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The spin-lattice relaxation time T1 of the conduction electrons in metals with impurities is calculated 
with allowance for the thermal vibrations of the impurities. It is shown that at low temperatures the 
impurity time of the relaxation times (for heavy impurities) is practically independent of the tempera
ture, and at high temperatures it varies like a- b/T (a, b > O). Expressions are presented for the 
temperature dependence of the contributions made to T1 by the scattering of the electrons by the de
formed phonon spectrum of the lattice and by the interference between the scattering from the vibrat
ing impurity and from the vibrations of the host lattice, for different relations between the masses of 
the impurity and the host atom and their amplitude of inelastic spin scattering. 

RESONANT paramagnetic absorption by conduction 
electrons is observed in a relatively small number of 
metals (Li, K, Rb, Cs, Be) [1- 4]. It is assumed that in 
metals the main relaxation mechanism, which deter
mines the width of the EPR line for the conduction elec
trons, is modulation of the spin-orbit interaction V by 
the thermal vibrations. For valence electrons, V in
creases rapidly with increasing atomic number Z, 
although no simple expression describing the V(z) de
pendence has been described as yet. For free lithium 
(Z = 3), for example, the spin orbit splitting of the val
ence level 2p is 2.77 x 10-5 eV, whereas for sodium 
(Z = 11) its value is 2.12 x 10-3 eVr4:J. From the meas
urements of the impurity contribution to the line width 
.6.H' of the paramagnetic resonance on conduction elec
trons (PRCE) in alkali metals [s-7] it follows that the 
spin-orbit coupling of the conduction electron with the 
impurity atom in the metal does not differ in order of 
magnitude from the values for the free atom. 

In investigations of the PRCE line width, the impurity 
atoms are usually regarded as static defectsi6 ' 8 ' 9J. This 
causes the width .6. H' to be proportional to the concentra
tion of the impurities and to be independent of the tern
perature-the analog of the Mathiessen rule in the theory 
of electric conductivity. Allowance for the vibrations 
of impurity atoms, and in some cases the appreciable 
differences between the thermal vibrations of a crystal 
with impurities and the vibration spectrum of an ideal 
crystal, have made it possible to explain in a number of 
recent papersi10-13J some of the experimental results 
(violation of the Mathiessen rule in weak solutions, the 
anomalies of the lattice specific heat). 

Obviously, allowance for the impurity vibrations in 
the calculation of the impurity contribution to the PRCE 
line width should lead to the appearance of a tempera
ture dependence of .6.H'. Since the magnitude of the spin
orbit interaction changes strongly with changing Z, the 
contribution of the thermal vibrations to .6. H' can be ex
pected to be pronounced quantitatively more than in 
measurements of the temperature dependence of the 
electric resistance. 

We present in this paper a calculation of the spin-

lattice relaxation time of the conduction electrons in a 
metal with nonmagnetic impurities. The spin-lattice re
laxation time T 1, connected with the peak width of the 
symmetrical PRCE line by the relation[14J 

f'o.H = 2/t I -y3 Tt[t,, ( 1) 

is calculated by means of the formula 

_1_=_4_( ~ iJ/~(k) dk)-l ~ iJh(k) 
T1 (2n) 3 \ iJEk iJEk 

X ((1- fa(k'))Wk'a,M + /a(k')Wk~,k·a]dkdk', {2) 

where wk I Q' > kJ3 is the probability Of the transition Of the 
electron upon scattering from the state with wave vector 
k and spin J3 into the state k' a; f(k) is the electron dis
tribution function. 

In the calculation of Wk'k in the Born approximation 
we use the well known relation [1sJ 

Wk'" = S(q, w) I h'. (3) 

Here S(q, w) is the scattering correlation function 

{4) 

w = wkJ3- Wk'a' Vj{q) is the Fourier component of the 
operator of spin-orbit interaction between the electron 
and the ion of species y in the j -th site of the lattice, 
and the symbol ( ... ) denotes averaging over the Gibbs 
ensemble. Since the ions of different source are located 
in the lattice sites randomly, we assume that averaging 
over the ensemble includes averaging over all possible 
ion configurations. For a crystal containing impurities 
of one species (c -impurity concentration). when the 
internal state of the ion does not change during the 
collision, 

V;v(q,t)= V1,0(q)e;qR;(1l, R;(t)=R;(O)+u;(t), {5) 

Uj{t) -operator of displacement of the ion from the 
equilibrium position, y = 1 or 0. Confining ourselves to 
single-phonon scattering processes we obtain for Wk'k 

Wk'k = W(1) + W(2) + W(3), 

Wk•k(i) = tz-Wcj V1(q) j2 [2nu(w2 ) + <(qu!(t)) (qui(O)))w], (6) 
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Wh•h(2)=1i-2NcJV1 (q)Vo(q)j < ~exp(iqR;)(qu,(t))(qUo(O))), 
j "' (7) 

Wh·h(3) = li-'NcJ V,(q) J2< ~ exp(iq(R;- R;)) (qu;o(t)) (qu;o(O))) 
~ . 

(8) 
Expressions (6) -(8) describe respectively the impurity 
scattering, interference scattering, and scattering by 
the deformed phonon spectrum of the lattice. 

The Fourier components of the correlation functions 
in (6) -(8) can be expressed in terms of the Fourier 
components of the Green's function 

G;;~~(t) = -iS(t)(u,r•(t)u;~(O) -- u;~(O)u;"'(t)), a,~= x, y, z (9) 

with the aid of the relation [l5J : 

(u;"'(t)u;~(O)) = -2(1- e-P•)-1 Im G;;<•~(ro +ill), p =!if kT. (10) 

The equations for the Green's functions (9) for crystals 
with impurities that differ in mass from the host atoms 
(impurity of the isotopic type) were considered 
in [12' 16-18]. It is convenient here to use the expressions 
given by Kagan and Zhernov[HJ for the sought Fourier 
components of the correlation functions. For an iso
tropic crystal, they take on respectively the values: 

2nli signro 
M q' 1- e-P• cp(ro'), 

2nli s~gnro[1 P J -q'--_-1 y(6l 2 )+1l(ro2 -ro 2 ) , 
M 1- e P• n ro2 - roi q 

2nli signro 1 cero'y(ro2 ) 
-q'---- . 
M 1-e-P"' n [ro2 (1-cet.(ro 2))-roil'+[cero2y(ro2)]2 

(6') 

(7') 

(8') 

where E = (M- M')/M, M' is the mass of the impurity 
atom, M is the mass of the atom of the ideal lattice, and 
P is the symbol of the principal value; 

R(ro2 ) = (1-ero2J(ro2 )) 2 + (nero2g(ro2 )) 2 , 

••' 
I g(z) ' g(ro') 

J(ro2)= P J dz--, cp(ro )=R(ro') , 
0 z -'(1)2 

(11) 

g(w 2) is the distribution function of the squares of the 
phonon-spectrum frequencies of the ideal lattice, and 

nero 2g(ro 2 ) 1- w 2/((J)2 ) 

y(ro')= R(ro2) ' t.(ro')= R(ro') · 

Substituting the expression for the transition proba
bilities with allowance for relations (6') -( 8') into the 
formula for Ti:\ we get 

(12) 

where 

1 4/i q~· oo~ eP"' 
---cr- a 3 d ---T (2)- M (q)q q 2P•-1 

i o o e 

(14) 

1 4/i -11 
--= r-) b0 (q)q3 dq 
T1 (3) 'M 0 

oo eP• n-1cero'y(ro2 )dro 
Y I (15) 

~ e2P•-1 [ro2 (1- ect.(ro2))- roq2] 2 +[cero2y(ro2)]' ' 

r = 47T~-1p(EF)N, p = fl/kT, N-number of particles in 
the sample, b1,o = IV 1,o (q) 1

2, p(EF) -density of electrons 
near the Fermi level, and a(q) = IV l(q)Vo(q) J. In the 
derivation of these equations we used the customary 
assumptions in concerning the phonon spectrum of an 
ideal crystal: w = qs, q -wave vector of the phonon, 
s-speed of sound in the sample, qo = qmax = 2kF, 
kF-momentum of electron with Fermi energy EF, and 
Wo = qos. 

If we include in the elastic part of the impurity 
scattering in ( 13) the factor exp(- W 1), which depends on 
the Debye-Waller factor 

li "" 
w,<'q)= q2 M ~ (2n(ro)+ 1)<p((J)2)dro, 

0 

then, when W1 < 1, we obtain for the temperature
dependent part of the impurity scattering 

(13') 

We shall find it useful to have a table of the numer
ical values of the parameters contained in the relations 
for T11. In the table, t:. is the spin-orbit splitting of the 
valence electron of the free atom r4J and A is the atomic 
weight. According to estimates given in[s,s,sJ, V !'=' t:. 
for impurities. 

" .:\ .. eV 

Li 6,9 2.77. [Q-S 

Be 9 3.72· w-• 
Na 23 2.12-J0-3 

Zn 65 7.17·10-2 

Cd 112 0,212 
Tl 204 0.96 

1. Let us consider the case of a heavy impurity, when 
E < 0. This was precisely the case realized in all the 
listed experimental papers on the influence of impurities 
on the width of the PRCE lines [5 - 7]. Unfortunately, the 
measurements of t:.H' were made in these investigations 
at a fixed temperature (T !'=' 293°K). When lEI> 1 in 
(13') the function cp(w 2 ), which plays the role of the dis
tribution function of the squares of the frequencies in the 
impurity vibration spectrum, has a resonant character 
with a maximum in the region of the quasi local fre
quency, equal to 

f I g(ro') 1-'J, 
(J)• =,1 JeJ J --, -dro . 

- (J) -

In the region of low temperatures T < hw/k, g(w 2) 
!'=' 3w/2wg, 

1 9J B I li I --=-cr---J b1 (q)q3 dq, 
T1 (1) 2n2roo M 

(16) 

For small impurity concentrations, the function that de
pends on c in the integrand of (15) can be represented in 
the form 

<I>(ro, c)~ 1l(ro2 - roq')- 2cero2b' (ro2 - roq2) + ~ cero2y(ro2)--p-
:rt w2-wl 

(17) 
It is easy to see that the integration with respect to w 
in the relation for T11 (3), with allowance for the first 



1004 B. M. KHABIBULLIN 

term in (17), yields an expression for the spin-lattice 
relaxation due to the vibrations of the crystal without 
the impurity. The contribution made to D.H' as a result 
of the distortion of the character of the vibration of the 
ideal crystal by the impurities is described by the re
maining two terms in (17). Retaining only the principal 
terms in the integration with respect tow in (15), we 
obtain the impurity part in 1/T1(3) 

(-2ce)r \ bo(q)q3 dq [ ePWq ( ~- p \ -~-1- (!_)3
] 6 ], 

J e2P"'q - 1 \ Wq I 4 Wq4p3 e 
( 18) 

where Jn = r(n)t(n), t(n) is the Riemann zeta function, 
r(n) = (n- 1)!, and® is the Debye temperature. 

Unfortunately, there are no investigations from which 
it is possible to draw any conclusions concerning the 
dependence of V(q) on q. We shall therefore assume 
that 

V,,o(q) = At,o, Av = ·~v-

Qualitative results obtained under this assumption re
main unchanged if 

V(q)=~a,q", n?O 

and V(q) > 0 for all values of q. Calculating (16) and 
(18), we get 

1 9lel q4 fl 
---=- cr--A12--, 
T1 (1) 8n2 Wo M 

- 1- = crA 1A0~ ~(_!__)'1, [2- 3e ( _!__).~], 
T, (2) wo M e 1 e J, 

--1- = 2cerA 02 qo'__/!_(!-)3 J,[ 1-~-:3_>;_.(!_) lnqo!!_J. 
T, (3) Wo M e J, 4 e J, 

( 19) 

(20) 

(21) 

As seen from the table, for heavy impurities forming 
true solid solutions with alkali metals (the alkali me
tals do not form such solutions with one another in the 
solid state l2oJ) we have A1 >> Ao. Therefore in this case 
the main contribution to D.H' is made by the quantity 
1/T1(1). In the region T « ®, the contribution to D.H' 
due to the impurity vibrations ceases to depend on the 
temperature, as follows from ( 15) and ( 19). Physically 
this result can be attributed to the fact that the decrease 
of the probability of elastic scattering with increasing 
temperature, due to the Debye-Waller factor, is fully 
compensated by the increase in the probability of inelas
tic scattering. As a net result, the contribution to D.H' 
is made by the low-frequency part of the zero-point 
oscillations, the amplitude of which for the impurity 
increases by a factor 

<Jl(w2) I g(w2) 

compared with the amplitude of the low-frequency 
vibrations of the atoms of the ideal crystal. 

The relaxation times due to the scattering by the im
mobile impurity, T1(0) and by the ideal-lattice vibrations 
have in the assumed approximation the following values: 

_1_ = rcA 2 go' 
T,(O) t 2. ' 

~ = rAo2 qo' }!_ ( ~__\ 3 J,. 
T,. Wo M I e I 

(22) 

For samples of lithium containing Zn or Cd impurities 

with concentration c ~ 2-5 at.%, used in the measure
ment of the PRC E line width in [sJ , it is easy to see that 
in the temperature interval 0 ~ T ~ Tmelt (Tmelt
melting temperature) we have 

T1 (0) / T10 ~ 10-3, 

Substituting in (16) and (22) the values of the parameters 
listed in the table (q0 = 3.2 x 108 em -1 for Li and 108 em -1 

for Na) for the samples of Li + Cd and Na + Tl, we get 
a = T1(0)/T1(1), a(Li) = -0.83, and a(Na) = -0.12. Thus, 
at low temperatures, the contribution made to the im
purity width of the PRCE lines by the part that depends 
on the impurity vibrations is of the same order as the 
width due to the scattering by the immobile impurity. 

The ratio AJ A2 ~ 10 is realized, as can be seen 
from the table, under the condition IE I ~ 1 (the impuri
ties of Be and Li). In this case the quantity T!1 - Ti6 
will increase with temperature like Ti1(2), and the tern
perature dependent part will be approximately 1/10 of 
Ti1(0). 

Finally, let us analyze the temperature dependence 
of that part of D.H' which is due to the deformation of 
the lattice vibration spectrum by the impurities (21). 
The most convenient samples for the separation of this 
part against the total PRCE line width are alloys of me
tals with close values of the spin-orbit coupling con
stants, since the Ti1(1) and T11(3) contributions depend 
on the concentration and are proportional to Af and A~, 
respectively. 

When T/® < 0.1, the term containing J 5 in (21) can 
be neglected. The remaining expression 

1 1 ( h ) 
T,(3) = Tto (- 2ce) la- 1 

(21 ') 

coincides qualitatively with the analogous expression 
for the resistance in the theory of the electric conduc
tivity of metals with nonmagnetic impurities, developed 
by Kagan and Zhernov[uJ. It can thus be assumed that 
the deformation of the lattice spectrum by heavy impur
ities leads to an increase in the density of the number 
of phonons in the low-frequency region. 

With increasing temperature, Ti1(3) increases mono
tonically and reaches a maximum value at a tempera
ture 

T = 81/ 1 J,- J, 
m r t5l e I J, . 

For the alloy Be + Mg, for example, Tm = 72°K 
(E = -1.77, D.(Mg) = 4.95 X 10-3 eV, ®(Be)= 950°K). 

2. Let us consider the region of high temperatures. 
When T ~ ®/2 the integral with respect to w in (13), 
which contains the temperature factor, becomes equal 
to 

Such an integral was calculated by Iosilevskii' and 
KaganC21J. In other words, in this temperature region 
the scattering by the impurities makes a contribution to 
the line width, equal to 

1_ 2 qot( flq02fl 1 ) (22 ,) 
r;--crA,2 1 -MBkT(l-e) · 

It can be shown [uJ that at high temperatures the 
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integrals with respect to w in the expressions for T11(3) 
(formula (14)) and T11(2) (formula (15)) become respec
tively equal to 

2kT f dw• kT 1 
1•=-~-j - .. <p(c,w) =-,:--. 

H 0 (I) H Wq2 

Calculations of integrals of this type were performed by 
Kagan and Zhernov [u:J. Substituting these results in 
(14) and (15) we find that at high temperatures, for all 
values of E. we get 

1 1 kT \ q3 
T1(3) = TiO = r M j I Vo(q) ~·~~ dq, 

_1_ = c/T I a(q)q' d . 
T1(Z) n J wl q 

Let us consider now the case of a light impurity 

(23) 

(24) 

( 0 < E < 1. A, < Ao). For small concentrations of im
purities of this kind (see :s 10 at.%) at low temperatures 
we have 

1 1 
T1 - T10 ~ T1(3) 

When E > 0 this quantity, as follows from (21), in
creases monotonically with temperature. We note that 
were it possible to select a solution such that EAo < A1, 
then we would have T11(2) > T11(3). In this case. in the 
low temperature interval, T11(2) increases with increas
ing T and reaches a maximum value at T = J 3®(2EJ4)- 1 • 

In the region T :s ®/2, the temperature variation of 
that part of ~H which depends on the impurity concen
tration is determined by relations (23) and (24). 

In conclusion we note that if V(q) = Aq, then all the 
relations between the values of T!1(i). where i = 1, 2, 3, 
remain valid, and only the temperature behavior chan
ges. It is easy to see that this reduces, apart from 
constant factors, to the following substitution in the 
presented expressions: 

n >0. 
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