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The problem of calculating the current in a circuit of a parallel-plate capacitor with arbitrary load, 
subjected to shock compression, is solved under most general assumptions. A method is indicated for 
determining the law governing the decrease of the electric polarization, and also of the conductivity 
and the dielectric constant, of a shock compressed material from the experimental data. 

A number of papers, a review of which is contained 
in l1J, describes the occurrence of an emf following 
shock loading of a dielectric filling a parallel-plane 
capacitor, as a result of the polarization of the dielec­
tric on the shock wave front (SWF). An approximate 
theory of this phenomenon is developed inl 2 J, and an ex­
act solution of the ~roblem is given for a number of par­
ticular cases in l3- 5 • We present below a solution of the 
problem under the most general assumptions, the main 
result being formulas (19) and (29), which make it possi­
ble to determine directly from the experimental data the 
law governing the decrease of the polarization with time, 
and also the dielectric constant and the conductivity of 
the shock- compressed matter. 

Assume that the plates of the capacitor have an area 
S and the space between them is filled with a substance 
having a dielectric constant Eo and a conductivity .\ 0 • In 
the initial state, the distance between the plates is L. 
We denote by v0 and v the velocity of the SWF respec­
tively relative to the cold and compressed substances: 
o = vo/v is the compression of the substance. The shoek 
wave moves from the left-hand plate to the right-hand 
one. The coordinate x is reckoned from the initial posi­
tion of the left plate, so that the SWF corresponds to 
x = Xf = vot. It is also convenient to introduce a system 
(y, t), in which the compressed matter is stationary, 
and on the left plate we have y = 0, and on the SWF we 
have y = Yf + vt. The SWF will pass through the point 
with Lagrangian coordinate y at the instant t1 = y/v. 
Therefore the time when a given particle is in the com­
pressed state is ~ = t- t 1 = t- y/v. The shock wave 
produced in the compressed matter a polarization 
P(y, t), which by virtue of the symmetry is perpendicu­
lar to the SWF. We shall assume that the polarization 
in each particle depends only on the time that the parti­
cle stays in the compressed state: 

P(y,t)=P(~)=P(t-y/v) (O<y<vt). (1) 

The inhomogeneous polarization leads to the appear­
ance on the SWF of a volume density of the bound char-
ges 

Po(y.t)=- ~p =~P'(~), 
uy V 

where the prime denote differentiation of the funetion 
P(t) with respect to its argument. 

(:~) 

Let p 1 be the volume density of the charges produced 
by the conductivity, j the density of the conductivity cur­
rent. Ahead of the SWF, where there are no bound char­
ges, we have the system of equations (E-field intensity, 
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D-induction, q;-potential): 
a~ ~ . ~ 
-+-=0, J =J...oE =-D, 
at ox eo (3) 

whence 

Dpt+£'.=0 (So=~). (4) 
ot Oo , 4:rtAo 

A solution of this equation is p 1(x, t) = g(x) exp (-t/8o), 
where g(x) is an arbitrary function. Inasmuch as there 
are no charges in the entire region 0 < x < L at the ini­
tial instant t = 0, we get g(x) = 0 and P1(x, t) = 0. We de­
note by q1(t) and q2 (t) the density of the surface charges 
of the conductivity on the left and right plates, respec­
tively. Then ahead of the SWF we have 

1 4:rt 
D=.-4nqt, j=--qt, tp(x,t)=V(t)+-qt(l)(x-L) 

So eo (5) 
(vot < x < £), 

where V(t) is the potential difference between the plates 
(the potential of the left- hand plate will be assumed to 
be zero). If I(t) is the current in the external circuit in 
the direction from the right plate to the left, we have 

for dqtf dt = j(x = L, t) -- i(t) (i =I IS). 

Using (5), we get 

dqt+_ii_ =- i(t). 
dt e. 

(6) 

In the region of the compressed matter, the field 
equations have the form ( E-dielectric constant, .\-con­
ductivity of the compressed matter). 

opt+!.!._= 0 ,. = J...E = !:._D, 
at oy ' e (7) 

an otp=-~D. 
~y = 4:rt(po+ Pt), 
u oy 

It follows therefore that p 1(y, t) satisfies the equation 

~!1+£'. = -~ = -~P'(<.) ( e = - 8
-). (8) ot e e eu - 4:rtl" ' 

Let us multiply both halves of (8) by et/8 and inte­
grate with respect to time from t1 tot; we obtain 

P(<.) 
pt(Y, t) = f(y)e-t/6 - ---ev (9) 

+ e-<1
6 [P(O)+~\e"I6P(rJ)drJJ, eu e . 

0 

where f(y) = P1(t, t1) exp (t1/8). On both boundaries of 
the compressed matter there is a bound charge with 
surface density P(O) at y = Yf and- P(t) at y = 0. There­
fore 
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1 1 
4:tD(O,t) = q2(t) -P(t), 411 [D(xr,t) -D(Yr,t)]=P(O). (10) 

In the last of the equations (7) we substitute (2) and 
(9) integrating, taking into account the first of the boun­
dary conditions (10): 

-4~D(y,t) = q2(t) +e-t/0 ~ f(z)dz-P(~) +P(O)(e-<IO-e-t/0) 
n o 

(11) 

Hence 
1 ~f 1 t ] 
-D(yf, t) = q2(t) + e-t/8 ~ f(z)dz- e-t!a[P(O) +- ~ e~I'P(TJ)dTJ . 
4:t 0 

0 0 (12) 

The condition for charge conservation on passage of 
the SWF 

j(yf, t)- vp,(Yr, t) = j(xf, t)- vop,(xr, t) (13) 

is transformed into 
Yf 

e-1/0 0 f(z)dz- Svf(Y<r>) J + q,(t)+ ~ q,(t) (14) 
0 

' 
- e-118 [P(O) + + ~ eni0P(TJ)dTJ J = 0. 

0 

The second condition of (10) yields 
"r 

q2 (t) + q1 (t) + e-t!O~ f(z) dz + P(O) 
0 

- e-t/0 [ P(O) + -1- ~ eniOP(TJ)dTJ J = 0. 
- e o 

From the last two equations we get 

(15) 

f(Y<r>) = ~ e'i8 [\( __ll_ -1) q,(t)- P(O) ] . (16) 
8c _ Oo 

The distribution of the potential cp (y, t) is obtained from 
(7) and (11), putting cp(O, t) = 0: 

<p (y,t) =-~{[ q2 (t) - P(O)e-t!O- -1- e-t/0 ~ en!OP(TJ) dTJJ y 
e - e 0 

y 

+ e-'1° ~ (y- z)f(z)dz + v [ 8P(O) (e-£10- e-t/8) 
0 

• + e-£/O~ e•IBP(TJ)di'J- e-11° ~ enf9P(I'J)dTJ ]}. (17) 
0 0 

We put here y = Yf (i.e., ~ = 0), and equate it to the 
value of the potential from (5) at x = Xf; we eliminate 
q2(t) with the aid of (15) and obtain 

_e_V(t)- qi(t)[ vt+-e- (L -v0t) J + v8P(O) [1-..!_-e-•1°] 
4:rt - eo 8 

t Yc 

- ve-t/8 ~ en!Op (TJ) dTJ- e--t/8 ~ zf (z)dz = 0. (18) 
0 0 

We multiply all the terms of this equation by et/8 and 
differentiate; with the aid of (6) and (16) we get 

aTCo f dV V ) 
P(t) =s \ -;u+-e +[aT- (a-1)t]i(t) 

+ [a( fa--+) (T-t) +a-1 ]q,(t), (19) 

where a = (E/Eo)O, T = L/vo, Co= EoS/47TL. We express 
q1(t) in terms of i(t), integrating Eq. (6) under the initial 

condition q1(0) = 0: 
c 

F(t) = -qt(t) = e-tfO, S !(t')e1'1°odt'. (20) 
0 

This relation makes it possible F(t) from the experi­
mentally known value of the current i(t). If the external 
circuit includes an ohmic resistance R, such that V(t) 
= RI(t), then (19) takes the form 

aTto cJl.F +[aT(~+~+ 1) -(a-1)tldF 
dt' Oo 8 _ dt 

+ [aT(~+ 1) + ( ~-~) t-(a-1) ]F = P(t), e So I \ Oo 8 
(21) 

where to = RCo. From this equation we obtain (for R = 0' 
all the previously known particular cases £J-s J. When 
R"' 0, the solution of (21) is expressed in terms of 
parabolic-cylinder functions. However, if the function 
P(t) and all the coefficients of (21) are known, then it is 
more convenient to use numerical integration, using the 
initial condition 

dF 
F(O) = dt(O) = 0. 

Equation (19) can be written in the form 

P(t) = aX(t) +~Y(t) +Z(t), 

where f3 = a/8 = >.. • 4716/ Eo and 

X(t)=TC0 dV +(T-t)i+(T-t + 1)q,, 
S dt Bo 

TCo 
Y(t) = S V -(T- t)q1 

(22) 

Z(t) = ti- q,. (23) 

In (19) and (22), the external load can be of most 
general form. Let us assume that two experiments can 
be performed, in which the states of the matter behind 
the SWF were the same, but the parameters of the ex­
ternal circuit and the time T were different. In each of 
the experiments we determine a different set of func­
tions X(t), Y(t), and Z(t). We apply relation (22) to each 
of these measurements, obtain their difference, and 
eliminate thereby the function P(t): 

¢(1) = a~X + ~~y + ~z = 0, (24) 

where Ll.X = X1- X2, Ll.Y = Y1- Y2, and Ll.Z = Z1- Z2 are 
functions of time and are known from experiment (it is 
assumed that the parameters of the substance in the un­
compressed state and the degrees of compression on the 
SWF are known). To determine the constants a and f3 
we can use the method of least squares. Then a and f3 
are chosen from the condition that the integral 

t 

H(a, M = S ¢'dt 
0 

have the minimum value. We set up the equations 

aH 1 aa = 0, DH /a~= 0, 

from which we get 
t t t t 

a=A-'{ J'~XHdt~ H~Zdt- ~ ~XMdt~ (H) 2 dt}, 
0 0 0 0 

t t t t 

~=A-'{~ ~XHdt J~X~Zdt- ~L\YL\Zdt ~ (~X) 2 dt}, 
0 0 0 0 

t ' t 2 

A=~ (~X) 2 dt J (H) 2 dt-0 MHdt). 
0 0 0 

(25) 
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After determining the parameters a and {3, we re­
construct the function P(t) from (22). An estimate of the 
accuracy can in this case be, for example, the differ­
ence of the values of P(t) obtained in the first and second 
measurements. If some additional hypotheses predict an 
analytic form of P(t) with a certain number of parame­
ters, for example, P(t) = P 0e-t/T, then if one measure-· 
ment is sufficient for the determination of Po, T, a, and 
{3, if we bear in mind the least- squares method. How­
ever, the system of equations obtained in this case is 
nonlinear with respect to the sought quantities, and its 
solution is difficult. 

If we make not two but three measurements, in whic.h 
the state of the matter behind the SWF is the same, then 
the relation (22) leads to a system of three linear equa­
tions, from which a, {3, and P(t) are determined uniquely. 
The criterion for the reliability of the results can in this 
case, in particular, be the changes in a (t) and {3(t). 

We now consider the stage t > T, when the SWF has 
already reached the right-hand plate. The region of ap­
plicability of (7) then remains constant: 0 < y <Yo = vT 
= L/li. We multiply both halves of (8) by et/8 and inte­
grate with respect to time from T tot: 

p1 (y, t) = w(y)e-t/6 + e~ {P(T- y/v)e-{t-T>I6 - P(~}] 

• 
+.-!e-0/6 ) e~I6 P(1J)d1J ('f,=t-y/v}, (2ti) 

82v T-y/v 

where w(y) = p 1(y, T)eT/8. Putting t =Tin (9), we ob­
tain w(y) and substitute in (26); as a result we find that 
(9) is valid also fort> T. Inasmuch as the first of the 
boundary conditions (10) is valid for all instants of time, 
formulas (11) and (17) are valid also for t > T. We put 
y =Yo in (17); the difference of the potentials between 
the plates is 

4 { [ 1 . I '] V(t)=<p(Yo,t)=- : y0 q2 (t)-P(O)e-1:6 - 8 e-1•0 Je"16 P(1J)dlJ 
0 

Uo 

+ e-t!6 ~(Yo- z)f(z)dz + St·P(O) (eT/6 -i)e-1!6 

0 

1-T I 

+ve-t!6[eT/6 ~ e'li6P(lJ)d1]-~e'li6 P(lJ)dlJ]}. (27) 
0 0 

The condition for the conservation of a charge on the 
left-hand plate leads, 

dq2f dt = l - j (y = 0, t) 

when account is taken of (7) and (10), to the equation 

dq2+~= i(t)+ P(t). (28) 
at e e 

We multiply both halves of (27) by et/8 and differen­
tiate, using (28). We then obtain in lieu of (19), fort> T, 

,~TCo tdV V) --1-+- +Tz(t)=P(t)-P(t-T). s , at e (29) 

Relation (29) is useful, in particular, because at 
sufficiently T the first term in the right side becomes 
negligibly small, owing to relaxation, compared with the 
second term. This makes it possible to determine the 
initial value of P(t) by measuring the current i(t) and 
voltage V(t) during a later stage of the experiment. 

The author thanks A. G. Ivanov, Yu. v. Lisytsin, 
v. N. Mineev, and E. Z. Novitski! for a discussion of 
the results . 
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