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We investigate the form and magnitude of the singularities· that should be possessed by the surface im­
pedance of a plate at frequencies corresponding to the formation of standing waves. These singularities 
are due to excitation of sound by an external electromagnetic wave as a result of interaction between 
the electrons and the lattice deformations. We consider the cases of strong external magnetic fields 
parallel and perpendicular to the plate. We show that the effects should be noticeable. 

1. INTRODUCTION 

THE deformation of a conducting medium is accom­
panied by the appearance of electromagnetic fields. The 
latter appear as a result of the fact that the electron 
system is taken out of equilibrium. In turn, the distur­
bance of the electrons by an external electromagnetic 
action leads to motion of the elastic medium. In the dy­
namic equations of elasticity theory, the interaction 
with electrons describe the well-known additional vol­
ume forces Pl • These equations, together with Maxwell's 
equations for the fields and the kinetic equation for the 
electron distribution function, form a coupled system 
that determines the spectrum of the corresponding ex­
citations of the crystal. Usually the coupling between 
the fields and the motion of the medium is quite weak, 
and the branches of this spectrum can be classified as 
acoustic braRches and various kinds of electromagnetic 
branches; the interaction of the excitations influences 
the phase velocities and the attenuations. 

If electromagnetic waves are produced in a metallic 
sample, then their coupling with the sound oscillations 
causes transfer of a certain fraction of energy, gener­
ally speaking small, to excitation of the sound. However, 
this energy transfer can turn out to be appreciable in 
the case of a plate whose thickness is much smaller 
than the attenuation length of the sound. If the sound 
wave is in the required phase relation with the exciting 
electromagnetic waves at each reflection from the walls, 
then the amplitude of the sound increases by many 
times. It is obvious that the necessary phase condi­
tions are satisfied for standing waves. The excitation 
of sound in the plate should therefore have a resonant 
character with respect to the frequency of the incident 
wave. Corresponding singularities should appear also 
in the dependence of the energy absorbed by the plate 
(or the surface impedance) on the frequency. The maxi­
mum values of these singularities may turn out to be of 
the order of the entire energy absorbed by the plate; 
one can then speak of effective sound generation. 

We have been dealing so far with mutual transforma­
tion of weakly coupled branches of the spectrum in the 
system. In some cases, the interaction between the 
fields and the medium can be so strong that intersec­
tion of the spectral branches takes place. We have in 
mind the case when there exists in the metal a weakly 
damped helical wave, the length of which becomes com-
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parable, at suitable values of the frequency w and of the 
constant external magnetic field Ho, with the wavelength 
of the sound. For an infinite medium, such a problem 
was considered by Kaner and Skobov[zJ. In the case of 
a plate and resonant excitation of standing waves out­
side the region of the branch intersection, the situation 
is analogous to that considered earlier. In the case of 
intersection of branches at the frequency of the standing 
wave, the corresponding singularity of the impedance 
should change strongly. 

In a number of recent experimental investigations, 
resonance excitation of standing sound waves by an 
electromagnetic was observed in plates of bismuth (in a 
longitudinal field-parallel to the plate)[3 J and aluminum 
(in a transverse field H0 ) ( 4 J. In our opinion, the physical 
nature of these effects is described by the foregoing 
mechanism. In the present paper we present a theoreti­
cal investigation of resonant (with respect to the stand­
ing wave) singularities of impedance, we analyze the 
shape of the resonance line as a function of the fre­
quency w and the field Ho, and estimate the coefficient 
of energy transfer to the sound wave. The sound wave 
produced in the plate is accompanied by an electromag­
netic field characterized by an acoustic dispersion law. 
The amplitude of this field, which is weakly damped in 
the medium, may turn out to be noticeable under reson­
ance conditions, particularly in the case when the main 
mechanism of the sound damping is electronic (in which 
case this field causes dissipation of the energy received 
by the sound). We shall estimate the amplitude of this 
field. 

It should be noted that the mutual transformation of 
electromagnetic and sound waves in a half-space was 
investigated theoretically by Kontorovich and 
Tishchenko [5 J , who calculated the amplitudes of the ex­
cited waves. They, however, considered the case of a 
weak field H0 , which is of little interest (it does not in­
fluence the conductivity), and did not take into account 
the deformation force in the equation of motion of the 
medium. As will be shown below, the latter is usually 
more important in the case of a weak field than the in­
duction force which was taken into account in[ 5 J. 

It is noted in a recent paper by Quinn [SJ that the ex­
perimental data ofl4 J can be explained with the aid of 
approximately the same picture as that described above, 
and the first steps were made there towards a theoreti­
cal calculation of the effect. Quinn, however, uses for 
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the current an expression in which no account is taken 
of the induction part of the effective electric field 
u x H0/c ('u-rate of displacement of the medium), which 
plays in the case of a strong field a decisive role in the 
coupling between the electromagnetic and sound waves. 
In addition, the expression used inl6 J for the force act­
ing on the medium is actually suitable only under condi­
tions of the normal skin effect. This can be readily seen 
by comparison with the expression rigorously derived 
by Kontorovich for the forcel 1J. 

2. SYSTEM OF EQUATIONS 

The problem is described by the Maxwell equations 
1 an 4n 

rotE = ---;{it , rotH = -;;- j, 

by the kinetic equation for the electron distribution 
functionl 1 J 

( a a A) A 
-+vV+~J-+v x=evE-AikUik 

8•1 a'l' 

and by the equations of elasticity theoryl 1J 

(2.1) 

(2.2) 

.. a 1 a I" at. mo ah 
pu1-- cwm Uzm = -[iHol +a- J d-rp AikX -a +--a- • 

8xk C Xk 8 e t . 

d-rp = 2h-3d3p. (2.3)* 

Here xafo/8E is the non-equilibrium addition to the dis­
tribution function f = fo + xafo/8E, il = eHo/mc-cyclo­
tron frequency, cp-phase angle; Aik = Aik(P)- Iik' 
AikUik-deformation addition to the electron dispersion 
law, Xik-value of A (p) averaged over the Fermi sur-
face; E-effective electric field: 

A 1 0 1 
E = E+-[uHoJ+- V(A.tkuik)· 

c e 
(2.4) 

It is assumed that it is possible to introduce a collision 
operator v. In addition, it is assumed that the possibl1e 
different carrier groups are described independently :in 
analogous fashion. 

In (2.3), Ciklm are the elastic moduli. For simplicity 
we confine ourselves to the case of a cubic crystal and 
the surface of a plate in the (100) plane. The right-side 
terms in (2.3) are the induction, deformation, and iner­
tial forces (mo-free electron mass). 

The boundary conditions are: continuity of the tan­
gential components of the electric and magnetic fields, 
continuity of the momentum flux density, and reflection 
conditions for the distribution function. An examination 
of the expression written out in lll for the momentum 
flux density shows that the boundary conditions for the 
deformations are the same as customarily used in the 
theory of elasticity. The reflection conditions for x at a 
plate thickness d exceeding the mean free path of the 
electrons l should not, as a rule, be of major signifi­
cance. Assuming henceforth d >> l, we shall disregard 
them completely for the sake of simplicity. 

Inside the plate, all the quantities depend only on the 
coordinate z, reckoned from the inward normal from :its 
surface. We shall consider a steady-state oscillation 
mode, when the time dependence of the fields and of the 

deformations is determined by the external perturbation 
(~ e -i wt, •W- frequency of the electromagnetic wave 
incident on the plate). 

We shall solve the system of equations with the aid 
of a Fourier cosine transformation 

n= 0,± 1, ..• , 

d 

jk = ~ cos kzj(z)dz. (2.5) 

To this end, we transform the kinetic equation into a 
second-order equation, introducing, just as inl7J, the 
function ljJ = x(v)- x(-v). From (2.2) we get 

.\r !:____£z)¢ = -2i(\~evE)-2A1, azu;, 
azz v, v, 8z2 

A Q a v-iw 
L=--'-+--. 

v, a<p v, 
(2.6) 

With the aiLd of the function ljJ, Eq. (2.3) also reduces to 
a second-order equation, since the deformation force is 
expressed in terms of an integral with respect to dTp of 

a A 2evE 
-- (x(v, z)+x(-v, z))= -Lijl +--
~ ~ 

(we used (2.2) in the derivation). 
The use of the cosine transformation introduces ex­

plicitly the boundary values of the derivatives of the 
corresponding functions into the equations for the 
Fourier transforms. We shall consider the case of an 
unstressed plate: in this case aui/az lz = O,d = 0. As 
already mentioned, we omit the boundary values of 
alj!jaz. As a result we get from (2.6), by the same 
method as in l7J , a solution periodic in cp for the Fourier 
transform ljJ : 

'+' 1 _r.p' kv" 
'tk =- 2 ~ d<p' Q [- ev'Ek cos (J -TI- d<p") 

~oo ~ 

- ku/A;,' sin (f k~{ d<p")] exp (J ydq>"), 

• • 
y = (~- iw) jQ. (2.7) 

The expression for the Fourier transform of the current 
density jk is 

k I" ajo r 1 1 1 • ( r kvz'' ") ( "r' ") p;,;,=-ekJd-rr-a;v;Jdq>-gA;,sm Jg-dq> exp JYdq>. 

~ "' "' (2.8) 

We shall henceforth omit the indices k for simplicity. 
Equations (2.3) reduce to the form 

(- pw2 + k 2c,,;) u, = _!___ [jHo], 
c 

" · m 0 iw + p;,,;B';- S,,;,u; -- ~e-j1 . (2.9) 

The expressions for Piz, j differ from Pj, zi in that Vi 
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and Aiz are interchanged: 

Bt • 1 "'k " '' 
slzjz = -k2 s d-rp 8s 0 Aiz ~ d<p' Q A;.' cosO ~· d<p" )exp 0 '\' dqJ") . 

- op op (2.10) 

After eliminating the field H and using the cosine trans­
formation, Eqs. (2.1) yield 

4:n:tm 
kiEa.-~ia. = E..'(d)coskd-E,.'(O); 

j, = 0; a= x, y; E'(O, d) = iJE /8zi:~O.d· (2.11) 

The use of the neutrality condition jz = 0 mak~s it possi­
ble to eliminate with the aid of (2.8) the field Ek from . z 
Eqs. (2.9) and (2.11). Then J, a, p, and S are replaced 
by the "renormalized" quantities, which we designate 
by the symbol ~ : 

- rJazPz, tj 
pa.,z.; = Pa., r.i----; 

u, 

O'ty and Dty are determined by formulas (3.2) with the 

index s replaced by y. In (3.4}, Va is the Alfven velocity. 
Let us turn to the analysis of the system (3.3). The 

predominant excitation of the longitudinal (uz} or trans­
verse (uy) oscillations is determined by the ratio of the 
parameters az and O't· These parameters can be esti­
mated by using the expression for the deformation 
potential in the form: 

(3.5) 

which is suitable in the case of cubic symmetry[BJ 
(A~ Eo-,!'erm!._energy). Using (2.8) and (2.11), we can 
express p and S in terms of the values of a. We present 
certain expressions obtained for the Fermi sphere: 

"' (a""' ) {la.,za.=-en --1 ; 
2eo !Jo 

_ A. ( Uw 11uz) 
py,zz=-en -+-; 

2eo ycro cr,, 

D ( A. )" mnQy [ !Jo!Jyy 1 J ,= - -- ---1--k•z•. 
2£o ps?- !Jzz!1yy 3 

(3.6) 

The subsequent analysis will apply to the cases when H0 Here 
is parallel and perpendicular to the surface of the plate. 

3. PLATE IN FIELD PARALLEL TO THE SURFACE 

We direct Ho along the x axis. Then it follows from 
symmetry considerations that the tensors aik• Pi kl• 
Pik, l, and Sik, lm• in which only one of the indices equals 
x, vanish; on the other hand, if only one of the indices 
equals y, the tensors reverse sign upon permutation 
(in p and S this is permutation through the comma); in 
all other cases the tensors are symmetrical. The equa­
tions then break up into two independent systems-two 
equations for _Ex and ux and three equations for Ey, Uz, 
and uy. The f1rst system eventually transforms into 

( 4niiD ) 4nw2crxx --
k2-~ !1xx E.,- --c3-)'4:n:pst2 atxUx =E.,' (d) cos kd ~Ex' (0), 

Here St is the velocity of the transverse sound (pst 
= Cxzzx = Cyzzy); 

(3.1) 

, iwcmo 1 
atx = atx---===, Dtx =-Sxzxz. 

est )'4:n:p ps12 

(3.2) 
The second system consists of the following equations: 

( 4niw - ) 4:n:wzaw -
kl---;;;:--- !1yy Eu ---c3-)'4np (s1a1u, + s1a1yuy) 

= Ey'(d)coskd-Ey'(O), 

~[k W2 I 4na•• )] ;;w __ 
psr 2--2- iw\D1+-2-a12 u,+ imSuy + -l'4nps?-a1Ey = 0 

St C C ' 

Here sz is the velocity of the longitudinal sound (psz 
= Czzzz}, 

Va [ C py, zz J a,=- 1----- ; 
Sz Ho !1yy 

1 4:n:aw ( Va )• Dl=-Szzzz ___ az-- , 
ps?- c2 s1 

Ho _ iwmoHo-s = s .•. %%-- py, •• - ---!Jyy; 
c ec 

V 2- Hoz 
a - 4np' (3.4} 

e2nl 
O'o=-, 

mvo 
l-~ 

- 1-tw-r' 

l-mean free path, vo-velocity on the Fermi surface 
and T = z:.-1-relaxation time. With the aid of (3.6) and 
the known asymptotic values of a (see, for example, (9J) 
it is easy to verify that in the strong magnetic field, i.e., 
at y = (1- iwr)/Or « 1, the ratio az/at ~ 1/y 3 at 
kR « 1 and~ 1/y~ at kR > 1 (R = v0/0-radius of the 
Larmor orbit). Thus, the transverse waves can be dis­
regarded when y « 1 and, in the case of kR > 1, when 
y 2kR < 1. To the contrary, in a weak magnetic field, 
when y » 1 we have az/at ~ 1/y when kl « 1 and 
~ 1/ykl when kl > 1. In this case the longitudinal waves 
do not play any role and can be left out from (3.3}. Then 
the equations containing Ey and uy practically coincide 
with (3.1) when y » 1. 

We shall consider the case of strong fields (y « 1 
and y 2kR < 1). For the Fourier components of Ey and 
Uz we get from the first two equations of (3.3), where 
the terms with uy have been discarded (we omit the 
index l}: 

Ey = [Ey' (d) cos kd- Ey' (0) ]/A I Ah, 

u, = -[Ey'(d)cos kd-Ey'(0)]4na.~.a! scAAl'4:n:p. (3.7) 

Here 

(3.8) 

The equation Ak = 0 is the dispersion equation for the 
case in question, and its roots determine the spectrum 
of the waves. The last term of (3.8} contains the param­
eter 0' 2 , which is small in the actually realized cases 
(~ H~/41Tps2 when kR « 1 and~ H~R/41Tps2 when kR > 1 
but y 2kR < 1). By virtue of the smallness of a 2 , the 
roots of Ak = 0 are close to the roots of the equations 

k2 = 4niiDaw(k) (t +' a•k.l ) 
c2 k}-w2/s2-imD ' 

(3.9) 
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k2 ' (1)2 + . (n + a ~awks2 '] =- zw a _ . 
s2 c2k.2 - 4niwayy 

(3.10) 

On the right side in (3.10), in the terms~ a 2 , it is neces­
sary to replace k throughout by ke-the root of the equa­
tion k2c2 = 41Tiwayy(k), and in (3.10) by ks = w/s. 

4. TRANSFER OF ENERGY TO THE SOUND OSCILLA­
TIONS IN A STRONG LONGITUDINAL FIELD. 
SINGULARITIES OF SURFACE IMPEDANCE 

Assume that a wave with E parallel to y is normally 
incident on the plate. The plate is located in an antinode 
of the magnetic field, i.e., H(O) = H(d) and E' (0) = E' (d) 
(E' = -i wH/c) (a consideration of an arbitrary phase 
shift between the waves on the surfaces z = 0 and z = d 
entails no difficulties, and can lead only to a change in 
the resonant conditions for the excitation). 

In the steady state, the energy Ws accumulated by the 
sound does not change. The energy Ws acquired per unit 
time from the electromagnetic field is dissipated as a 
result of the damping of the sound. It is easiest to de-· 
termine Ws by distinctly separating the exciting forces 
in the equation of motion of the medium. Eliminating 
Ey from this equation, we get 

(4.1) 

Here 

Gk = Eo' ( 1 -cos kd) acavv )'~ 
k2cl- 4niooaw 

(4.2) 

is the Fourier component of the exciting force. The 
average energy transferred to the sound per unit time 
and per unit volume is determined by the equation 

' 1 d 

W, = ZdRe ~ dz u(z)G' (z), (4.3) 
0 

which can be reduced with the aid of (2.5), (3.7), and 
(4.2) to the form 

iu = _ 4nw IE , I' R {. ~ 2 - 2 1 - cos kd 1 n s o e l LJ a <Jyy ,- , 

d2c' n=-~ ~h ( k2 + 4niwayy/ c2 ) I 

k = nn/ d (4.4) 

Here and throughout we confine ourselves to the case 
when w « v = 1/T-collision frequency; then a and p 
can be regarded as real. 

We shall use the Poisson summation formula (see, 
for example / 10 J), according to which 

1 00 00 

a ~ gCdn)(1-(-1)n)= ,~ {G(2md)-Gl(2m+1)dJ}, 
n=-oo m=-oo 

1 r G(x)=-.) eikxg(k)dk. 
n -~ 

(4. 5) 

The values of G(x) can be obtained with the aid of the 
residue theory. In determining W s we can omit the 
contribution of the poles of (3.9) corresponding to waves 
damped in the skin layer, since this value will ultimately 
contain the small parameter a 2 • On the other hand, the 
fraction of Ws due to the weakly damped (damping len1~h 
» d) acoustic solutions of (3.10) will contain, besides 
a 2 , also a resonant factor. By suitably closing the inte-

gration contour in (4.5), we obtain for the sought part 
of G, accurate to terms ~ a 2 : 

isc"' a2 
G (x)=------eih,lxl. 

' (4n) 2 w3 1 + ~2 
(4.6) 

Here ks is the root of the equation (3 .10) with Im ks > 0: 

(!) ( i ) 
k, = -' 1- q +- ' 

s \ Q ' 

(4.7) 

By (3 we denote 

w2 c2 
~=---;__---. (4.8) 

s2 4nwayy (w/ s) 

We present the values of the parameters a, (3, and Q 
for the limiting cases kR « 1 and kR > 1, which can be 
readily obtained with the aid of (3.4), (3.6), and the 
asymptotic expressions for aikl9 J : 

V, Po 
kR«f.1: a=-, ~=-----

s y2 + ay,2/ aoa,' 

_ 1 _ a 2 r ~ ( A \ 2 k,'R2 ] 

Q - 2 L 1 + ~2 + ~ 2e~ } -15~ ' 
2 ( A ,, v; 

a2=- -) -kR(1-sin4k,R), 
9rt 2eo s2 

kR> 1: 

4 
~ = 3/(,R~o, 

a2~ 1 Va2 ( A '.' k,,R 
Q-1 = 2(1 + ~2) --1-12---;.: -2-;) -fa" (4.9) 

(when kR <~ 1 in an ordinary metal a~z/a 0azz = 1, and 
in a metal with carrier compensation Oyz = 0). Here 

c2 
I'Jo'='--

4nwao 
(4.10) 

<'io-depth of skin layer in the normal skin effect without 
a magnetie field. 

Carrying out the summation in (4.5), we obtain for 
the resonant part of W s: 

· s a2 1 dk,) 
W,=-IH(O)I 2 4:rtd 1 +~2 Re~itg2 . 

In the vicinity of the resonance, i.e., when 

we have 

IH(O) l'wa2Q 

~(!) 
-«f.1, 

(!) 

I '1)' ---. 
8rt(1+~')\n+-z· rt2 (1+(Q~w/wn) 2] 

(4.11) 

(4.12) 

(4.13) 

Under the experimental conditions, the effect of ex­
citation of sound by an eleetromagnetie field can be re­
vealed by the singularities of the dependence of the en­
ergy absorbed by the crystal (or of the surface imped­
anee) as a function of the frequency. Let us analyze 
these singularities. The time-averaged density of the 
electromagnetic-energy flux through the surface of the 
plate, absorbed per unit volume of the crystal, is 

. c 
W=- SndReH'(O)lE(O)-E(d)]. (4.14) 

Expressin1~ E(O) and E(d) in terms of (3.7) and (2.5), we 
get 

. c 
W= SmliH(O) I'Re\;, (4.15) 
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where l;-surface impedance of the plate: 

2iw ; 
= -- ..:.J {F(2md)-F[(2m+ 1)d]}, 

c m=-oo 

1 .. t 
F(z)=- ~dkeikx~. 

11 -00 ~k 
(4.16) 

In determining F(x), the corrections - a 2 for the 
poles of (3.9) can be omitted. The parts of F corre­
sponding to these poles then coincide with the usual 
solution of the electromagnetic problem in the plate. 
We denote the contribution of these parts by l:e: 

(4.17) 

where 1i H is the depth of the skin layer in the magnetic 
field Ho. After calculations similar to those performed 
above, we obtain for the second part of l;, connected 
with the excitation of the sound: 

1;.= 2i~a•--1-tg dk.. (4.18) 
c (II-i)" 2 

In the vicinity of the resonance (4.12) we have 

Re 1;. = 2 8 a2Q 1-112 + 211Ql\w/ron 19) 
c (112 + i) 2 11(n + 1/z) 1 + (Ql\w/w.)• <4 · 

The function Re /;s vanishes when ~w/wn = 
- (1 - ~)/2 {3Q; the curve is asymmetrical on the left 
and on the right of this point and reaches a maximum 

s a•Q 
ReS. max= 2 

c (112 + 1) 2 11 (n+f) 
at Aro 11 

-.=-Q' :4.20) 
Wn 

and a minimum 

ReS.mtn = -112 Re Sa max at (4.21) 

Far from resonance l; s is a small quantity - a 2 • 

5. PLATE IN TRANSVERSE FIELD (Ho II z) 

The symmetry conditions leave nonvanishing values 
for only those components of the tensors a, p, and Sin 
which either all the indices are equal to z, or two indi­
ces differ from z. In the latter case, the components 
with different indices (x and y) reverse sign upon per­
mutation, and all the others are equal to one another. 
As a result, only Ex, Ey, ux, and uy are coupled with 
external field. The corresponding equations (2.9) and 
(2.11) are best written for circularly polarized fields 
and displacements. After simple transformations we 
obtain for a plate placed, as above, in an antinode of the 
magnetic field: 

( k• =F 411(1) 0"± )E± + 4
11(1)

2 O"± l'~sZ !X±U± cz ca 

= -E±'(O) (1- coskd), 

We have put here 

E± = Ex± iEy, U± = Ux ± iuy, 0"± = O"xy ± iO"xx, 

Va( . c P±) wVa 
a±=-\1±1--, 0-.±'=0-.±± "·•' 

8 Ho 0"± ••..-

P± = Px, zy ± ipx, zx, 

S± ~±( Va)" D±=-+-- !1±-- ' 
ps2 c" 8 

S± = Sx•u• ± iSxzxz; (5.2) 

s = st-transverse velocity of sound; Va = H0/-/41Tp, 
ilo = eHo/m0c-cyclotron frequency of the free electron. 

The expressions for the Fourier transforms of the 
fields and displacements are: 

E±= _ E±'(O)(f-coskd)/± 

A± ' 
E±'(O) (1- cos kd)411cr±O-.±' 

U±= 
l'411ps2 cl\± 

(5.3) 

where 

(5.4) 

Further calculations are analogous to those made in 
Sec. 4. We write out the expression for the density of 
the energy absorbed by the plate per unit time: 

. c c 
W=-8 Re[EH']:Iod=-IH+(O)I 2 Re1;, 

rrd 811d 

=- tro ] {F±(2md)-F±l(2m+ 1)d]}; 
c 

(5.5) 

A decisive role is played in the calculation of the sur­
face impedance by the pole singularities ~I L4 corre­
sponding to the roots of the equations ~± = 0. Therefore, 
in determining F(x), we shall disregard the contribution 
due to the branch points of the integrand. The latter are 
connected with the fact that the quantity a± for a Fermi 
sphere is equal to[93 : 

3 1 [ 1 - ~~ ~- 1 ] 
O"±= -2cr0 kz ~J±---2-ln·a±+ 1 ; 

1±iy 
IJ±= --"Jdl' (5.6) 

Analogous singularities are possessed by P± and ~. 
which enter in~ and~±; it is thus easy to show with 
the aid of (2.8), (2.10), (3. 5), and (5.2), that 

"' ( 1±iy 0"±) P±= =t=i-. -en 1+~- ; 
2eo y O'o 

"- mQ 
s± = =t=t-2 - (1 ± tv)P±· 

Bo e 

p~2 [ k2 - ~ ± w ( D± - 411:.± a±!X±') J u± 

+ O"± l'411ps2 !X±'E± = 0~ 
c 

Dispersion equations analogous to ~± = 0 were inves­
tigated by Skobov and Kaner[23 • For "minus" polariza­

(5.1) tion in a strong field H0 (y « 1), at a definite value of 
w, it is possible that the branch of the weakly damped 
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helical electromagnetic waves, which exists when 
kR << 1, will intersect the acoustic branch. In this case, 
in order to find the corresponding parts of F and t (5.~i) 

it is necessary to use the exact expressions for the 
roots of A- = 0 in the region where the branches inter­
sect. Let us consider this case. 

When kR « 1 it is possible to disregard in L and A-. 
(5.4) the small contributions due to the deformation and 
inertial forces from (2.3), i.e., omit D-, and use 
a = Va/s in lieu of a- and a~. Near the branch intersee­
tion 

4mwaoy (5 • 7 ) 
ko2 =--c2-

{E characterizes the "resonance detuning"). For the 
roots of A- = 1 we have 

2 w2 f iy- e 1/ . (iy- e) 2 ) 
(k-)1,2 = ~t 1 +·-2-± V a'+- ---4-J' (5.8) 

Calculations similar to those made in Sec. 4 yield for 
the considered part of the impedance t-: 

iw{[' iy-r-2a2 J 1 dkc t- = -- 1 + - - tg --
- 2c f(iy- e) 2 +4.a2 k,- 2 

[ iy-e-2a2 J 1 dk,-) {5.9) 
+ 1 -1i(iy --=-e) z + 4a2 k~ tg -2-- ]' 

Here k~, 2 are the roots of (5.8) with Im k > 0. 
The detailed form of the dependence of t-on w near 

the establishment of the standing wave (i.e., at frequen­
cies sati&fying simultaneously the condition (5.7) with 
E « 1 and the resonant condition analogous to (4.12) for 
k~ or k;) depends on the ratio of the small parameters 
a, y, and E, and is difficult to visualize in the general 
case. It is clear, however, that the height of the reson-­
ance is determined here essentially by the quality fac­
tor Q corresponding to the damping of the wave k~,2, and 
not by the product a 2Q, as in the case of weak coupling 
between the sound and the field. 

In the region of frequencies and fields far from the 
intersection, and also for waves with "plus" polariza­
tion, the contribution to the surface impedance from the 
electromagnetic and sound waves can be calculated 
independently, as was done in Sec. 4: 

\;= Se +ss. (5.10) 

Here te is the electromagnetic part of the impedance. 
For waves damped in the skin layer (with polarization 
"minus"-in metals with equal electron and hole densi­
ties or in ordinary metals with kR > 1, and also for 
waves with "plus" polarization) this quantity is - w/ck~, 
where k~ are the roots of the equation 

4rqc.> 
k'= ±--;;,-a±(k). 

If a weakly damped helical wave can exist, then its 
contribution to t e is 

iw dk,- ( iy \ 
1;,-=---tg--, k.-=ko 1+~ I. 

ck.- 2 2 J 
(5.11) 

In the vicinity of the resonance corresponding to the 
condition 

x~1, (5.U!) 

we have 

illd(1 + iy) 
~;.-= 1 2 ·--, 

cy(n+ 2 ) n2(1+y2) 

2x 
y= 0+ '/,)ny' (5.13) 

In (5.10) we put 

(5.14) 

Here Im k~ > 0, 

(5.15) 

The limitin1~ values of the parameters a± and {3±, and 
of Q = Re kl~ Im k~ are: 

Va { ±~o/y 
kR~1: a=-;-, ~±~ i~o/y', 

I ~oy2 · ( A )' k,'R'y2 

_, _ __(1_2 (~o±y. ) 2 +Y2 ~•2 + 2;' ~' 
Q± - 2 ~oY2 • 

fl•' +v' 
4i Va A 4i 

kR> 1: a= ---.-k,Jl, fl±= ± 3~{:\ok,l, 
3n s 2eo "' 

Q± _, = 2._ Va' ( __!:__)' ykR . (5.16) 
3n s2 ' 2eo {:lo 

When kR « 1, the presented upper values in (5.16) 
correspond to a normal metal, and the lower ones to a 
metal with carrier compensation. 

It follows from (5.14) and (5.16) that in the vicinity of 
the resonance, i.e., at frequencies w satisfying the con­
dition (4.12), the dependence of l:s on Aw is different 
when ksR ~::: 1 for a normal metal and for a metal with 
compensation. For a normal metal, where {3± is real, we 
have in this case the usual Lorentz curve: 

~;,± ~ + ~~2 o{(n +f )n (1 ± ~·n 1+ (~(!) nr (5.17) 

(we recall that we are now considering a region far from 
the interseetion of the branches, i.e., /f3o!Y- 1/ 
- max(f3o/Y ,. 1). . 

For a metal with compensation, where f3± = i f3oiY 2 , 

the curve is analogous to that obtained in Sec. 4: 

± s a2Q 
Re \;,max :::::~ at 

c (n + _!_) l1 (1 + {:lo'/y•)2 
2. 

"± ~.2 ± 
Re <,,min = - --y;. Re \;., max at (5.18) 

A dependence on A w similar to (5.18) characterizes 
also the singularities of the impedance at shorter wave­
lengths (ksH > 1). 

6. ESTIMATE OF THE MAGNITUDE OF THE SOUND 
EXCITATION EFFECT. ELECTROMAGNETIC 
FIELD lNSIDE A PLATE UNDER RESONANCE 
CONDITIONS 

A. Long:itudinal field. The magnitude of the effect of 
sound excitation can be estimated by the ratio of t s max 
(4.20) to tEl (4.17) or of the resonant value Ws (4.13) to 
W (4.15) off resonance: 
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~.max u,2Q d W, 1) 
Pn=-= - , -. =p;.(1+~2). (6. 

~+ (1 + ~2)2(n + 1j.)2:rr2 {JH W 

Here n is the number of the resonance in (4.12). The 
quantity Pn can be called the transfer coefficient. 

It is obvious that the most favorable values of the 
parameter are f3 ::; 1. With the aid of (4.9) we can 
readily verify that in an ordinary metal (without carrier 
compensation) we have f3 « 1, and only at high frequen­
cies (w - 109 Hz) can it approach unity. We recall that 
the results obtained for ?; are valid under the conditions 
used in Sees. 3 and 4: 

(6.2) 

In the case of a metal with compensation and for ksR 
« 1 we have Uyz = 0 and f3 turns out to be larger by a 
factor y-2 • In bismuth it increases even more, also as 
a result of the small concentrations and masses (n F:o 3 
x 1017 cm-3 m F:o 3 x 10-29 g). Under real experimental 
conditions, when the plate dimension d F:o 1-10-1 em 
corresponds to first resonances with w F:o 1-10 MHz, 
the value of f3 (4.9) in bismuth at ksR « 1 can be of the 
order of unity. To this end it is necessary to have the 
smallest of the possible values of Ho satisfying the 
strong- field condition y « 1, and large mean free paths 
l. With increasing field, f3 increases like H~. The value 
of f3 can be of the order of unity also for larger fre­
quencies. Then ksR > 1 and resonances with n ~ 1 take 
place. 

Equation (6.1) contains the value of the acoustic 
quality factor of the system Q. In the preceding analy­
sis, we took into account only the electronic sound 
damping. Generally speaking, it is necessary to bear in 
mind also other damping mechanisms. They can be 
taken into account phenomenologically, by replacing in 
the obtained formulas 1/Q by 1/Q + 1/Q', where Q' is 
the "nonelectronic" quality factor, and Q is given by 
formulas (4.9). We consider first the case when Q ~ Q' 
and it is necessary to introduce in (6.1) the "nonelec­
tronic'' quality factor q, which does not depend on the 
field H0 • Then we have in accord with (6.1) and (4.9) 

. Q'Ho2 

Pr.:.:::: 4:rrps' ( 1 + ~2) '(n + 1/2)2:rr2 

{ 
djbH, 

X, f 'A 2 4 R I 1 ' 
-) ---1 n +-;' :rr(l- sin4k,R), 

\ 2Bo. 9n bH \ 2 

k,R""'{ 1, 

k,R > 1. 
(6.3) 

If Q' is such that Pn reaches values~ 1, then the effect 
of sound excitation is quite appreciable. In ordinary 
metals, as already noted, it is possible to omit f3 from 
(6.2). The dependence of Pn on Ho is different for ksR 
« 1 and ksR > 1; it is also different for the cases of 
normal (o H > R) and anomalous (o H < R) skin effect. 
The common tendency for all the cases is the growth of 
Pn with increasing H0 , and the decrease of Pn with in­
creasing frequency (increasing number n). The tem­
perature dependence of Pn in ordinary metals should ap­
parently be determined essentially by the variations of 
Q'. 

In bismuth, the effect can be limited by the large 
value of {3. Therefore, the initial growth of Pn with 
increasing field should subsequently give way to a de­
crease, when f3 - H~ becomes much larger than unity. 

In the case of standing waves with large n, when ksR 
> 1, there can appear, in accordance with (6.3), oscilla­
tions of the type of geometric resonance: the value of 
Pn depends on the ratio of the length of the sound wave 
(or thickness of the plate) and the dimension of the elec­
tron orbit. 

If electronic damping of sound prevails, then it is 
necessary to use in (6.1) the value of Q from (4.9). We 
present tentative values of the transfer coefficient Pn 
for the case ksR << 1, when the second deformation term 
predominates in Q- 1 (4.9) in normal metals in not too 
strong fields, and the first (induction) term predomin­
ates in bismuth. For ordinary metals we have in this 
case 

(6.4) 

(o 0 and 0H-depth of penetration in normal skin effect 
without a magnetic field and in the skin effect in a mag­
netic field). For the normal effect (R ~ 6) we have 
o o = o H and Pn - 6 od/R2 » 1; for the anomalous skin 
effect (R > o) we have o~ F:o 6!J:/R and Pn ~ 6H-d/R3 • In 
the case of bismuth 

(6.5) 

the effect depends essentially on the value of {3. 
It was noted in the introduction that the electromag­

netic wave accompanying the standing sound wave, which 
attenuates in space just as weakly as the sound, can 
possess a noticeable amplitude under resonance condi­
tion. Let us estimate this amplitude, using formulas 
(3.7) and (2.5) for this purpose. Calculations analogous 
to those made in Sec. 4 yield 

E (z) = Ee(z) + E,(z), 

E , a2 sink,(z-d/2) 
s ( z) = Eo -:--,---,-,- -----'-:----::-;.,---"'-

k,(~- i) 2 cos (k,d/2) 
(6.6) 

Here Ee is the usual field that attenuates in the skin 
layer (Im ke ...., 1/oH), and Es is the sought field accom­
panying the sound wave. Under resonance conditions 
(4.12) we have 

E,(z):.:::: -~da2Q(~ sink,(z-d/2). (6.7) 
2(~- i) 2 (n + 1/,) 2 n 2 i + Q~w/wn 

The ratio of the amplitudes Es and Ee is in this case 
-pn (6.1). Therefore when an intense standing sound 
wave is excited there should exist in the bulk of the 
metal an electric field with amplitude comparable with 
the amplitude of the field in the skin layer (and even ex­
ceeding it when electronic damping predominates). The 
ratio of the corresponding amplitudes of the magnetic 
fields - Pnks/ke F:o Pn {3 112 can also turn out to be apprec­
iable. 

It is difficult for the time being to compare the re­
sults obtained above with the experimental preliminary 
data of Gantmakher and Dolgopolov[3 J, who observed 
excitation of sound in a bismuth plate in a longitudinal 
magnetic field. Apparently the acoustic Q of the samples 
was determined in[3 J by the "nonelectronic" damping, 
since the value of Q estimated by the authors is much 
lower than the pure "electronic" Q under the same con­
ditions. The general tendency of the line intensity to in-
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crease with the field Ho, followed by a decrease, agrees 
with the theory. The phenomenon of the locking of the 
generator frequency in the case of intensely developed 
sound can be attributed to the fact that the energy den­
sity stored in the acoustic system can exceed in the 
case of resonance the density of the energy W fed from 
the generator to the sample. Actually, calculation of Ws 
shows that under conditions (4.12) we have 

1 r . . IH(O)I2a2Q2 
w. = -2d- ~ dzpJul 2 ~ --:176rr-(-:-:1_,_,+,.....:-f12,:..).!,-(n_+...::..,._!/-,--2)--o2.'t2 • (6.8) 

After the generator is tuned away from the resonator 
frequency, the sample itself operates during the time 
of the transient (t ~ W s/W s ~ Q/w) like a generator of 
appreciable intensity at the resonant frequency. 

We note in conclusion that in a weak magnetic field, 
when y> = (n< Tr 1 >> 1, the effect of sound excitation, 
as shown by an analysis of the equations presented in 
Sec. 3, decrease in general by at least a factor r< 
(y< = (0>Tr 1 « 1). Therefore the absence of the effect 
in In, which was noted in[3 J is probably connected with 
the fact that the experiments were performed in fields 
that were weak for In. 

B. Transverse Field. In this case the analysis for 
the resonances away from the branch-intersection reg·· 
ion is in general similar to that made above (with the 
values of f3 replaced in (6.1) in accordance with the re­
sults obtained in Sec. 5). It is of interest to compare the 
height of the resonance lines for a standing helical wave 
(5.13) and a standing sound wave (5.17). If electronic 
damping predominates, then the ratio of these quantities 
is ~ f3o/y, which usually is much less than unity and can 
become close to unity only in very strong fields and at 
high frequencies. Consequently, under conditions when 
electronic damping predominates, the acoustic resonan­
ces should be much more strongly pronounced. On the 
other hand, if the "nonelectronic" damping predomin­
ates in the acoustic system, then the relative magnitude 

of the peaks depends on the value of Qy a 2 • If the lengths 
of the helical and sound waves are equal and a standing 
wave is established, the effect, as already noted, in­
creases appreciably and the character of the resonance 
line can be analyzed by means of formula (5.9). 

Experimental data on the excitation of the sound in 
the transverse field[ 4J have for the time being mainly a 
qualitative character and a detailed comparison with 
them is premature. 

In conclusion, I take this opportunity to express deep 
gratitude to V. F. Gantmakher for suggesting the per­
formance of the investigation and for numerous discus­
sions. 
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