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We consider the problem of finding the S matrix for a nonlinear scalar Born-lnfeld field in two-dimen
sional space x, t. On the basis of an exact solution of the classical equation of this field we obtain for 
the problem of the scattering of two plane waves the "classical" S-matrix, which transforms the inci
dent waves into outgoing waves. We show that in a definite approximation with respect to the "non
linearity" parameter g, the quantum S-matrix coincides with the "classical" one. In this approxima
tion, the S-matrix leads only to elastic scattering processes. 

1. INTRODUCTION 

A scalar nonlinear field of the Born-Infeld type [l, 2J 
has in two-dimensional space x, t the following Lagrange 
function: 

( 1) 

Here K is the characteristic constant of the nonlinear 
field, which plays the role of an absolute scale of the 
field gradient CfJx = ocp/ox, CfJt = ocp/ot. If X- 00 , then the 
Lagrangian (1) goes over into the Lagrangian of the 
linear field :Co = (cpt- cp~)/2, which obeys the d' Alambert 
equation CfJtt- CfJxx = 0. If we introduce the conjugate 
field momentum JT(x, t) = o'L/ocpb then we can write the 
Hamiltonian function of this field: 

::Je = g-'{~(1 + g2(p,') (1-l- g2n2) -1}. (2) 

We have introduced here a constant g, which is the re
ciprocal of K, and which will be convenient in what fol
lows (g2 = K - 2 ), and can be regarded as the nonlinearity 
constant. As g2 - 0, the Hamiltonian (2) goes over into 
the Hamiltonian of the linear field .'Ito = (JT 2 + cp~)/2. The 
field equation that follows from (1) or (2) pertains to the 
class of quasilinear equations of the hyperbolic type [JJ 

(1- g2tpt2)<p.u + g2<p,(jlt<jlxt- (1 + g2q;,2)'Ptt = 0. (3) 

In [4J we solved the problem of scattering of two 
plane waves in this theory. Namely, we found the solu
tion cp(u, v) of Eq. (3), with u = x- t and v = x + t; this 
solution satisfies the following asymptotic conditions: 

lim cp(u, v) = th(u), lim cp(u, v) = I!Jz(v). (4) 

Here 1/Jl(u) is a plane wave of arbitrary form, moving in 
the positive x direction, and lji 2(v) is a plane wave moving 
in the opposite x direction. The solution was obtained in 
the form 

where 
v 

!l(u,v)=g2 ~ dy¢2"(y+v(u,v)), 

v(u, v) = -g2 ~ dy¢t''(y + !l(u,v)) (5) 

(the primes of <J; 1, 2 denote their derivatives with respect 
to the argument). 

It is possible to obtain from (4) and (5) the expres
sions into which the two plane waves 1/!1 and 1/!2 go over 
(t = (v- u)/2 and in both cases of (4) we have t- - 00). 

We obtain the scattered waves by letting u - - oo and 
v - oo (in this case t - oo): 

lim cp(u, v) = ¢ 1 (u + g2P2 ), lim cp(u, v) = ¢ 2 (v- g2P1), (6) 

where 
00 00 

P 1 = ~ ¢ 1"(y)dy, p, = ~ t(:,"(y)dy. (7) 

Thus, asp= -oo, the two plane waves 1/Jl(u) and 1/Ja(v) go 
over as a result of scattering into two plane waves of 
the same form, but with shifted arguments. The quanti
ties P1 and P 2 , which determine the shifts, equal respec
tively the energies of the first and second waves. 

2. QUANTUM ANALYSIS OF THE SCATTERING 
PROCESS 

Let us turn to the quantum formulation of the process 
of the scattering of waves in this model. It is very diffi
cult to obtain the operators of the scattered waves cPout 
by solving the Heisenberg equation for the field opera
tor, since it is not even clear how to write down the non
linear operator equation that follows from the Lagran
gian (1), inasmuch as the nonlinear combinations of the 
noncommuting operators cp(x, t) may turn out to be inde
termined operator equations at one point x, t. We there
fore cannot transfer Eq. (3) to quantum theory auto
matically 1>. 

It is our task to show that even in the asymptotic 
region of the scattered waves (6) the solution of the 
quantum equations for the system with the Hamiltonian 
(2) differs from the classical solution (6), if we inter
pret there the classical quantities as quantum field 

l)In an earlier paper by the author [5 ] it was assumed, without justi
fication, that Eq. (3) retains its form also in quantum theory. It is easy 
to note, however, that even the solution of this equation by iteration 
with respect to the constant g2 depends strongly on the sequence of the 
arrangement of the operators <Px• <Pt, <Pxx in Eq. (3). The question of 
the correct sequence of the operators remains open. 
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operators cp(x, t). For linear systems, as a rule, the 
solution of the classical equation of motion makes it 
possible to obtain the solution of the operator equa
tion [e]. 

Let us introduce, following Yang, Feldman [?J, and 
Kallen [aJ, the operator of the incident waves cPin(u, v) 
satisfying the free D' Alambert equation (g = 0) 

~in tt -~ifl ·xx = 0 or a·~in = 0. 
ouou 

( 8) 

From (8) there follows a Fourier representation for 
the operator fPin: 

~in= _1-_ 1- dk [a+(k)e-ihx+ilklt + a-(k)eikx-ilhlt] 
}211 -= 12lkl 

1 r dk . . l 
= -==.) ~= [a+(k) e-'"" + a-(k) e'"" 

1211 0 y2k 

1 1 dk . . + =-.) -== i[a+(- k)e'"" +a-(- k)e-'""], 
]1211 0 y2k 

(9) 

where, as usual, the Bose operators a~ satisfy the per
mutations 

[a+(k), a+(p)] = [a-(k), a-(p)] = 0, [a-(k), a+(p)] = o(k- p). 

( 10) 
We denote, in analogy with the classical problem (4), 
the operator of the incident wave in the positive x direc
tion by 

- 1 7 dk 
lj;,(u) =-=.) ~ [a+(k)e-iku + a-(k)eihu] 

}211 0 l'2k 
(11) 

and the operator of the wave going in the opposite direc
tion, by 

- 1 -r dk . . 
1);2 (c·) =-.)-~[a+(- k)e'"' +a-(- k)e-'""]. 

-y2:t 0 y2k 
(12) 

From (9) we have 

~;,(u, u) = .);,(u) + ~ 2 (u). 

From the representations (10) follow commutation rela
tions for $l(u) and $2(v). We note, first, that inasmuch 
as the operator ¢l(u) contains a±(k) only with positive 
values of k, and the operator $2(v) contains a±(-k) only 
with negative values k, it follows that 

(.); 1 (u), ~·2 (v)] = 0. 

Further, 

- - ; =1 ak ; 
[¢i(u), 1);1 (z/)] =-.) -~sink(u ~ u') = -e(u- u'), 

2:rt 0 k 4 

- - i 'f dk i 
[1j; 2 (u), l);,(u')] =--.) -sin k(v ~ v') =- -e(v- v'), 

where 

2:-t 0 k 4 

e(x)={ 
1, x> 0 

~ 1, X< 0. 

(13) 

We need also to know the commutators for the deriva
tives rp1, 2 , which are obtained by differentiating there
lations ( 13): 
f'IJ,(u), ¢,'(u')] = - 1 1;i/\(n-u')f~·?(U), ,j,,'(v')] = 1/ 2ib(v-u'). 

(14) 
We now assume that the operator fPout of the scat-

tered waves has the same form that follows from the 
solution of the classical equation (3), which is now taken 
to mean the Heisenberg equation for the field operators 
«$. We denote it by cpg~t; according to (6), we have 

The meaning of the operators ~l(u + g2Pz) and 
$2(v- g2P1 ), the argument of which contains other 
operators P 2 and P1, becomes clear if it is noted that 
the operator P1 commuted with $z, and Pz commutes 
with $1 • Indeed, from (11), (12), and (14) respectively 
we have 

00 00 

P1 = ~ ~t''(u)du = ~ ka+(k)a-(k)dk, 
0 

P2 = ~ 'IJ"',"(v)dv= 1 ka+(-k)a-(-k)dk, 
0 

[1\, AJ = [1\, P,] =[Ph~.] =[P,, ~1] = 0, 
[1\, ,P1 (u)] = i~1 ' (u); [P2 , ,P, (v)] =- i~2 ' (v). (16) 

Therefore the operators in (15) can be represented in 
the form of Taylor series in P1 and P2 : 

- A ~ {g2P2) n - (n) 
'l't(U + g2Pz) = ~ --n.-1 -'IJ, (u), 

n20 

(17) 

Further, the proposed operator ~g~t' as should be 
the case in the Yang-Feldman theory, satisfies the free 
equation (8) and has a Fourier representation 

A cl. 1 OOS dk 
'Pout (u, v) =-= -~ {A+(k, g') e-iku + A-(k, g') eiku} 

}2:rt 0 y2k 

+ _!_ 1-~{e'""A+(-k,g')+A-(-k,g')e-ikv}, (18) 
'}'2.rr 0 '}'2k 

where the operators A±(±k, g2 ) are defined in accord
ance with (15), (12), and (11): 

A±(k, g') = a±(k)exp{'Fikg2P 2}, 

A±( -k, g') =a±( -k)exp{+ikg2P 1}. (19) 

It can be shown that the At satisfy the same commuta
tion relations (10) as a :t. This will follow further from 
the fact of the existence of a unitary transformation 
s• •s -A• · t 1 t· A ·thAcl cia- cl- -, 1.e., an opera or rea mg rpin w1 Cfout· 

The operator Scr, which realizes the transformation 

Sct+~in(u,v)Scl = ~oc~t(u,v), 

which, with allowance for (12) and (15), breaks up into 
the two operators 

is of the form 

S~1 i[>1(u) S c1 =t\lt (u + g'F,). 
S:1 ,P,(v) Sci =tp2 (v- g'F1), (20) 

(21) 

We shall show that Sci satisfies the equations jn (20) ._ 
We note first that inasmuch as the operators P1 and P 2 

commute (see ( 16)), the interpretation of the exponential 
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with the operator Pd52 in the argument entails no diffi
culty. Expression (21) should be regarded as a sum of 
the ordinary product of the operator :P,P2 

- - ~ (ig') n - -
exp {ig2P,Pz} = L.J -- (P,Pz)". 

n! 
n=ll 

To prove (20) with the operator Sci, we differentiate 
S~l$,(u)Scl and s~ 1$2(v)S with respect to g2; with allow
ance for the commutation relations (16) we get 

a(~I!,j,, (u) Sc1) 1 ag• = S';,IiP, [~, (u), P,J Sc1 

= P,~I ,J,t' (u) Sci =' P,a (~I ,j,, (u) Sc~,) I au; 

a (~I.,J,, (v) Sc~) 1 ag• = s~I iP, rt\l, (v), P,J Sc1 

=- P,~IIjlz' (v) sci=- .P,a(~I,j,2 (v) sci) ji)v. 

Solving these equations with initial conditions 

(~I ~I (u) Sc1 )g•=o = tjl, (u); (S';,J'.j,z (v) Sc1 )g•=o = tjl, (v), 

we get 

S~I,J,,(u)Sc~ = ,J,,(u + g'F,); Sci,J,2 (v)Sc~ = ~2 (v-g'F1), 

q.e.d. 
The operator Scl is determined by (20) uniquely, 

(22) 

apart from a phase factor, since the system of opera
tors 'Pin and 'Pg~t• which are solutions of the d' Alambert 
equation, constitutes an irreducible set of operators [19] 
in the two-dimensional space x, t, satisfying the commu
tation relations ( 10). Thus, an expression for Scl follows 
uniquely from the classical solutions. 

In momentum space, we can also easily prove for the 
operators the equalities 

It is merely necessary to recognize that when k > 0 

[a±(k),P1] = +ka±(k), 

[a±(-k), P2] = +ka"(--k), 

(23) 

and then we get from these operators the equalities (19) 
for A±(± k, g2). It follows directly from (23) that the A± 
satisfy the same commutation relations as the a±. It is 
further easy to note that the operator of the number of 
incident particles 

00 00 

N;n = ~ dka+(k)a-(k)+ ~ dka+(-k)a-(-k) 
0 0 

commutes with Scb and therefore Sci leads only to 
scattering processes in which the number of particles 
remains unchanged. From this we get the equality of 
the operators of the number of incident and scattering 
particles: 

00 00 

- -ci I \ 
N;n = Nuut = .l dkA+(k, g2)A-(k, g')+ .l dk A+(-k, g')A-(-k, g2). 

0 0 

3. S-MATRIX IN THE INTERACTION REPRESENTA
TION 

We now turn to the standard procedure for obtaining 
the S-matrix in the interaction representation. To this 
end we separate from the Hamiltonian of our system :JC 
(2) the free-field Hamiltonian, from which follows the 
d' Alembert equation (8). As already noted, when g2 = 0 
our Hamiltonian (2) goes over into 

(24) 

Thus, we break up :Jt into two parts :Jt = (:Jt - Sto) + :fto , 

where the difference (;rc- :fto) is denoted by :!tint and is 
represented in the form of an expansion in powers of 
g2. In the interaction representation we have, in ac
cordance with (12) 

''Px(x, t) = ,P,'(u) +IJl~'(v), 
n(x, t) == $2'(v) -ljl~'(u), 

::!Ca = 1(:,'2 (u) +1Jlz'2 (v). 

The equation for the S -matrix ( lim S(t) = S) is 
t-oo 

. as(t) 1 
t--= 1 dx:Jeint(x,t)S(t). at •. 

where 

(25) 

(26) 

.':!Cint (x, t) = exp {it ~ dx :lfo(x) } (.o/f (x)- :JC0 (x)) exp{ -it ~ dx .o/f 0 (x)} 

= g-2 : {[ 1 + g2 ( ljlt' ( u) + ljl{2 ( v) )]'" [1 + g2 ( ljl,' ( u) - ljl{ ( v) ) 'l"· - 1} : 

-:Jto(x,t). (27) 

This complicated operator expression for JfintCx, t) 
must be understood as an expansion, in powers of g2, of 
the normal products of the operators ~~2 (u) and ~~2 (v) 
(: :-sign of normal product of the operators). 

This expansion is of the form 

:JC;nt(u, v) = -2g2:1jlt'2(u)'¢z'2(v): 

n 

+ 2 L; ( -g') n+t L; Am, n :'ljl,'2{m+1l(u)'¢z'2(nH-m) (v):, (28) 
n=i m=O 

where 

A ---· n!(n+1~1 
m,n- m!(m+ 1)!(n- m)!(n---,+-1:--_-m--c)--:-! 

From (26) follows an expression for the S-matrix as 
the T -exponent 

(29) 

In order to be able to compare the S-matrix (29) with 
the expression for Scl obtained by us in the preceding 
section on the basis of the assumption concerning the 
form of the operator 'Pout. it is necessary to go over in 
(29) from the T-product of the operators $1 and $2 to the 
ordinary products, inasmuch as Scl is a sum of ordinary 
products of the operators P1P2. This procedure is alge
braically equivalent to the Wick theorem for the transi
tion from the T to the N product, except that in place of 
the chronological contractions of the operators in Wick's 
theorem it is necessary to use in our case retarded 
contractions. This is seen from the example of the two 
operators $~(u) and $~(v): 

where 

T (~1' (u) ~1' (u')) = ,j,1' (u) ~1' (u') + D~'1 (u'- u), 

T (~z' (v)~2 ' (v')) = ~; (v)\P,' (v')+ D;et(v'- v), (30) 

D~'' (u'- u) = 8 (t'- t) (ih' (u'), ;p,'(u)], 

Df'' (v'- v) = 8 (t'- t)[,P,' (v'), ~; (v)], 

{ 1 t' > t 
8(t'-t)= o: t'.;;;t" (31) 

Using the Hori method [1oJ we effect the transition 
from the T-product of the operators $5. and$~ in (29) to 
the ordinary product with the aid of the operator 
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exp ~ret: 

Texp{-i ~ dt ~ dx:Jt;n1(x,t) }= ell'"1exp{ -i~ dtdx:Jtint}· (32) 

The symbol ~ret denotes in the case of our operators 
$~(u) and$~(v) 

(33) 

~ ~ l 
+Dz (v,-v,). • ~· 

i\1pz' (v,) 6"¢z' (vz) 1 

For further calculations it is convenient to go over to 
the momentum representation of the operators $~and 
~, t 
1/12 and of the functions Df~ : 

' 
• 1 I • 
"¢t'(u)=--=J dpe-iPua(p), 

l'2n 
• 1 I • 

"¢2' (v) =--= J dp e-ipv ~(p). 
l'2n 

Taking (11) and (12) into account, we obtain for the 
operators a(p) and ~(p) the following expressions 

. 1/ IPI 1 
a(p)= f Ti[B(p)a+(p)-9(-p)a-(-p)], 

. v IPI ~(p) = - 2 i[B(-p)a+(p)- B(p)a-(-p)]. 

(34) 

(35) 

The functions Df,~t have the following Fourier repre
sentation: 

ret B(tz-tt) ~ D1 (u2 -ut)= dppexp{ip(u2 -ut)}, 
2n 

ret 9(tz-tt) 1 
D2 (v2 -v1)=---- J dppexp{ip(v.-v,)}. 

211l 
(36) 

In formula (32) it is now necessary to substitute ~ret 
and J dtdx .7tint(x, t) in the following form: 

where 

~ dt ~ dx:Jtint(x,t)= _ _f, ~ dt i (-_f)n ~Am n 
n 2n ' 

n=O m=O 

2(m+l) 

X ~ dp, ... dpz<m+1l dq 1 ... dqz<n+t-m> exp { 2it ~ p;} 
j=i 

(37) 

2(m+i) 2(n+l-m) 

Xb( 2; P;+ ~ q;) :~t(P1) ... ~t(Pz<m+1l)~t(q1) ... ~,(q,<n+t-m>): 
1 1 . (38) 

The operators &t and St are labeled in the expressions 
(37) and (38) with the index t; this is connected with the 
fact that although these operators do not depend on the 
time explicitly, t is an "ordering" product in the 
T-product of the operators in (32) (see[11J). For the 
total Hamiltonian :Jtint(x, t), defined in (38), it is im
possible to carry out the operation (32) of the transition 

from the T-product to the ordinary product without an 
expansion in powers of the parameters g2 • 

It is our task to show that if we confine ourselves to 
the first term of (38), which is proportional to g2 , then 
the operation (32) can be performed, accurate to g2 in 
the argument of the exponential, without a series expan
sion, and the resultant expression coincides exactly 
with Scl obtained in Sec. 2. 

Let us consider the expression 
. 2 00 00 

S1 = T exp{ -';- ~ dt ~ dp1, ,dq1, 2 exp {2it (p1 + p2)} 6 (p1 + [!2 + q, + q2) 

x:~,(P1)~,(p,)B,(q1)~,(q2): }=ellre'exv0 dtH,(t)}, (39) 

H1(t) is the first term in the expansion (38). We shall 
perform all the operations connected with the varia
tional differentiation, accurate to g2 in the argument of 
the exponential, as a result of which we obtain 

S1 = exp{ ig2 ~ dp1, 2 dq1, 2 6 (p1 + p,) 
-00 

X 6(q1 + q,) :~(P1)~(pz)~(q1)~(q,): }. (40) 

Substituting here the expressions for the operators 
&(p) and ~(q) in terms of a! from (35), we verify that S1 
coincides with Sci. Indeed, in the argument of the ex
ponential (40) we have 

r A 0 0 A (' lrllql 
J dpdq:a(p)a(-p)::j3(q)[>(-q):= J dpdq-4 

X {:[B(p)a+(p)- 8(-p)a-(-p)](G(-p)a+(-p)- 8(p)a-(p)]: 
X :(9( -q)a+(q)- B(q)a- ( -q) ](8 (q)a' (-q)- 8 ( -q) a- ( q)]:} 

~ ~ 

= ~ dp pa+(p)a-(p) \ dq qa+(-q)a-(-q) = P/P2• (41) 

Thus, our statement is proven: S1 = exp {ig 2P1P2 }. 

Consequently, our approximation for finding the 
S -matrix leads to Scb which, as already noted above, 
gives only elastic scattering processes. 

The exact S-matrix, which is determined by the total 
Hamiltonian Hint(t), contains terms that lead also to in
elastic processes. This follows from the form of the 
S-matrix in the normal form, obtained from perturba
tion theory up to order g4 inclusive: 

.. { .. 
s = 1 + ig'l\P,+ ~~ : P1'Pl+P1~~ dqlql~(q)~(-qJ 

+P2'1 dplri~<PJ~(-pJ+ \ dpiPI~<Pl.;<-rJ r dqlqiB(q)~(-qJ 

+ ~ dp, ... dp,, [~ (p,) ~(p,) ;(p,);;(p,)+ ~ (p,) ~ (p,) ~(p,) ~ (p,)] 

X 6 ( 2; Pi) i:" ~ dp [!}: · 
1 ' 

The last term leads to the possibility of inelastic proc
esses even in this order of perturbation theory. The 
parameter E is due to the factor exp (-It I), which is 
introduced in .!feint in accordance with the adiabatic 
hypothesis and which appears in the vacuum matrix ele
ments of the S-matrix. In our case, the vacuum is 
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defined with respect to particles of sort a or {3 (with 
positive or negative momentum p). The infinite integ-

oo 

rals J dpp are due to the causal contractions of the 
0 

operators on going from the T to the N product. 
It now becomes clear that the exact operator of the 

scattered wayes is not equal to <Pg~t' since they are ob
tained from CfJin with the aid of different S-matrices, 
and they coincide only in the approximation made above, 
in which there are no inelastic processes. 

In conclusion, the author thanks D. I. Blokhintsev 
and N. A. Chernikov for continuous interest in the work 
and interesting discussions. 
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