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The general properties of the effective dielectric constant of randomly inhomogeneous media are 
investigated. The Kramers-Kronig theorem is considered as applied to an inhomogeneous medium; 
the corresponding relations between the imaginary and real parts of f.Uf( w, k) are an expression 
of the causality principle in the scattering medium. It is shown that the correlation functions of the 
thermal electromagnetic field in a randomly inhomogeneous medium are expressed in terms of the 
effective dielectric constant. The influence of the spatial dispersion connected with the inhomo­
geneities of the medium on the radiation from sources placed in such a medium is analyzed. In 
particular, allowance for the spatial dispersion is necessary in calculating the scattering of the 
quasi-static fields from a source by the near-zone inhomogeneities. 

1. INTRODUCTION geneous medium with a certain effective dielectric 
constant E[{f, defined by the relation 

THE average field in a randomly inhomogeneous 
medium is described with the aid of the effective die­
lectric constant. For a statistically homogeneous 
medium, the latter was calculated in a number of 
papers. In some of them[l- 31 , the problem was solved 
by perturbation theory. The results of these papers are 
valid at small relative fluctuations of the dielectric 
constant f. ( r) of the medium. Considerations going 
beyond the perturbation methods are contained 

(D;(m,r)) = \ e;;(m,r-r')(E;(w,r'))dr'. (5) 
•' 

in['i-1Dl. In[ 11• 121 , a study is made of the effective dielec­
trie constant of inhomogeneous anisotropic media. In 
the present paper we analyze the general analytic 
properties of f.~.ff ( w, k) and its connection with cer-

lJ 
tain averaged energy quantities (quadratic in the field) 
in a randomly inhomogeneous medium. 

2. EFFECTIVE DIELECTRIC CONSTANT OF A 
RANOOML Y INHOMOGENEOUS MEDIUM 

Maxwell's equations for the random field at a fre­
quency w in a medium with a dielectric constant 
f. ( t~, r) are of the form 

[rot rotE (w. r) ]; = i.'o2E (uJ.r)l:'; (c•l, r) + k02K;(m, r). (1) 

Here ko = w/ c, and Ki ( w, r) is the induction con­
nected with the specified extraneous currents 
jext ( w, r) by the formula 

iexd<•J, r) =- (iul / 4rr)K(ul, r). 

We write (1) in the form 

1\;(to. l') = i,,(<•J.r)E;(<•J, r). 

(2) 

(3) 

Let us average (3) over the ensemble of realizations 
of the random function f. ( w, r). We obtain an equation 
for the average field ( Ei ( w, r' )): 

(4) 

In a statistically homogeneous medium, the operator 
tnff ( w, r, r') is of the form of an operator of a homo-

Let us write down the solution of Eqs. (3) and (4): 
Ei(w, r) = L;5- 1 (w, r, r')K;(m, r'), 

<E( )> --(L~eff)-1'' ')-'\,A£eff( ,))-If"·( ')d'(6) i w, r -- i.i L\ :i ( w, r ~ . ~ ij m, r- 1 \. J (tl, r r . 

Averaging the first equation of (6) and comparing the 
obtained relation with the second equation of ( 6), we 
get 

(7) 

If the medium is statistically homogeneous and iso­
tropic, then the tensor of the effective dielectric con­
stant is expressed in terms of the tensor of the effec­
tive polarizability ~fr [7,al. The random polarizability 

of the medium ~ is connected with the dielectric con­
stant by the formula 

(; = 3(€- eo)/ (e + 2eo), (8) 

where Eo ( w ) is obtained from the equation ( 0 = 0. 
For the tensor f.~.ff ( w, k) we have in this case the 

lJ 
relations 

Analogous formulas can be written for ~rr ( w, k). 

The connection between the tensors Efr ( w, k) and 

~rr ( w, k) is given by the equations 

1 1+'/,~1ett(m,k) 
€ ff (m k) = ru(<•l) ·---

e , 1- '/,!;'eff (w, k) 

,, 1 + 2/;~;;[ (w,l:) ( 10) 
€eff (<•J, k) = eo(w)--:-----:-c-:-:-

1-1/,(;~f (t•J,k) 

The tensor ~tff ( w, k) is expressed directly in 

terms of the mass operator Qij ( r1, r2), which in the 
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case of a normal distribution of the quantity ~ is given 
by 

Q;; (t·1, r2) == /,:0'so2Bs (r,, r,) G ;/ ( r1, r,) ( 11) 

+ k0'e0' j ~ G;11 (r 1, r3 ) G1,' (l':J, 1'1,) G, ,1 (r,, r2)Bs(r,, r,) Bs(r3, 1'2) rlr:J rlr, + ... , 

where B~ ( r1, r2) is the correlation function of the 
process ~ ( r ), and Gij ( r1, r2) is the regularized 
value of the Green's function for a homogeneous 
medium with dielectric constant E = Eo ( w ): 

1 
G;/ (r) = G,} (r)- ·.-;-1_ 2 -;---15 (r), 

Ll tO t::o 

( 1 az \ exp (iko 1~or) 
G;;"(r) =- l5ij + -. ----} , 

ko2eo ax, ax; 4nr 

' 1 r 1 {JZ J exp(iho"V~or) 
G;; (r)= -P- 15i;+----- . 

:___ ko2Eo 8Xi 8x.i 4nr 
(12) 

The connection between ~~{f ( w, k) and Qij ( r) is 

eff 1 I Q ·k 
£;; (w,k)= --k'· J ;;(r)e-• 'dr. 

o Eo 

(13) 

Formulas (9), (10), and (13), define the effective 
dielectric constant of a randomly inhomogeneous iso­
tropic medium. 

3. THE KRAMERS-KRONIG RELATIONS FOR THE 
EFFECTIVE DIELECTRIC CONSTANT. THERMAL 
FLUCTUATIONS IN A RANDOMLY INHOMOGENE­
OUS MEDIUM 

The Kramers -Kronig relation for t:~{f ( w, k) fol­

lows directly from the corresponding formulas for 
E ( w, r ), which are best written in the form(l3 J 

1 r le(w 1,r)-1 
e(w,r)-1=-. P J dw ---,---. 

rtl -= w -w 
( 14) 

We multiply the left and right sides of (14) by the 
vector E ( E, r) and average over the ensemble of the 
realizations of the inhomogeneities of the medium. 
From the obtained relation we get'> 

e;~ff (<o,r-r1)-15;;b(r-r1) 

+~ eff ( 1 I) R ~ ( I) 1 \ , Bij w , r - r - Uiju r - r 
=-P dw ---

:rti -·00 h:/ - (t} 

(15) 

and the corresponding corrolaries, which express the 
causality principle in a randomly inhomogeneous 
medium: 

+= neff , , 
reff I I 1 r I Ei) ( (t) 'r- I' ) 

>:;; ( "'· r - r ) - b;_;b ( r - r ) = -- P J dw ·-- - 1 -------

n (tJ - tt) 

11eff I 1 1 1 1r:rr (w1,r-r1)-li;_;6(r-r1) 
r;; (w, r- r) =----;:;-- P J cw ----- --w-1-_'--w---"'----'-----'- (16) 

Formulas (16) are meaningful also in a physically 
transparent scattering medium, where there is no true 
absorption. The imaginary part of Err( W, k) de-
scribes the process of transformation of energy of the 
regular component of the electric field into the random 

l)It should be noted that 

(e(w1, r)E(w2, r)) = [eff (w,, r, r1) <E(w2, r1)). 

com~onent (scattered field). The connection between 
Im Eeff(w, k) and E~}r(w, k) andth~ scattering_pro­
cess becomes manifest most clearly 1f the Poyntmg 
theorem is used. 

From the field equations we obtain directly for the 
energy flux averaged over the period 

- Eiext= div S, S = 4: [EH]. ( 17) * 
On the other hand, for the equations of the average 
field, with the same specified current jexb the con­
servation law takes the form 

c 
- <E>iext= 4;' div [(E) (H)]+ Qo, 

Qo = ~ (<Eoo) (Doo")- <Ero•) (Doo)), 
4n 

E(r, t) = E~e-irot + Eoo•eiwt, (18) 

where Q0 is the density of the "effective heat" re­
leased into the space surrounding the radiator. If we 
average ( 17) over the inhomogeneities and subtract 
Eq. (18) from it, then the scattered-field flux averaged 
over the time and over the ensemble E ( r) (we have 
omitted the symbol for averaging over the period of 
the high-frequency) 

(s) = _c_ [eh] = (S) - So, 
4n 

(So-flux of average field) is given by 

div(s) = Qo. (19) 

The source of the average flux of random radiation 
is the effective heat released in the medium as a result 
of the absorption energy of the average field. The 
total average flux of the scattered field through the 
closed surface is ( s )f = f Qodr. Moving the closed 
surface into the region where the average field can be 
regarded as absorbed (So = 0), we obtain for the total 
radiation flux from a point dipole with current jext 
= no ( r) the expression 

(s)1 = (S) 1 

= (2n)"~ I dk {e;; eff (w, k)- ef[f (w, k)} (Ei(w, k)) <E;' (w, k)> 
4n J 

oo I lr ) 
1 4 \' {Imeerr,(w,k) , lmeerr(w,k } 

= J Qodr=3~7:; J k'rlk [e' (w k)['+2ko [k'-ko'e'' (w k)[' ' 
o eff' eff' 

E;(w,k)=~1-. (' Ei(w,r)e-ikrrJr. (20) 
(2n)·' J 

Formulas (18)-(20) describe from the energy point of 
view the process of scattering and the transition of the 
field to the random state. 

Let us consider now the thermal fluctuations in a 
randomly inhomogeneous medium. The correlation 
function of the fluctuation field in the medium can be 
written in the form 

-t• ' hw (21) (Ei(r)E;(r1))w = ili[L;i (w,r',r)-L;;"1 (w,r,r )]cth2,f. 

Averaging this expression and using (7), we get 

((E,(r)E;(r1 ) )oo) 

ff • eff 1 _ liw 
=ili[(L;~ (w,r1,r))-1 -(L;; (w,r,r)) 1]cth2xr' 

*[EH] =EX H. 

(22) 
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or 
flw 

( (E1(r)E;(r') )w> = 2fl<ll (w, r- r')cth -,-, 
2xT 

1 r 
<ll(<•> R'i= -- dke1kR'¥··(w k) 

' · (2n) 3 " ' ' 

k;kj lme1eff (w,k) 
'¥1i(w,k)= -;:;--1 -,-(~) I' 

e eff w, c 

( k1ki) Ime~~f (w,k) 
+ko' 0;!--A-,- lk'-k"' ( k)''. (23) 

f o E eff w, I. 

Expressions (20) and (23) will be also considered as 
applied to a physically transparent inhomogeneous 
medium. In this case they express properties of the 
thermal radiation in the inhomogeneous medium, with 
allowance for scattering and diffraction of the field. If 
we neglect the spatial dispersion) then formulas (22) 
assume the form ( R = j r - r' I ) l 13J 

{ Imeeff (w) 
((E(r)E(r') ).,) = 21l leeff I' 6(r- r') 

1 iw2 [ 1 "' --····- ) I w -~- )lt flw ---- expl---1"--eeff R -expl--l'-e'eff R felh;-., 
4JC Rc2 \ c \ c _ 2x1 

(24) 

The second term from (24) in the transparent homo­
geneous medium determines the intensity of the 
thermal radiation [ll: 

w31l flw 
(E2 (r))w = --ncth-,-. 

nc3 2xT 
(25) 

If the medium is inhomogeneous, but the scale of the 
inhomogeneities is large compared with the wavelength, 
then in this formula, in the geometrical-optics approxi­
mation, n can be regarded as a slow function of the 
coordinates. Averaging (25) over the inhomogeneities 
and ealculating 

(n(r)) = ('f(e)+Te) = l'(e)- 1ls<L'ie2> I (e)'!'+ ... , 

we obtain approximate formulas for the field intensity 
in a large-scale inhomogeneous medium. The same 
expression is obtained from (24) by recognizing that 
in the present case 

eeff (w) =(e) -- 114(!1e2) I (e)+,,,[']. 

4. UNIQUENESS OF THE SOLUTION OF THE 
EQUATION ( ~ ) = 0, WHICH DETERMINES 
Eo ( W). 

The value of the dielectric constant Eo ( w), which 
enters as a factor in formulas (10) for E ~ff ( w, k) and 

E~lf ( w, k ), is determined from the equation ( ~) = 0. 

Depending on the character of the distribution function 
W(x) of the dielectric constant E ( w, r), the following 
cases can occur: if E ( w, r) assumes values of only 
one sign (say W ( x) = 0 when x ::s 0 ) , then the equation 
( ~) =• 0 has only one real solution (positive value of 
Eo). If E can vanish, then the equation \0 = 0 has 
two complex conjugate roots, from which we choose 
the one determining the damping of the average field. 
The equation \ ~ ) = 0 can be written in the form 

F(z) = 0, 

where 

3 -~ W(S) F(z)=1+-z --d£, W((;)~U, -oo<s<+oo, 
2 -=£- z 

-~ ll' (s)d(; = 1, ~ =- 2<o. (26) 

A detailed analysis of (26) is given in the Appendix. If 
E ( r) can vanish, then Eo is complex, and this circum­
stance can be explained by means of the following 
physical eonsiderations. In such a medium there can 
exist longitudinal field oscillations, determined by the 
equation E~ff(w, k) = 0. It breaks up into two eqL.C~tions, 
of which one, ~~ff ( w, k) = -?'2, describes a longitud­
inal wave that attenuates over the correlation radius of 
the random inhomogeneity(a], and the second, Eo ( w) 
= 0, makes it possible to calculate the damping decre­
ment of the longitudinal oscillations of the average field. 
The longitudinal oscillations of the average field must 
inevitably attenuate as a result of scattering by the 
inhomogeneities of the medium. The fact that the func­
tion Eo ( w) in such a medium is complex is obvious. 

5. ASYMPTOTIC EXPANSION OF THE EFFECTIVE 
CONSTANT AS k- oo IN THE CASE OF SMALL 
SCALE FLUCTUATIONS: INFLUENCE OF SPATIAL 
DISPERSION ON THE RADIATION OF SOURCES 
PLACED IN A RANOOML Y INHOMOGENEOUS 
MEDIUM 

We shall henceforth consider the case when Eo ( w) 
is a real function. If the medium is small-scale 
(kol « 1, where /-radius of the fluctuations AE) and 
l ~rr ( w, k) I « 1, then the approximation in which we 

can confine ourselves to the first term of the infinite 
series for the mass operator Qo is valid. In this case 

e.~ff (w, k) = eo(w)[1 + S~ff (w, k)]. 

e!rr (w, k) =eo( w )[1 + ~!~r (<•', I.)], 

S 1eff (w, 1.:) = -2 ((;') q(p, Pc), 

tr ( k) Po' (£)' r f ( ) · . · d + , ·" ( ) S:eff w, = --.) £ X eip,x ::unpx x , \;-/ q P: p0 • 

p () 

r r 3 (' sin px \ 'in px l l 
q(p,po)=jf£(x)•l··.~"· -·--cO>fU.--·- -r/.1. 

0 f!'.L- JU · J!.:; .1 J' 

Po ( I 1 ( sin px • . 1 
+-~.l f;(x) --- --~-c<"pxl--,inpxfr!:c 

2p ·, L px px· , 

.1 = 
- i --- \ r;(x)x ,<in px r/.r, (27) 

'Jp ·, 

where we have introduced in lieu of the correlation 
function B~ the correlation coefficient 

1 (~e2) 4 ((!1e2>) 2 

eo(w) =(e)-3<;)- 27 (<~ + ... , 
((;') ~ (/1e2> I (e) 2• 

We note that these expressions are valid at arbitrary 
Po if the fluctuations are small ( AE/\ E) « 1 ). Then 

Bs(r) = (£'>f;(rll),p=kl,po=koVeol~1. 

The imaginary parts of E~ff and 41f are deter-



ANALYTIC PROPERTIES OF THE EFFECTIVE DIELECTRIC CONSTANT 299 

mined by the quantity Im q ( p, Po) ( ( ~ 2 ) -real function 
of w at real Eo ( w)). The asymptotic behavior of 
Im q ( p, Po) as p- 00 determines the character of 
the convergence of the integrals (20) and (23), which 
express the correlation function of the thermal field, 
the average power flux from the point source, and the 
Green's function of the average field (the real part of 
which determines the thermal fluctuations in the 
medium[ 14 l). 

Using a well known method, based on multiple inte­
gration by parts[5 l, we can write 

N/2-i 

2 o2n+1f, (0) 
lmq(p,po)=3Po' 2; (-1)"(n+1) oxzn~,-r"I"+'I+O(p-N-2), 

n=O 

R n of£(0) 1 n o'f;(O) 1 
eq(p,Jlo) =-~~-+---. --

4 ox p 4 ox3 p3 

(N-t)/2 (-1)" o'"fo(O) (28) 
+ )' . p-'"+O(p-"'+') 
~0 (2n-1)(2n-3)~ · 

The derivatives of the correlation coefficient r ~ ( x) 
at x = 0, which take part in the expansion, are as­
sumed to exist. Substituting the expression (28) in 
formula (27), we get as p - oo 

lm eeif (<•>, k) = lm E~ff (w, k) =- 2eo<~') lm q (p, Po) 

4 [ of£(0) 1 o'fdO) 1 l 
=--eo(w)<s2 >Po3 ~~---2~~-----+ ... , 

3 ox p' ox3 p6 J 

Re "e~f (w, k) =eo( 1-~ <s'>)-~e0(s2 /J";(O) ~ + ... 
\ 3 2 ox p 

(29) 

A similar formula can be written also for 
Re E ~if ( w , k ) as k - oo. 

The most interesting is the first formula of (29). 
As follows from (20), (23), and (29), the spatial dis­
persion due to the random inhomogeneities ensures 
convergence of the integrals that express the intensity 
of the thermal fluctuations of the field in the inhomo­
geneous medium, the average flux of power from the 
point dipole, etc. The expansion coefficients of 
Im E~ff and Im E~1f are the odd derivatives of the 
correlation coefficient r ~ ( x) at x = 0. Inasmuch as 
r ~ ( x) is an even function, the odd derivatives differ 
from zero when x = 0 only if these derivatives are 
discontinuous at the point x = 0, and in (28) and (29) 
we have in mind in this case the limit of the deriva­
tives at x = 0 on the x > 0 side. 

The character of the convergence of the integrals 
(20) in (23) is closely connected with those character­
istics of the medium, which determine the behavior of 
the correlation function B~ ( x) (or BE ( x )) at x = 0. 
If the function r ~ (X) is analytic, then Im E~ff' 
Im E~l£- 0 as k- 00 at no slower a rate than e-ak 
(for example, when r~(x) = exp ( -x2 ) we get 
Im q ( p, Po) ~ exp ( -p2/ 4)). 

The discontinuities of the derivatives r~ ( x) at 
x = 0 are connected in turn with the discontinuities of 
the function E(r) and its derivatives (i.e., the discon­
tinuities of the very realizations of the process). Thus, 
notice should be taken of the strong connection between 
the character of the scattering of the near -field of the 
sources placed in an inhomogeneous medium with the 
degree of smoothness of the functions E ( r ), which 

are realizations of the process E ( r). It follows from 
(18) and (19) that the contribution of the scattering of 
the quasi-static field by near-zone inhomogeneities 
can be very large, In particular, if we neglect the 
spatial dispersion due to the inhomogeneity of matter, 
then the density of the ''effective heat'' equals 

6l 
Oo= Zn lme•ff (w)(E(w,r))(E"(w,r)). 

In the field of a point dipole, the total heat (the integral 
J Q0 dr) is infinitely large 21 • 

6. CONCLUSION 

It was concluded in [a] that spatial dispersion due to 
inhomogeneities medium plays an insignificant role in 
the process of electromagnetic wave propagation. In 
problems involving radiation, the situation changes 
radically, since near the sources, where the field can 
strongly change over distances that are small compared 
correlation radius of the medium, we deal with a strong 
spatial dispersion, allowance for which is essential. We 
note that the expression for the correlation function of 
small-scale fluctuations in the form (,. .:l E 2 ) [ 3 /) ( r), 
which is sometimes used in scattering problems, is 
equivalent to neglecting spatial dispersion. Allowance 
for spatial dispersion due to the inhomogeneities is 
also essential in problems of thermal fluctuations of 
the electromagnetic in randomly inhomogeneous media. 
In particular, owing to the inhomogeneity of the 
medium, the intensity of the thermal fluctuations be­
comes finite even if we neglect the true spatial dis­
persian of the medium. 

The author is grateful to V. V. Tamo'ikin for re­
viewing the manuscript and for remarks. 

APPENDIX 

To prove the statement that the solution of the equa­
tion ( ~) = 0 is unique (Sec. 1) we can use the argu­
ment principle, according to which 

N = (2n) -t~c arg F (z). (A.1) 

Here N -number of zeroes of the function F ( z ), which 
is analytic in the region bounded by the contour C. The 
right side of (A.1) equals the number of revolutions of 
the vector L on going around the curve r, which cor-

2) Analogously, in a homogeneous absorbing medium the heat 
released in the field of a point dipole is infinite if we neglect spatial dis­
persion. 
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J ~ 

responds to the contour C in the mapping L = F ( z). 
The function F ( z), defined by expression (26), is 
analytic in the entire z plane with the exception of the 
points lying on the integration contour. 

l..et the function W( ~) = 0 at ~<a, a> 0 (Fig. 1), 
i.e., let the dielectric constant assume only positive 
values. We consider the contour C1, which consists of 
a straight line z = x + iO and an infinite half -circle in 
the upper half-plane. On the line z = x + ia (a> 0) we 
have 

lim ImF(x+icr) = 3/ 2nxW(x). (A.2) 
o~o 

Making the transformation L = F ( z ), we note that 
the half -circle with infinite radius corresponds to the 
point L = - Y2• The straight line x + iO is transformed 
into a certain contour r 1 of the upper half -plane of L, 
which does not cross the real axis, since Im F 2: 0 for 
any x. We verify similarly that N = 0 also in the lower 
half-plane of z. Considering the contour Ca, we find 
that it corresponds to the contour r 2· In this case 
N = 1, and the fact that ~ tends to zero does not 
change the situation. In the case under consideration 
we have one root Vo = xo, which lies on the real axis. 
It can be shown that Xo < - 2a. In fact, 

+"' r ~-a 
F(-2a) =: i+ 2a W([;)d[;>O. 

On the other hand, F ( x - - oo) = - Y2• Taking into ac­
count the uniqueness of the root, we see that the func­
tion F ( x) crosses the x axis once in the interval 
l- 2.a, - oo ]. From this we find that 10 0 = - xo/2 >a. 

In the case when 10 assumes only negative values, 
Eo is also negative. 

Finally, in the case corresponding to Fig. 2, the 
equation F ( z) = 0 has two complex roots, as can be 
verified in a perfectly similar manner. 
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