical state with total spin 
S~ax - 1 lies appreciably lower than the energy of the 
classical state with the same value of the total spin 
and strictly antiparallel orientation of the spins of the 
impurity pair. This result shows that in this problem 
the treatment of the spins as classical vectors gives no 
satisfactory solution of the ground-state problem. 

4. THE WAVE FUNCTION OF THE STATE WITH 
TOTAL SPIN S~ax - 1 

We have shown that for certain values of the per­
turbation parameter the ground state of our system is 
the state with S0 = S~ax- 1. Its wave function trans­
forms in accordance with the irreducible representa­
tion A2u and the coefficients Cj of the wave function 
are determined from Eq. (2.15) which we shall rewrite 
in the form 

(4.1) 
nj 

Since the matrix Vnj is a 12 X 12 matrix, it is clear 
that in order to determine all the Ci one must solve a 
system of twelve equations for cl, c2, ... , cl2; then the 
other Ci with i > 12 are automatically determined by 
relation (4.1). However, in each concrete state sym­
metry imposed relationships exist between the twelve 
values cl, c2, ... , c l2· Since the state which interests 
us transforms in accordance with the A2u representa­
tion, we find at once from the form of the matrix 
U (2.18) [more accurately, from the form of a part of 
it-the rectangular T (A2u) matrix] that in this state 

Ct = -C2, Cu = -Cl2t 

Ca = C4 = C5 = C6 = -C7 = -Cs = -Cu = -c10; (4,2) 

thus there are only three independent coefficients, for 
example, ch C3, and cu. 

In order to determine these coefficients it is con­
venient to make further use of the theory of the repre­
sentations of the symmetry group. We use C to de­
note the column of coefficients cl, c2, ... , cl2. Then, 
making use of the property of the unitary matrix 
uu+ = 1, we write (4.1) in the symbolic form: 

(4.3) 

We take further account of the "additivity" of the 
unitary matrix U (2.19); then, making use of the 
theorem on the vanishing of the matrix elements be­
tween states belonging to different irreducible repre­
sentations[oJ we obtain from (4.3) an equation for the 
state A2u of interest to us: 

= r• (A2,) G0 (IS) T (A 2,)·T (A 2,) VT (A2u) .r• (A,~) C (A2,) (4.4) 

[in obtaining this equation we have multiplied the pre­
ceding Eq. (4.3) on the left by T+(A2u)]. 

Carrying out the indicated matrix multiplications, 
and using relations (4.2), we represent Eq. (4.4) in the 
following form: 

(c1 (.4•J) (T R X)(e(z-1)+26 -2y -y)(ct(A2u)) 
\

ce(.4,,,) = 218 R W Y -2y p 0 c3 (A 2u) , 
Cu (A • .,), X Y Z - y 0 p cu (A2,) 

(4.5) 
where all the symbols have been previously encountered 
in Sec. 2. The determinant of this system coincides 
with (2.22) and vanishes by virtue of condition (3.1), as 
it should. 

Knowing ch c3, and cu, one can calculate arbitrary 
Ci using Eq. (4.1). Proceeding analogously with the aid 
of the unitary matrix, one can readily obtain for any 
site 
c;(A2u) = 218{[ (e(z- 1) + 2(;) (G;1°- G;2°) - y(G,,o + G;40 + G,,o 
+ G;6°- Gi7°- G,8o-G,9°-G;10°) ]c1 (A2,) +[p (G,,o-t G;40+G,o+G,6o 

-G;1°- G;s0 - G;9°- Gilo0)- 4y(Gil0 - G;2°) ]ca(A.u:) 
+ [p (Gw- Gm0)- y(Gi1°- Gi2°)]cu(Azu)}. (4.6) 

One can readily verify that the Ci determined by this 
expression satisfy the symmetry relations (4.2), and 
cl, C3, and cu satisfy Eq. (4.5). We note that in ex­
pression (4.6) the values Gi· ( fS) are taken with the 
value & < 0 satisfying Eq. b.1). The state A2u has an 
energy fS < 0 in the range of parameters of interest. 
The Green's function Gij ( &) (2.16) decreases, as is 
well known, exponentially with the distance I Ri - Rj I 
for negative arguments. It is seen from (4.6) that 
Ci ( A2u) also decreases exponentially with the distance 
from the impurity molecule, i.e. the state A2U which 
belongs to a discrete level is localized. 

In order to determine fully the coefficients Ci (A2u ), 
one must take into account the normalization relation­
ship ~j lcj (A2u) 12 = 1. Using Eq. (4.1), one can repre­
sent it in the form [we have taken into account that for 
fS < 0 Im Glj ( & ) = 0 ] 

dG ·0 

1 =-~ ct(A2u) VIm d;• V;pCp(Azu)· (4.7) 
lm1p 

This form is convenient in that only Cj for sites 1 
through 12 enter in it. Taking into account the sym­
metry of the A2u state, Eq. (4.7) for this state can be 
written in matrix form: 

dG 0 

1 = -C'(A•u)T(A.,) -T+(A.,)VT(A•u) -T+(A2u)d&-T(A2u) 

XT+(A.,)VT(A.,) -T+(Azu)C(A,,). (4.8) 
After partial multiplication of the matrices, we obtain 

(
e (z- I) + 26 - 2y - y) 

j ~ --(2!S)2 (Y2c1'·VSca'-VZc11') -2y p 0 
-y 0 p 

-r)(f2ct) 0 y~c3 • (4.9) 
p y2 Cu 

(
T' R' X')(e(z -1) + 2~ -2r 

X R'W'Y' -2y p 
X'Y' Z', -y 0 

Here T' etc. denotes the derivative dT ( fS )/dlC at the 
point IS = .%'A2u etc. Simultaneous solution of the sys­
tem (4.5) with this equation makes it possible to de­
termine ch c3, and cu. A knowledge of these coeffi­
cients yields the average value cif the z projection of 
the atomic spins on an arbitrary site: 

(4.10) 

where Si = S' for i f-1, 2 and Si = S' for i = 1 or 2. 
Let us consider certain special cases of the solution 

of the system of equations (4.5) and (4.9). Under the 
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condition I~ I » z when we have a very deep level 
<WA2u (3.4) the use of the asymptotic form of expres­
sions (3. 3) yields in the second approximation in 1/~ 
the solution 

(4.11) 

In the limit I~ I - oo we have I c1 12 = %; thus the state 
of the system with total spin S~ax - 1 corresponds in 
this limit to a change of the total spin projection on the 
pair by exactly one unit. In particular, for S' = % the 
average value of the spin projection on an impurity 
atom is obviously zero; this corresponds exactly to the 
spin state of an isolated pair. For finite ~ the spin 
cancellation on the impurity is less than %, so that 
for S' = % the average value of the z projection of the 
impurity spin has a small component in the direction of 
the spontaneous moment of the crystal; there is at the 
same time a small deviation of the spin projections on 
the nearest neighbors. The state A2u is thus in this 
case highly localized. On decreasing ~ , its localization 
decreases. 

Let us now consider the other limit when the value 
of ~ corresponds to the limit of the appearance of the 
ground state A2u, i.e., when 6'A2u- -0. Results are 
obtained particularly easily in the case of the special 
model with S' = S and 112 = I. Then the value of ~ 
which yields .W A2u = 0 turns out to be ~ = - 3. One can 
readily show that in this instance 

I 12 1 1 
c, =- R!',' (218) 2 [dTfd\!']~~o (4.12) 

with the following relation obtaining: 

i _'}___ ~ l - - 1- G 0 (0) 
I d?S l ·G"-=1) - :!..IS::. 1t . 

(4.12) 

Analogous formulas can also be obtained for I c 3 12 and 
I Cu 12; the numerical values of the spin cancellations 
obtained from them are: 

[c,[ 2 =0.33; [c3 [ 2 =0.01; [cu[ 2 =0.02. (4.14) 

The total cancellation on a complex consisting of the 
impurity pair and its ten neighbors is 0. 78; thus in this 
case too the state A2u turns to be localized to a con­
siderable extent. 

We note in conclusion that such large average values 
of the cancellation of the z projections of the impurity 
spins (up to %) make it impossible to employ in this 
problem the Holstein-Primakoff formalism which we 
have in this case avoided. 

5. QUALITATIVE ANALYSIS OF THE SPIN STATE OF 
AN ALLOY 

The above results of an investigation of a ferromag­
netic crystal containing a diatomic impurity "mole­
cule" can be summed up briefly as follows. For not 
too large values of the exchange coupling between the 
impurity atoms I b I the ground state of the crystal 
corresponds to the maximum value of the total spin 
S~ax' i.e., to complete "parallelism" of the spins of 
the impurity and of the matrix. At a certain critical 
value of the parameter l22 (with the other parameters 

fixed) such a state becomes unstable and the ground 
state of the system corresponds to the spin S~ax - 1. 
This state is localized and is characterized by cancel­
lations of the z projections of the spins on the impurity 
atoms and atoms of the matrix near the impurity 
"molecule"; the total cancellation of the spin projec­
tions over the crystal should be equal to unity. With 
increasing I b I the degree of localization of the can­
cellation increases; however, for some I b I the sys­
tem can in principle go over into states with values of 
the spin smaller than S~ax - 1 (this question which 
requires an analysis of the levels of many-particle 
deviations in the system has not been investigated). 
Physically it is clear that for S' > % the state with 
S~ax - 1 will be the ground state in not too broad a 
range of variation of I b 1. The state with S~ax - 1 
will apparently remain the ground state for I l22 I in­
creasing without limit only when S' = % (with l12 of 
the order of 1). One can assume that the principal fea­
tures of the ground state with S~ax - 1 (nonuniform 
distribution of cancellations of spin projections over 
the crystal and their localization near the impurity 
"molecule") will also be retained in states with S0 

< S~ax- 1. 
It would also be possible to consider analogously 

other multi-atom "molecules" in the crystal: "threes," 
"fours," etc. The results of the investigation of cer­
tain types of these defects in the special model ( S' = S, 
l12 = I) are as follows: 

c~~g~:!~~~x~f e-e - .Jtl 
(!22/llcrtt' -z -l,lg -1,13 -O.G -0,1 

FIG. 5 

Here we have indicated the critical values of ~2/1 for 
which the state with parallel spins becomes unstable. 
These results are purely illustrative; however, a ten­
dency can be traced in them: the more atoms in the 
impurity complex, the less stable the state with parallel 
spins. Since in the crystal 122 (as well as other 
parameters) are fixed, this means that in the presence 
of various types of isolated "molecules" a portion of 
these (molecules with smaller numbers of atoms) can 
be with parallel orientation of spins, whereas others 
already correspond to a smaller value of the total spin. 
This makes it possible to formulate some ideas con­
cerning the structure of alloys of the type Ni-Mn, 
about which we have written at the beginning of the 
article, for small concentrations of the second com­
ponent. 

When the concentrations are so small that the atoms 
of the second component can be assumed to be isolated 
from one another, their spins are oriented parallel to 
the spin ordering in the matrix and a simple law of 
mixing operates for the average magnetic moment of 
the alloy, so that for S' > S the average moment of the 
alloy increases linearly with increasing concentration. 
With increasing concentration there appears a certain 
number of "twos," "threes," etc., and if in one of 
these "molecules" the condition of "parallelism" of 
the spin is violated, it will contribute a smaller contri­
bution to the total spin of the crystal (compared with 
the case of complete parallelism of the spins). Thus, 
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for concentrations when there will be many such mole­
cules in the alloy, a sharp decrease of the spontaneous 
magnetic moment of the alloy will commence. With 
further increasing concentration the number of mole­
cules with a large number of atoms increases sharply 
and this ensures a rapid decrease of the average mo­
ment with the concentration. 

It is thus possible to explain the nature of the curve 
on Fig. 1 within the framework of the Heisenberg model 
of ferromagnetism, without assuming a concentration 
dependent change of the atomic magnetic moments and 
taking into account only a decrease of the quantum­
mechanical average projections of the atomic spins on 
the direction of the spontaneous moment of the crystal. 
The magnitude of the z projection of the atomic spin in 
an alloy changes from atom to atom and depends on the 
surroundings in which a given atom finds itself (i.e., on 
whether it constitutes a part of a "twosome," "three­
some," etc). The quantum mechanical averages of the 
perpendicular projections of the atomic spins vanish 
at the same time. Of course, for high concentrations 
of the second component one cannot separate in the 
alloy isolated atoms (they join each other to produce 
long chains of various configurations), and the best 
description of such an alloy would be a statistical 
description in which it is assumed that the magnitude 
of the z projection of a given atom of the second 
component in the alloy is determined by the number 
of atoms of the same type in the nearest surroundings, 
i.e. by the number of couplings of the type l22, and 
the value of this quantity averaged over the ensemble 
of atoms is obtained with account of the probability of 
the appearance of each type of neighborhood for a given 
concentration. Precisely such a program has been 
carried out in the work of Sidorov and Doroshenkol 1 ' 2 l 
who expressed the concentration dependence of the 
average moment of this type of alloys by means of a 
phenomenological parameter--the concentration Co. 

However, their phenomenological approach did not re­
veal the connection between the spin state of the sys­
tem and the energy parameters-the magnitudes of the 

exchange interactions; this we have partly filled in 
through this study. 

As a general conclusion we find that the indicated 
alloys have a collinear magnetic structure but with a 
nonuniform distribution of the z projections of the 
atomic spins over the crystal, which depends on the 
concentration. The spontaneous moment of the crystal 
provides a quantization axis in the system which is 
unique for all the magnetic moments of the alloy. 

The authors express their deep gratitude to S. K. 
Sillorov, who persistently drew their attention to this 
problem, for numerous discussions, as well as S. V. 
Vqnsovski1, E. A. Turov, and A. V. Doroshenko for a 
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