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A model of dynamic polarization and of the losses related to it in ferroelectric substances is analyzed 
on the basis of certain assumptions regarding the distribution of the internal field within the domain 
boundary, and also regarding the oscillations of the domain volume in an external field. A solution of 
the domain-volume oscillation equation is obtained. The dispersion relations for the dielectric spec­
trum and absorption spectrum of the ferroelectric substance, which follow from the solution and from 
the underlying model concepts, are also derived. Formulas for the resonance frequency of the domains 
and for the frequency of the loss maximum, which determine the dispersion boundary of c', are de­
duced; they are in satisfactory agreement with the experiments. Some regularities of the reversal of 
polarization of ferroelectrics are described qualitatively and quantitatively on the basis of the volume 
model. 

1. INTRODUCTION 

IN spite of the large number of proposed models,l 1 - 51 

the nature of many experimentally observed regulari­
ties in the polarization of ferroelectrics and the ac­
companying losses in the frequency region below infra­
red dispersion still remains unclear. The most consis­
tent mechanism, which accounts for a large number of 
experimental polarization effects, is the one borrowed 
from the theory of dynamic magnetization [SJ and based 
on the formalism of the domain-wall motion (DMW). l 1 ' 71 

However, the estimates obtained in l1 ' 5 ' 71 on the basis 
of the mechanism of motion of plane domain wall-oscil­
lators are insufficiently convincing (see the table be­
low), because the equation used in these papers, of the 
form ( 17 is defined below following formula (5)) 

M efr·d2X I dt2 + RdX I dt + F'X = F"l'rl (1) 

did not take correct account of the influence of the po­
larized state in the volume of the domain on the dynam­
ics of the transition regions. This was manifest in the 
fact that the coefficients Meff• R, F', and F" were 
normalized to unit surface of the domain boundary, as 
a result of which the dependence of the resonance fre­
quency fo on the average domain dimension d was ob­
tained in the form f0 = 1/v'd. However, it is more nat­
ural physically to consider the polarization of the fer­
roelectric due to the DWM as a consequence of the 
change of the volume of the domains in the external 
field. In this case, when solving Eq. {1), its coefficients 
are normalized to the corresponding volume, leading to 
a dependence f0 = 1/d, which agrees with the theory of 
the linear classical oscillator and with the experimen­
tal data [8 - 111 • 

An analogous fo = 1/d dependence, which Devon­
shire lZJ used as a basis of a qualitative explanation of 
the microwave dispersion of c ', was introduced by him 
on the basis of thermodynamic calculations that agreed 
with the observed fact that the sample had different sus­
ceptibilities in the "free" and "clamped" states; this 
difference was regarded as the property of homogene­
ous crystals. However, recently obtained data l111 can 
be interpreted only by assuming that the indicated dif-
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ference is due to the natural inhomogeneity of the real 
"single-domain" single-crystal samples, and that the 
really homogeneous section of the crystal should not 
have the clamping property. Nonetheless, as will be 
shown theoretically below, the piezoactivity of single­
domain formation plays an important role in the expla­
nation of the microwave dispersion in ferroelectrics 
(an experimental proof is given in l111 ). 

The model of local minima, l31 proposed for an ex­
planation of the processes of polarization and polariza­
tion reversal of BaTi03 , is also insufficiently well 
founded, starting with its initial premises of local min­
ima. This model ignores completely the role of the do­
main structure. It follows from it also the possibility 
of a jumplike reversal of polarization of a homogeneous 
crystal as a whole, a fact contradicting the experimen­
tal data. Furthermore, the possibility of the Ti ions 
jumping over inside the entire homogeneous crystal as 
a result of thermal fluctuations is doubtful, owing to the 
presence in the crystal of large internal electric 
fieldsl12 - 141 and of their gradients. l151 

An essential shortcoming of all the foregoing models 
is the absence of a general approach to the problem of 
polarization (weak fields) and polarization reversal 
(strong fields) of the ferroelectrics even within the 
framework of a single mechanism. 

The present paper is devoted to the development of 
concepts of polarization and the accompanying losses 
on the basis of a model, with the aid of which it is pos­
sible to obtain a satisfactory explanation of many ob­
served regularities and to understand in part their 
physical nature. 

2. INTERNAL FIELD WITHIN THE LIMITS OF THE 
DOMAIN BOUNDARY AND NATURE OF THE 
DISPLACEMENT POLARIZATION 

As is well known, the spontaneously polarized state 
tn ferroelectrics is characterized by large internal 
fields ( ~ 108 V/cm), acting on the ions which have been 
displaced from the equilibrium positions occupied by 
them in the crystal lattice above the Curie point. In the 
case of ferroelectrics of the BaTi03 type, for a homo­
geneous unbounded crystal, a reasonable value of the 
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spontaneous polarization is obtained by taking into ac­
count the ordered arrangement of the dipole moments:, 
produced by the displaced point charges, on which are 
superimposed pointlike dipole moments due to the po·­
larization of the electron shells of the ions in the ef­
fective field of the given ion. [12- 141 

If these considerations are applied to a ferroelectric 
"ionic" crystal broken up into 180° domains, assuming 
the latter likewise to be unbounded, then the distribu-· 
tion of the internal field acting on the ions of type i 
along the x axis perpendicular to the domain boundary 
can be represented in the form 

Ei (x) = E,i (x)+ E~dr (2) 

where E~(x) and E~nd are the fields due to the spon·­
taneous polarization Ps and the polarization Pind in·­
duced by the external field E0 • 

As is well known[12- 141 , when Eo= 0 we have inside 
the domain 

E,i = ~ ( 4n + C;k J p,k = s;P,, 6; = ~ ~k(~n + C;k), 
k 3 k 

where Cik-structure sums, p~/V c = tkPs = P~­
contribution of the ions of type k to Ps, and V c -vol-· 
ume of the unit cell. According to [161, the distribution 
of the polarization inside the domain boundary with 
thickness is Pz(x) = Ps tanh (x/0). It is.obvious. that an 
analogous functional dependence, i.e., E},(x) = E}, 
x tanh (x/li 1), where 01 R~ 0, will determine the changE! 
of the internal field within the limits of the boundary. It 
is easy to verify, furthermore, that when Eo= 0 it is 
possible .to separate inside the boundary a plane within 
which E§ = 0, and consequently, the ions located there 
are electrically "free" along the z axis, unlike the 
analogous ions inside the domains. In fact it is possible 
to regard as "free" all the ions in a layer of thickness 
lieff, within which the energy of the internal electric 
field is of the order of the energy of the thermal mo­
tion of the ions, and which we shall call henceforth the 
domain wall. 

In the presence of an external field, which induces in 
the entire crystal an additional polarization Pind 
= ~P~d, the corresponding internal field is 

and in the general case 

E1 =E+s;P. (3) 

Thus, the superposition of an external field along the 
z axis (Fig. 1), should lead to a displacement (if such 
displacements are not forbidden by crystalchemical 
factors) of the initially "free" ions inside the wall in 
the direction of the action of E0 in the region of an 
ever increasing internal field, and in final analysis in­
side a favorably oriented domain, when the displacement 
reaches the limiting value zi = Z~ obtained from struc­
ture data. During the course of this process, ions of a.n 
unfavorably oriented domain become gradually "free" 
and fall inside the wall, and the initial profile of the 
distribution of the polarization and of the local field in­
side the boundary shifts by an amount X parallel to it-

FIG. I. Distribution of the 
spontaneous. polarization and of the 
internal field (a) and of the deforma­
tion within the limits of a 180° 

a 

domain boundary. b I tt, V.rz(Z/ 

self (wall displacement) along the x axis, which is per­
pendicular to the field E0• We shall henceforth relate 
the contribution to the susceptibility Kdis and to the dy­
namic polarization, which we shall call the displace­
ment polarization Pdis• with the relative "freedom" of 
the displacement of the ions inside the wall along the z 
axis. At the same time, the reversal of the polarization 
of the unit cell inside the wall, which is realized by the 
directional motion of the ions, will lead to the appear­
ance of a dynamic electric conductivity of the crystal, 
with which we shall relate the losses in the polariza­
tion of the ferroelectrics. 

On the basis of the statistical theory of charge trans­
port (see, for example, [171 , we connect the average ve­
locity of displac~ment of the ions inside the wall with 
the local field E1 acting on them by the relation 

V; = dZ1 I dt = J.t;Ei, (4) 

where J..ti is the mobility of the ions in the wall along 
the z axis. If Vo is the part of the volume V of the 
crystal occupied by all the walls, then the effective con­
centration of the quasi-free carriers 

(5) 

will determine the density of the dynamic current in the 
crystal j = qi neff vi and, consequently, the losses in the 
ferroelectrics, connected with the polarization of the 
displacement. Here VIi = 7]VOeff/d; qi-effective charge 
of the quasi-free ions, and 'I)-a coefficient that assumes 
values from 1 to 3, depending on the form of the do­
mains and the number of walls per domain in the crys­
tal. 

The mobility of the quasi-free ions inside the wall, 
which enters in Eq. (4) can be calculated under the as­
sumption that, owing to crystal-chemical considerations, 
the effective length of the "free" path of the io.n cannot 
be larger than the spontaneous displacement z§ of the 
charges, obtained from structure data (concerning the 
magnitude of the displacements see, for examP.le, [181 ). 

Under these c,ondit.ions, assuming that 1/ 2 mi (v~/dt)2 
R~ kT when Z1 = Z~ we can determine the effective 
time of "free" path: 

't'f·= 2Z,1ym; I kT. (6) 

This quantity, according to [171, determines the mobility 
of the ions inside the wall: 
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q(C.c 2q;Z,i 
J.li=-=----::::::==..., 

m; ym;kT (7) 

where mi is the effective mass of the displaced ions. 

3. CONTRIBUTION OF THE DISPLACEMENT 
POLARIZATION TO THE DYNAMIC 
SUSCEPTIBILITY OF FERROELECTRICS 

In connection with the fact that at temperatures be­
low the Curie point the ion potential-energy curve ob­
tained from the thermodynamic theory[2 J has two min­
ima separated by a barrier, it is of interest to esti­
mate the magnitude of the threshold effect predicted in 
this manner for the excitation of Pdis• as applied to the 
model considered here. According to this model, the 
possibility of overcoming the potential barrier is real­
ized not in the entire volume, but only in transition re­
gions between oppositely polarized sections of the crys­
tal. To this end, we measured E: 1 for single -crystal 
and polycrystalline BaTi03 at frequencies 460 kHz and 
5 MHz in weak fields from zero to 10 V/cm. The meas­
urement was performed with a laboratory setup contain­
ing a measuring receiver of sensitivity < 1 JJ. V, at the 
input of which was installed a carefully screened tank 
circuit made up of a high-Q inductance coil and a capac­
itor incorporating the sample of the investigated 
BaTiOa. 

When E: 1 was measured by the method of substituting 
a standard capacitor for the sample capacitance, in 
measuring fields Eo from 10 V/cm to zero, E: 1 re­
mained constant within 10-15%. In a zero measuring 
field, the indication was by means of the "signal" of 
the intrinsic noise of the tank circuit. The results of 
such measurements give grounds for assuming that at 
room temperature the thermal vibrations of the atoms 
(noise) of the crystal lattice of the ferroelectric pro­
vige fu~l excitation of the displacement polarization 
(Z1 = z~). 

On the basis of these data, let us calculate the effec­
tive local field E~ff (Fig. 1), the action of which on the 
ions inside the wall causes a. complete excitation of the 
displacement polarization Pais• as a result of the dis­
placement of ions of type i along: the z axis through 
the maxi!DUm possi~le ,amount z~. Re~ognizing that 
1/2 mt (dZ1/dt)2 = qi z~E~ff when Z1 = z~, we can obtain 
the field that determines the height of the potential bar­
rier inside the wall: 

(8) 

The action of this field is equivalent to applying to the 
electrodes an external field Eeff = E/K~i· 

It is obvious that in our case 

Pdii = Tl,eff (q;Zi + a;Ei) = P,Vai I vz,i, (9) 

where P~ is the contribution of the ions of type i to 
the spontaneous polarization, and ai is their electronic 
polarizability. On the other hand, if the field E = E0 

+ Eeff in.duces in the ferroelectric the indicated polari­
zation P~us(E), then 

(10) 

where e is the coefficient that takes into account the 
orientation of the c axes of the domains. Substituting 

in (10) the relations (5) and (9), we obtain the expres­
sion 

(11) 

which, with allowance for (7) and (8) (for K » 1) can be 
readily transformed to a form that is convenient for 
practical use (E 0 « Eeff) 

(12) 

where K is the total small-signal susceptibility of the 
crystal and K 0 is the susceptibility of the multi-domain 
crystal without allowance for the contribution of the 
domain boundaries. 

4. VELOCITY OF DOMAIN BOUNDARIES 

Inasmuch as the motion of the domain boundaries is 
based on the mechanism described above, of the dis­
placement of the ions inside the wall, Eq. (4) can be ex­
pressed in terms of the dynamic parameters of the 
boundary: 

Vo = dX I dt = J.toEi, (13) 

where vo = ViX/Z1 is the velocity and JJ.O = JJ.iX/Z1 is 
the mobility of the wall, and for estimates it is reason­
able to restrict the ratio x;zi to the range 

(14) 

(a-lattice period). Expression (13) is important for a 
comparison of the conclusions of the here-developed 
microscopic model of polarization with the results of 
experimental investigations, which are usually based on 
a direct observation of the motion of the domain bound­
aries. As follows from (8), the displacement of the do­
main boundaries due to the directional motion of the 
quasifree ions inside the wall is possible only in the 

case when Elnd =::E~ff• and therefore the field E~ff re­
ferred to the external electrodes of the crystal plays 
the role of the coercive field 

(15) 

In this connection, great interest attaches to a deri­
vation of a theoretical relation between the wall velocity 
vo and the external field E0• If E0 » Ec, then the field 

Ekd » E~ff inside the wall ca:uses a drift of the quasi­
free ions within the limits ± Z~, and in this. case .it can 
be assumed (see (2) and Fig. 1) that 1ieu(E1)"' Elnd· 
Recognizing that the drift of the quasi-free ions is de­
termined by the ion-phonon interaction between the ions 
and the crystal lattice, we can employ in this situation 
the "hot electron" approximation (see, for example 
[ 17 l), which in our case can be called the "hot ion" ap­
proximation. Then, the well known relation in the form 
IJ.i cnTi1 / 2 Ti.\ [17l where TL and Ti are respectively 
the temperatures of the lattic~ and of the q~si-free . 
ions (this approximation (TtE1) = (Elnd + E~r); TL(E1) 

= qonst, whence Ti > TL) yields IJ.i (E1) =<Elnd)-112 

(E~r is defined later). As a result we get from (3), (4), 
(7), and (13) the relation vo(E0) oo E~/ 2, which was es­
tablished experimentally earlier. [18 l 
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When E0 < Ec, the internal field Efnd < E~ff and can­
not influence directly the drift of the quasi-free ions, 
which is determined under these conditions by the prob­
ability distribution exp ( -mivf/2kTi) of the instantane­
ous values of their velocity. This distribution yields, 
when. (8) and (14) a,re ta!ren into account, the relation 
v0(E1) = exp (-J3E~ff/Elnd), where J3 is a certain coef­
ficient, which is equivalent to the relation v0(Eo) 
ooexp ( -J3Ec/E0), if we introduce the values of the mac­
roscopic field in place of the internal field. This de­
pendence, which was obtained[19 J also on the basis of 
the probability distribution of the dimensions of the nu­
clei of domains requiring different activation energy, 
agrees well with the experimental data. [l8J 

Thus, besides defining more conqetely tl}e concept 
of the coercive field (the condition Elnd >::~ E~ff), the 
foregoing considerations allow us, first, to understand 
the absence of a threshold field for the switching-over 
of ferroelectrics up to values E0 = Ecr ::5 0.1-1 V/cm, 

which is equivalent to fields Elnd = E~r ::5 100-1,000 
V/cm for semiconductors, [17J at which the condition 
Ti >::~ TL is established, and, second, uncover possibil­
ities of determining the ion-phonon interaction from 
ferroelectric singularities. 

5. TWO DISPERSION MECHANISMS 

Connection between the displacement polarization 
and the deformations in a crystal. We consider an in·· 
dividual domain surrounded by similar domains with 
opposite polarization and having a crystallographic axis 
c oriented along the coordinate axis z perpendicular to 
the electrodes of the sample. The cross section of th13 
domain can be regarded, without loss of generality of 
the conclusions, as rectangular, since such a configu .. 
ration has been observed in a number of investiga­
tionsY8J In a weak external field, the volume V of a 
favorably oriented domain increases by A V as a result 
of the transverse displacement of its boundaries, in­
duced by the drift of the quasi-free ions (Fig. 2a), so 
that the polarization of the crystal changes Pdis 
= PsAV/V. It follows from Fig. 2 that when X« dx, 
Y « dy, and z = 0, and also from the assumed isotropy 
of the crystal in the xy plane (X = Y, dx = dy = d), the 
relative change of the volume AVIV = 17 X/dx is mathe­
matically equivalent to an effective displacement of one 
domain boundary by an amount 77X, and then we have 

'ICdls = P,thJX(E) /Ed. (16) 

The phenomenologically obtained expression (16) co­
incides with formula (11) derived on a microscopic 
basis, provided we calculate in the latter the contribu­
tions K~iis from all the ions inside the ,wall, and then 
change over from the displacements Z1 to X with the 
aid of the condition (14). 

U the components of the crystal deformation tensor 
are connected in the general case with its polarization 
by the relations uij = cip!ll then, in accordance with 
Fig. 1a and with the condiAons stipulated for the dis­
tribution Ps(x) assumed by us, we can find the distribu­
tion Uxx(x) in the form shown in Fig. 1b, i.e., Uxx(x) 
= u~ ltanhm (x/6), where u~ is the spontaneous de­
formation of the cell along the x axis inside the domain. 

FIG. 2. Diagram showing dis­
placement of the main boundaries 
(8) and equivalent one-dimensional 
diagram of displacement of the 
domain volume (b) (not to scale). 

f ' 
a I 

If a multidomain crystal is polarized by a field E=, 
then we can write for the .susceptibility Kdis in a weak 
measurin1~ field Eo= E~elwt (with E~ « E=, E~ « Eeff), 
without allowance for the deformations of the crystal, 

X dis( E)= PsB1JX (E) 
d(Eerr +E=) 

(17) 

At the same time, the deformations (U_ + U~ eiwt) con­
nected with the polarization (P+ + PindeiuA:) induced by 
the field (E= + E~) ca'!se an additional displacement of 
the boundaries (X(U)e1 wt on Fig. 1b), which coincides in 
phase with the displacement X(E) at frequencies much 
smaller than the resonant frequency of the crystal. In 
the case c:onsidered here, that of weak perturbations 
(U~ « U=, U~ « U:Xx), we determine from the condi­
tions 

U= +Do= Cx(P= + Pmd)m, Dxx•(x/6)m = mC,.P'::.-' Pmd 

the additional displacement 

X (D)= ~(mE!'-' (E= + E c1 1) x"']1im, 
P. 

substitution of which in (16) yields for (B77 >::~ 1) 

bft)d 
'X.du( U) = x c1 . 

(1-6ft/d) 
(18) 

where t = 2E=/(E= + Eeff) and we put m = 2. [18J With 
the aid of (12), (17), and (18) we can calculate the sus­
ceptibility of the crystal in the "free" and "clamped" 
states: 

X fr = Xo + Xdis(E) + Xdis(U), Xcl = Xo + Xdis(E). (19) 

We conclude from (18) that for physically observable 
domain dimensions (d » 6) the contribution Kdis(U) in­
duced by the deformation is found to be vanishingly 
small compared with Kdis(E), whereas the experimen­
tal data and thermodynamic calculation [ZJ lead to a ra­
tio Kfr/Kcl >::~ 1-4, which offers evidence of appreciable 
role of Kdis(U). However, the contribution Kdis (U) turns 
out to be actually appreciable if we postulate the pres­
ence of a 111atural inhomogeneity of the domains, and as­
sume that they actually consist of smaller regions in 
which the polarization distribution is qualitatively analo­
gous to that shown in Fig. 1. This assumption, which is 
favored, in particular, by certain results of [ 11 ' ZOJ per-
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FIG. 3. Reversive E "(E) 
plots for poly crystalline 
BaTi03 : solid curves - calcul­
ated in accordance with form­
ulas (19); points- experi­
mental data. The value of E'0 

was taken from measurements 
of E'(w) at microwave fre­
quencies. 

mits not only to explain the difference between Kfr and 
Kcl from the point of view of the role of Kdis(U), but 
also to understand the nature of the susceptibility along 
the a axis of the crystal, as well as the role of these 
regions as nuclei for domains during the reversal of 
polarization processes. 

A discussion of the nature of the indicated regions 
is beyond the scope of the present article, so that we 
confine ourselves to general conclusions concerning the 
contribution to Kdis (U). Estimates show that in BaTi03 
the dimension of these regions is d ~ 2<5 ~ 10-6 -

10-5 em. As follows from Fig. 3, the expressions (17)­
(19) describe satisfactorily the experimental relations 
K(E=) for ceramic BaTi03 at d ""' 2.8<5. 

Thus, it seems quite probable that there exist two 
mechanisms causing the contribution to the displace­
ment susceptibility and responsible for the microwave 
dispersion of £' in ferroelectrics. The first mecha­
nism is connected with the exclusion of the contribu­
tion induced by elastic deformations in an unpolarized 
sample at resonant frequencies (the formula for the 
calculation of these frequencies is given in [lll) of do­
mains and of polarized or single -domain crystallites. 
If the sample is polarized, then there appears also a 
resonant dispersion of Kdis(U, w) in the region of the 
frequencies of the free oscillations of the crystal as a 
whole. Estimating the characteristic frequency Wr by 
means of formula (26) (see in the table below for 
d ~ 10-5 -10-6 em), we get w ~ 1013 sec-1. Conse­
quently, the quality factor of the oscillations of the 
single-domain crystallites with dimensions 10-3-10 5 

10-5 em turns out to be Q = wr/w0 ""' 50-10,000, and 
for single-domain samples with dimension ~ 1 mm we 
get Q ~ 106 • The foregoing estimates are very import­
ant also for the understanding of the conditions that de­
termine the Q of a ferroelectric piezoresonator. 

Dynamics of domain boundaries. Besides the influ-

ence of elastic deformations, it is necessary to take into 
account another mechanism connected with the high mo­
bility and polarizability of the domain boundaries, the 
contribution from which is excluded at the resonant 
frequencies of low-Q domains (see the estimates be­
low). It is possible to understand the influence of that 
part of the crystal volume which is occupied by the 
walls on the inertia of the polarization processes only 
from the point of view of the connection with the entire 
volume of the ferroelectric. This connection is estab­
lished when account is taken of the long-range order 
(the ordered state inside the volume of the domains), 
which determines the elastic forces that maintain the 
quasi-free ions in the equilibrium state (in the final 
analysis, their resonant frequency), and consequently, 
determine the main laws governing the dynamics of the 
domain boundaries. 

We shall describe the motion of the quasi-free ions 
inside the wall by the usual equation 

meff d2Zi I dt2 + rdZi I dt + j'Zi = f" (20) 

The coefficients of which are normalized to unit volume 
of the crystal. In this equation, the effective mass is 
meff = mi/V c· 

The reduced force f" can be calculated from the 
condition that each quasi-f~ee ion in the wall is acted 
upon by an internal field Elnd• ind11ced by the external 
field E 0 , where the force fz = qi E~nd, which causes a 
change of the polarization in the crystal. Inasmuch as 
in the effective volume of the wall there are ~d2 0effn 
ions, we get 

(21) 

where ~ff ""' OeffP~/Z~ d is the effective charge of the 
quasi-free carriers per unit volume. 

The elastic force is determined from Eq. (20) for 
the static case under the assumption that the induced 
displacement of the ions zi is known, say from (11), on 
the basis of other known parameters of the crystal. In 
sucp. a representation, we obtain from the equation 
f'Z 1 = f", with allowance for (3) and (21), 

(22) 

The dissipative factor r, which determines the char­
acter of the dielectric spectrum due to the motion of the 
quasi-free ions, can be calculated from Eq. (20) under 
the assumption that r does not depend on the elastic 
forces f'. In this case we can assume when w « Wo 

that meff d2Zi /de = 0, so that from the equation rdZi/dt 

Theoretical and experimental values of the damping 
frequency, width of the absorption spectrum, and 

displacement susceptibility for BaTi03 

I I I M ~ rh ,, Hz I Contribution of Kdis"" 9K:if, 
fro Hz, from f* max• Hz, ex-

d. em formula (26) periment e·J Calcu )Experiment !'1 Calculation from I Experiment[,] 
latmn** (12)** 

w-• 1012-5·1012 500--2000 
w-s 1011-5. t 011 } >t,5.1QlO -to•• >5-to• 50-200 

}} ~5t00 10-4 t o••-5 .t o10 
} -..- toro -to• 

}-10' 
5-20 

1Q-3 t0'-5-to• }-5-tO• -tO' 0,5-2 
10-2 t08-5-t08 0,05-0,2 

*Frequency corresponding to the maximum of tan li (fmax- 2f0 ). 

**Calculation under the assumption that the entire crystal consists of oscil­
lators of identical size. 

***Estimates based on the depth of the microwave dispersion (see (11]). 
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= f" we obtain, with allowance for (3), (4), and (21), t' ,---------z--;,.-------, 

r = 6erf P,'jZ,id!l;. (23) 

The solution of (20) is well known and makes it pos­
sible to write the dispersion relation for the dielectrk 
constant of the ferroelectric, up to frequencies of infra­
red dispersion, in the form 

e(w) = L; {eo'+ £disiN(d;)[1- w2/wo;2 + iw/ wr;]-•}, (24) 

' 
where r-b = f-c is the value of £ along the c axis (if the 
90° boundaries vary together with the 180° boundaries,. 
then £0 = £ac); N(dj) is a certain function describing 
the distribution of the domain dimensions dj; 

roo;= (-f-)''' = p.illeff( x81]6; )''' (25) 
meff d;Z,• Xdis'meff 

is the resonant frequency of the domain; 

(26) 

is the damping frequency, which makes it possible to 
estimate the losses with the aid of the expression for 
the absorption of spectrum in the form 

"' w { eo' [( (!)' )' w' J w' }-' tgb(w)=..:::,- -.----- 1-- +- +1-- . (27) 
; wr, BdisiN(d;) wo;2 Wr;' wo;' 

6. QUANTITATIVE ESTIMATES FOR BaTi03 

If we take into account the small electronic polariza­
bility of the Ti ions, as a result of which we can regard 
them as point charges, [151 and also the presence of 
crystal-chemical possibilities of their displacement in 
the crystal lattice of BaTi03, then, for the sake of sim­
plicity, we can regard as quasi-free only the Ti ions 
and assume, as discussed earlier, that they are "fer-· 
roelectrically active" with respect to the displacements 
of other ions. We shall use for BaTi03 constants ob­
tained experimentally or calculated on the basis of ex­
perimental data: [181 mTi = 8 x 10-23 g, n = (4 x 10-8)-3 
cm-3, U~ = 2 x 10-3, qTi = (1-4)e. For the case when 

z;i = 0.14A (Z~ = 0), a calculation similar to that given 

in [211 yields p~i = 0.3 T s = 2.6 x 104 cgs esu;- ~Ti R< :w. 
From a comparison of the value of Jli. calculated by 

formula (7) with the value Jlo = Jli Oeff/Z~ calculated 
from known data on the v0(E 0 ) dependence (see [181) for 
the case E0 2:: Ec, we can obtain 

The corresponding estimates give JlTi = (0.5-1) 
x 10-2 cm2/V-sec, Oeff = (0.5-1) x 10-7 em, where we 
have assumed E 0 = 2 kV/cm, Ecr = 0.? V/cm, and v0 
= 1QO em/sec. From the condition aE§(x)/ax 
= E~ff/oeff• which admits of a successive inversion of 
the spontaneous moments of the unit cells in the moving 
boup.dary, we obt~in from the formula o 
= E~ami JJ.f/2qi Z~, for BaTi03, o = 10-6-10-5 em. Sub­
stituting further in (15) the values of the free suscepti­
bility Kfr R< 300 and the susceptibility along the c axis 
Kc R< 15, we calculate correspondingly the coercive field 
Ec = 0.4-2.5 kV/cm and the field of the single-domain 
crystal Esd = 8-50 kV/cm, and for the ceramic-the 
value Ec = 1-8 kV/cm at Kfr R< 100-150. 

In spite of the paradoxical character of the estimate 

ZDDD -~------~- f.D 

2 

J 

tDDD-

t' 

FIG. 4. Frequency dependences of e' (curves I - 4) and of tan li 
(curves I '- 4') of\single-crystal and polycrystalline BaTi03 : I, I' -
multidomain single crystal; 2, 2' - polycrystals with crystal grain 
dimension dk = 20- 200 p; 3, 3'- dk,.;; 10 p; 4, 4- dk <I j.l.. The 
fine structure of the tan li ( w ), which offers evidence of a resonant 
nature of the dielectric spectrum ofBaTi03 , is shown separately. 

of o, the model considered here explains also how an 
ordering, characterized by an electric-interaction en­
ergy E~qi Z~ » kT C• can be generated "juq!pwise" at 
the Curie temperature Tc· Inasmuch as E~ffZ~qi 
R< kT c only within a broad boundary, it is natural to as­
sume that the occurrence of ordering is connected with 
the creation at T > T c of regions with a compensated 
electric moment. At T R< Tc there apparently grow 
from these regions two domains, separated by a 
"fresh" 180° boundary. Our calculation of the stable 
width of the 180° boundary (based on the minimum of its 
energy) yields omin R< (1.5-2)a (see also [181), which 
should denote the presence of a tendency towards "ag­
ing" of the boundary; this tendency has a direct bearing 
on the aging of ferroelectrics, during the course of 
which 6 - omin• we get Oeff !S a, the quasi-free ions 
cease to be free, and the boundaries lose their mobility. 
As the physical mechanism that decreases the width of 
the produced domain boundary, we can consider the fi­
nite probability of in-phase displacement of all its pe­
ripheral ions under the influence of low-frequency os­
cillations of the crystal lattice (see also [5 , 191). 

Estimates of the average frequency fo = wo/27T of the 
dispersion of r.' in accordance with a formula analogous 
to (25) for BaTi03 together with similar calculations in 

tgQ 

0.8 

o.z 

f, Hz 

FIG. 5. Frequency dependence of tan[; of large-grain poly crystalline 
BaTi03 atE:= 0 (1), E: = 4 kV/cm (2), E= = 8 kV/cm (3), and E= = 16 
kV/cm (4). 
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accordance with the formulas, [1 ' 71 are given in [111• The 
tables present estimates of the damping frequencies fr 
= wr/2JT in accordance with formula (26), which indi­
cates the resonant character of the oscillations of the 
domains with Q equal to 3-10, as is also confirmed 
experimentally-see Fig. 4, curve 2'. The presence of 
two sections of dispersion of c' on the curves 2 and 2', 
one of which (in the region 109 -1010 Hz) does not shift 
when a constant field is applied, is apparently connected 
with the dispersion due to the contribution of the crys­
tallites Kdis(U), and the other section at frequencies 
~ 109 shifts upon application of a constant field towards 
lower frequencies, and is apparently connected with the 
DWM (see Fig. 5 and [l11). 

1 C. Kittel, Phys. Rev. 83, 458 (1951). 
2 A. F. Devonshire, Phil. Mag. 40, 1040 (1949); 42, 

1065 (1951). 
3 W. P. Mason and B. T. Matthias, Phys. Rev. 74, 

1622 (1948). 
4 Yu. M. Poplavko, Izv. AN SSSR ser. fiz. 29, 2020 

(1965). 
5 R. E. Nettleton, J. Phys. Soc. Japan 21, 1633 (1966). 
6 W. Doring, Z. Naturforsch. 3a, 373 (1948). 
7 D. G. Sannikov, Zh. Eksp. Teor. Fiz. 41, 133 (1961) 

[Sov. Phys.-JETP 14, 98 (1962)]. 
8 J. G. Powles and W. Jackson, Proc. lEE 96, 383 

(1949). 

9 S. Ikegami, J. Phys. Soc. Japan 18, 1203 (1963). 
10 V. v. Dem'yanov and s. P. Solov'ev, Izv. AN SSSR 

ser. fiz. 31, 1874 (1967). 
11 V. V. Dem'yanov and S. P. Solov'ev, Zh. Eksp. 

Teor. Fiz. 53, 1858 (1967) [Sov. Phys.-JETP 26, 1058 
(1968)]. 

12 G. I. Skanavi, Fizika dietektrikov [Physics of Di­
electrics], Gostekhizdat, 1948. 

13 J. C. Slater, Phys. Rev. 78, 748 (1950). 
14 Yu. N. Venentsev, V. N. Lyubimov, S. P. Solov'ev, 

and G. S. Zhdanov, Izv. AN SSSR ser. fiz. 26, 630 (1964). 
15 V. N. Lyubimov, Yu. N. Venevtsev, and E. Yu. Koi­

ranskaya, Kristallografiya 7, 949 (1962) [Sov. Phys.­
Crystallogr. 7, 768 (1963)]. 

16 V. A. Zhirnov, Zh. Eksp. Teor. Fiz. 35, 1175 
(1958) (Sov. Phys.-JETP 8, 822 (1959)]. 

17 P. R. Aigrain, Electronic Processes in Solids, MIT 
Press, 1960. 

18 F. Jona and G. Shirane, Ferroelectric Crystals, 
Pergamon, 1962. 

19 R. C. Miller and G. Weinrich, Phys. Rev. 117, 1460 
(1960). 

20 D. R. Callaby, J. Appl. Phys. 38, 431 (1967). 
21 Yu. N. Venevtsev, G. S. Zhdanov, S. P. Solov'ev, 

and Yu. A. Zubov, Kristallografiya 3, 473 (1958) [Sov. 
Phys.-Crystallogr. 3, 471 (1958)]. 

Translated by J. G. Adashko 
178 


