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The consequences of P-parity nonconservation in nuclear electromagnetic transitions for the polar­
ization and resonance absorption of y radiation are analyzed. Expressions are derived for the polar­
izations of individual Zeeman components of radiation which is a mixture of multipole types with 
different spatial parities. Formulas are given whieh describe the resonance absorption of such radia­
tion. The cases of the mixtures E(1)- M(1), E(2) -- M(2), E(2)- E(1), and M(2)- M(1) are analyzed 
in detail. 

INTRODUCTION 

RECENTLY a number of experimental groups have 
observed nonconservation of spatial parity in nuclear 
electromagnetic transitions. u-31 In the present paper 
we analyze the consequences of nonconservation of the 
parity of nuclear states for the polarization and reson­
ance absorption of y radiation. Possibilities for observ­
ing parity nonconservation by means of y- resonance 
experiments are discussed. 

A consequence of the nonconservation of the P parity 
of nuclear states is the existence of nuclear y radiation 
which is a mixture of multipole types of different pari­
ties, for example E(L)- M(L) or E(L)- E(L + 1). r4 J 

Such mixtures are forbidden if the parity is an exact 
quantum number for nuclear states. The presence of 
mixtures of different multipole types (for definiteness, 
of two types) leads to interference effects, whose analy­
sis make it possible in principle to draw conclusions 
about the character of the mixtures. 

The interference effects for radiation of mixed parity 
appear not only in the individual Zeeman components, 
but also in the radiation from unpolarized nuclei. The 
radiation from unpolarized nuclei, however, will contain 
interference effects only for multipole mixtures of the 
type E(L)- M(L). The effects will manifest themselves 
as a circular polarization of such radiation. As for the 
individual Zeeman components, here there will be inter-­
ference effects in the radiation of any mixture of multi­
pole types of opposite parities [for example, E(L) 
- E(L + 1)], and the effects appear both in the angular 
distribution of intensity and in the polarization of the 
radiation. We shall examine the consequences of non­
conservation of P parity for individual Zeeman compon­
ents of the radiation, and from these results one can get 
the corresponding effects for radiation consisting of an 
arbitrary combination of Zeeman components. 

It is well known that the interference of multipole 
types of different spatial parities leads to an asymmetry 
of the intensity of the radiation relative to the plane 
perpendicular to the axis of quantization (the direction 
of the field). The amount of asymmetry is directly 
connected with the mixing parameter o, which is defined 
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as the ratio of the amplitudes of the multipole types 
which are mixed. 

The polarization of the mixed radiation also depends 
on o. The polarization vector (or ellipse) of a y-ray 
quantum of strictly defined multipole type can be repre­
sented in the form* 

, fk [hkll . lhk] . 
n = -,---cos a --1-- t --...--- sm a, 

I fhkll ! fhkl! 
where k is the wave vector of the y ray, h is the unit 
vector in the direction of the axis of quantization (the 
magnetic field), and q is a known function of the cosine 
of the angle between h and k, which fixes the ratio of the 
axes of the polarization ellipse. When P invariance is 
violated the ratio of the axes of the ellipse is changed, 
i.e., the quantity G' in the formula for n changes) and the 
change of a eontains terms linear in the mixing parame­
ter o. Therefore one can in principle detect a violation 
of P invariance by comparing the polarization of the 
given radiati.on with that of radiation known to be 
"pure.'' This method can scarcely be used in practice. 

Another possibility is to compare the polarizations 
of two y-ray quanta which are either obtained from each 
other by the space-inversion operation. or else have the 
same wave vector but are emitted in oppositely directed 
magnetic fields. For radiation characterized by a defin­
ite spatial parity the space- inversion operation does not 
change the polarization vector. This same operation on 
radiation which does not have a definite parity leads to 
a change of its polarization vector. 

Thus a violation of P invariance for radiative proces­
ses has the eonsequence that y rays emitted in exactly 
opposite directions have different polarization vectors. 
The corresponding consequence for the absorption of y 
rays in transitions in which P invariance is violated is 
that the probability for absorption of a y-ray quantum 
with polarization vector n and wave vector k in a given 
transition is different from the absorption probability 
in the same transition for a y-ray quantum with wave 
vector- k and the same polarization vector. An analog­
ous manifestation of nonconservation of P parity for y 
rays with a fixed wave vector k is found on comparing 
the emission (or absorption) processes occurring in 

*[hk] = h X k. 



THE QUESTION OF NONCONSERVATION OF SPATIAL PARITY 623 

oppositely directed magnetic fields. 
An analysis of the effects associated with the polar­

ization and angular distribution of intensity of mixed 
radiation can be made, for example, by means of reson­
ance absorption of the y radiation. It follows from [s,sl 

that the intensity of absorbed y radiation (we are con­
cerned with emission and subsequent absorption of 
individual Zeeman components) can be represented in 
the form 

(1) 

where I, n are the intensity and polarization vector of 
the emitted radiation, and I', n' are the intensity and 
polarization vector of the radiation with the same wave 
vector emitted in the transition inverse to the absorbing 
transition. The expression (1) depends both on the angu­
lar distributions of intensity of the radiation and on its 
polarization properties. 

Experimental observation of the effects described by 
Eq. (1) may be possible, for example, by the use of the 
Mossbauer effect; in studying the effects associated with 
violation of P invariance it is not necessary to split into 
their components the lines of both source and absorber­
it suffices to split only one of the lines. 

THE POLARIZATION OF RADIATION OF MIXED 
MULTIPOLE CHARACTER 

Let us consider the process of emission of a y-ray 
quantum. We confine ourselves at first to a y transition 
of exactly defined multipole character. If as the result 
of a nuclear transition h, mi- jf, mf (where j, m ~re 
the nuclear spin and its projection in the direction h 
of the magnetic field) a y-ray quantum with wave vector 
k has been emitted, then in the general case the polar­
ization of the radiation is characterized by a polariza­
tion ellipse with axes directed along the vectors 

• [k [ltk]] 
a,= IThklT. (2) 

The ratio of the axes a and b of the polarization ellipse 
depends on the angle between the wave vector and the 
direction of the field. For individual Zeeman components 
and for special values of this angle the ellipse may de­
generate into a straight line (or a circle), which corre­
sponds to linear (circular) polarization. In the general 
case the ratio of the axes is given by the formula 

a/ b = £2/ £,. (3) 

The quantities E, and E2 are determined by the fol­
lowing expressions: 

E - f it L j, ) (l L) z-1 X , e;. 
\ m1 M -m1 

(4) 

Here L is the multipole character of the transition, M is 
the projection of the angular momentum carried away by 
the photon on the field direction, x ( l, L) is the reduced 
matrix element of the transition, and 

e, = (2£ + 1)'/, {[(~! ~ 1 ~ 1 --~1/)YIM-I(k) 

- Cu1_ 1 : -~II )YtM(k))cosO+ y2sineC1 ~ -~ll)YI"'(k)}. 
....... (2£ + 1)'1· rc: +1~ 1-~;~)y,M-·(k) +C/ -1 : ~JM) Yt"(k) J. 

(5) 

Here 8 is the angle between h and k. The spherical 
harmonics which appear in (5) are written in a coordin­
ate system whose polar axis is along h and whose azi­
muthal angles are measured f!:om the vector k (i.e., the 
azimuthal angle of the vector k = k/lkl is always zero). 
Therefore the spherical harmonics in (5) depend on only 
the one angle 8. 

The polarization vector n of the radiation can be 
written in the form 

(6) 

where tg (JI = a/b = EdE,. 
Let us now consider a transition in which there is 

present, besides the main multipolarity L, considered 
above, a small admixture of a multipolarity Lz which has 
the opposite (forbidden) parity. The polarization of 
radiation with the same wave vector will now be differ­
ent from the polarization of the radiation which does not 
contain the admixture. The change of the polarization 
vector consists of a change of the parameter Ql in (6). 
The value of tan (JI', or, what is the same thing, the ratio 
of the axes a', b' of the new ellipse is: 

I- E.(Lt) ±E2(L.) 
tga- Et(Lt)±Et(L•). 

(7) 

The arguments of the Ei denote the multipole types. The 
two signs in (7) and subsequent formulas correspond to 
the two possible values (0 and 7T) of the relative phase of 
the matrix elements of the multipolarities which are 
mixed which are allowed by the requirement of T in­
variance. [?J In the approximation linear in 15 we get 
from (7) for the change of the ratio of the axes of the 
polarization ellipse 

a'_ a _ !!_ r !!_•(I•) _ E,(L•) J (8) 
1/ b- ± b LE2(Lt) Et(Lt) . 

It follows from (4), (5) and (7) that under the space­
inversion operation [which in (4) and (5) corresponds to 
replacement of k by -k], or under change of the sign of 
the magnetic field, there is a change of the polarization 
vector of radiation of mixed parity. The corresponding 
change of the ratio of the axes of the polarization ellipse 
is given by the expression 

: _ o· k _ 2 F 1 (L1) H, (f,,) -I.;, (1,1) 1:'1 (/,,) (9) 
lga(-k) L.~a( ) - ± l!.,'(f-tl···lo,'(f,,) . 

The intensity of an individual component of the radia­
tion with angular- momentum projection M can be written 
in the form 

l(M)= 2}£12(£1,)±2 2}E,(Lt)E1(J.,). (10) 
f,L. 

RESONANCE ABSORPTION OF MIXED RADIATION 

An analysis of the polarization and the angular dis­
tribution of the radiation can be made, for example, by 
means of resonance absorption of the y rays. Let us 
consider the process of emission and subsequent ab­
sorption of a y-ray quantum under the following condi­
tions. The nucleus which emits the radiation is in a 
magnetic field H. The nucleus which absorbs the radia­
tion is in a magnetic field H'. We shall assume that the 
magnetic fields H and H' are such that the magnetic 
splitting of the nuclear levels is larger than the natural 
width of the lines, both in transition 1, with the emission 
of the y-ray quantum, and in transition 2, with its ab-
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sorption, so that in principle one can observe the emis­
sion and absorption of quite definite Zeeman lines. 
Therefore in what follows, when we speak of a transi­
tion, we shall always have in mind a transition between 
definite magnetic sublevels. 

The general formula for the probability IL that a 
y-ray quantum will be emitted at angle e with the direc­
tion of the magnetic field H in transition 1 and then be 
absorbed in transition 2 (with the wave vector k of the 
photon making angle e' with the direction of the magnetic 
field H') is given in [BJ. 

It can, however, be seen already from the structure 
of IL [Eq. (1)] that the expression for IL depends on the 
polarization vectors and on the angular distributions of 
intensity. Accordingly, this quantity can be used for the 
observation of effects associated with nonconservation 
of spatial parity. Having in mind the study of violations 
of P in variance. we shall examine cases in which at 
least one of the transitions consists of a mixture of 
multipole types of different spatial parities. 

The expression for IL can be written in the form 

i --I 

+ (AtB3 + AzB,- A3B, - .1,1!,) 'in 11' + (.L.fi 1 -- .t,H,) 'in(11 - - 11') 

+ (A,Ha - A :;liz) sin (tJ + 11')], ( 11) 

where M = mi- mf, - M' = mi- mf, and 71 and 71' are 

the relative phases of the matrix elements of the multi­
polarities which are mixed in the source nucleus and in 
the absorber nucleus: also 

ln ,~~,a,' =~2a:' =ens ('P,,- 'f".), 

112 =~~a~'~- a~a;' sin (<p 1,- <p".), (13) 

where '~'h• 'Ph' are the polar angles of the vectors h, h' 
relative to the axi~ k. 

The quantities ai and Ei are determined from Eqs. 
(2), (4), and (5), with the modification that in obtaining 
the quantities Ei for transition 2 [in (12) their arguments 
are distinguished by primes] one must interchange the 
roles of initial and final nuclear states, i.e., in Eq. (4) 
one must set 

h = j/, 1nf = m/, )i = )/, 1ni = m/, 1~1 = J1'. (14) 

Let us consider in more detail the case in which both 
transitions (1 and 2) contain admixtures of forbidden 
parity. It is easy to get from it the practically most 

interesting case, in which transitions 1 and 2 are the 
same, i.e., the same nucleus is both source and absor­
ber of the radiation. Taking into account the restrictions 
imposed by the requirement of T in variance (71, 71' = 0, rr), 
we get from (11) 

4 

1:£. = 2; (A;'+ 1!;2) + 2[(A1A4 + B 1B,) cos (11- 11') 
i=i 

+ (A:!Aa + B,B3 ) cos (11 + 11') + (A1A2 + AaA, 

+ B1B2 + BaB4 ) cos 11 + (A 1Aa + A,A, + B1Ba + B,B,) cos 11']. (15) 

In the expression (15) let us sum over the magnetic 
quantum numbers of the initial (final) transition; this 
corresponds to not resolving the emission (absorption) 
line and assuming that the magnetic sublevels are 
equally populated. Then for mixtures of the type 
E(L)- E(L + 1) [M(L)- M(L + 1)] the result can be 
represented as a product of intensities: 

" I I = __ 1_ ~- I LJ 1:£. = 1 zfo/'(8'), o '2j; + i "--' m, 1 , 
Pl 1,m1, .1! m,.m, 

(16) 

where Io is the intensity of the radiation from the un­
polarized nueleus and I and I' are the same quantities 
as in (1). Their explicit form can be found, for example, 
by means of (10). For mixtures of the type E(L)- M(L) 

" g =~I ''(8') - loll cos 11{E (I ')E (I') 
LJ 2 "" 1 + lj2 1 1 2 1 

m 1, m1, Af 

+ E 1 (L2')E2(Lz') + 2(E1 (L1')E2(I2') + E 2 (It')E1 (L2')] cos 11'}. (17) 

The difference between the structures of the expres­
sions (16) and (17) is due to the fact that for the mix­
ture E(L + 1)- E(L) the radiation from unpolarized 
nuclei is unpolarized, but for the mixture E(L)- M(L) 
it is partially circularly polarized. Therefore in spite 
of the fact that the absorption depends on the polariza­
tion the result of averaging in the former case, Eq. (16), 
is simply proportional to the product of the intensities, 
but in the expression (17), besides the product of inten­
sities I0I'(B'), there is a term from the dependence of 
the absorption on the polarization of the radiation. 

THE CASE OF DIPOLE AND QUADRUPOLE MIXTURES 

In Eq. (5) it is convenient to include the dependence 
of the sign of Ei on M entirely in the factor ei. Table I 
gives the explicit forms of the ei> taking the dependence 
of Ei on the sign of M fully into account, for dipole and 
quadrupole radiations. By means of (4) and (7), we get 
for the angular dependence of the parameter Qt, which 
characterizes the polarization of the y-ray quantum, 
the result 

ae,(I1) + be,(I2) cos 11 
tgu = , (18) 

ae1(It) + be1(I2) COS 'I} 

where e1, e2 are given in Table I, and a and b are deter-

Table I. ei (M) for dipole and quadrupole radiations 

'i (M) I E(l) E(2) M(1) M(~) 
e1(11) 

't(±l) 

't(±2) 

r,(ll) 

,,(±1) ' 

e,( ±:!) j 

-sin Q 

+•"'089 

1h,sin20 

cos 20 

- 1/ 2-,in 20 

0 

+ C!IS (} 

±::in 0 

II 

-1 

~in G 

±cos 0 

0 

± rosO 

+-sin 0 
- 1;' 2sin 26 

-cos 20 

1j,sin 29 
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Table IT. A for mixtures E(1)- M(1) 

M-Wl 
I 

j. I' 

A, 

0-0 

siu 0 sin 0' 
0 

0-±1 1-±1 

±_ sin 8 ..:-.os 8' ~1-~ cos 6 C.Otl ~ 
sin 6 cos 6 ± eos 6' 

Note. The quantities a, b, a: b 'which connect A with Ai, Bi 
[cf. (20)] are given in Eq. (21). 

a(1)= '~'3 f j1 1 j; \) lxl-
2 1 m1 1-m; 

Multipole character E(2) [M(2)]: 

a (OJ=,; 15 ( it 2 h ) I I 
V 2 m1 0 -m; X' 

a(1)= l'S ( if 2 h ) lxl, 
2 m1 0 -m; I 

a(2)= ~( if 2 h ) lxl 
2 mf 2-m; 
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(21) 

(22) mined from (21) and (22). We denote by b the analog of a 
for the admixed multipolarity. With the same notations 
we get for the intensities of the individual Zeeman com­
ponents of the radiation the expression 

I= ~[a2e;2 (L1 }+ b2e;2(L•)+ 2abe;(L1}e;(L,)coslJ]. (19) 

The quantities a' ( IM' I) and b' (I M' I) are also given by 
(21) and (22), but with the substitutions (14). Strictly 
speaking, the quantities x in Eqs. (21) and (22) are dif­
ferent from the reduced matrix elements, and are con­
nected with Io [cf. (16)] by the relation 

To determine I:E we must use Eqs. (11) and (15) and 
the expressions (12) for Ai and Bi· The values of Ai and 
Bi for dipole and quadrupole mixtures in cases in which 
the transitions 1 and 2 are the same mixture can be ob­
tained by means of Tables II-IV. Tables II and III give 
the quantities A, and A2 for mixtures E(1)- M(1) and 
E(2)- M(2). The quantities Ai and Bi are connected with 
A, and A2 in the following way: 

~ IudQ = 21~+1 (lx(L,) 12 + lx(L•) 12 ). 

Tables 2-4 do not give the values of Ai and Bi for all 
transitions, but we can obtain the values of I:E for all 
transitions if we use the facts that the expression (15) 
satisfies the relation 

/2: (M, h; k; i'rf', f.') = IL. (M', I~'; k; M, h,), (23) 

and th~ change from I:E (M, h; k; M', h') to I:E (- M, h; k; 
- M', h') leads in (15) to a change of sign of the coeffi­
cients of cos rJ and cos rJ. We note that simultaneous 
change of the signs of h and h' also leads to a change of 
sign of the coefficients of cos rJ and cos rJ in I:E. 

A, , 
-= aa.At, A• ' ]=a b.A2, 

A3 
T = ab'.if2, A, = bb'.ift 

I" 11 II lu 
B, B2 B" B, ' (20) - = aa'A2, -= a'b.At, c- = ab'.At, I-= bb.if2, 
!, ft2 !,2 !2 

Table 4 gives Ab Bi for E(2)- E(1) [M(2)- M(1)] 
mixtures. The quantities a( IM/) and b( IMI) contained in 
Ai, Bi can be determined by means of the following re­
lations. 

Using the fact that when the arguments are the same 
I:E is the square of the intensity, we get a different ex­
pression for the intensity: 

1 2 
I (M) =- (A1 + A 4 ) + ---A 2 cos lJ, (24) Multipole character E(1) [M(1)]: lu /fl 

V 3 ' 1 . 
a(O)= ---;.-( Jt /i .) lxl, 

2 m 1 0 -m; 

in which the Ai are given by Tables 2-4 with e = e', 
a = a', b = b', M = M'. 

Table III. A for mixtures E(2) - M(2) 

0-0 0-±1 0- ±2 1---±1 1-±2 2- ± ~ 

. I I ' I 
~L ' 1;' 11 sin ~e siu ~e· 1 1/:1. sin :!.6 ~os ~B' ~- 'h sin :.!.0 sill :.:.e· 
At I 0 ± 1/?. sin :.!.6 cos 9' =t= 1/:!. sin 20 sine· 

co~ :w cos :28' + 
± ros8cos8--; 

cos 0 cos :28' + 
± cos L6 cos6' 

_ 1/'2 ros :2:8 sin :zo· + cos e sino· I 1/.I sin .:::e sin 2e· ±sill e sine· 

-- 1j, cos 0 sin20' +cos :!8 sin 8' 1 1;, (sinS sin 28' ±sin 28 sin 6') 

Note. The quantities a, b, a: b 'which connect A with Ai, Bi (cf. (20)] are given in Eq. (22). 

l\1-M' 

A, 
aa'ln 

ba'ln 

A~ 
rtb'fn 

A, 
bb' In 

B, 

ab'ft~ 

B, 
bb'T;~ 

Table IV. Ai, Bi for multipole mixture E(2) - E(1) [M(2) - M(l)] 

0-0 

1(4 sin 20 sin 26'1 

_I j, Sill 8 sin 20'1 

1- 1 /"!. siu :26 sinO''! 

sin 0 sin 0' 

0 

() 

() 

I 
I 

I 
I 

0-± 1 

-sin 6 cos 26' 

J: sin 6 cos 0' 

+ sin 0 cos 6' 

sin 0 

0-+?. 1 -- ± t 

1- 1/.1 sin :!8 siu :!0' i, os 10 co.< ::o· o, I 
j ± coso , os e· I 

1/2sin0sin:..t)' 1- cos6co:::;~O'~~ 
1 =r- coso· 

1-±:..:: 

- 1/:z cos 20 sin ::.:.o· + 
+cos 0 :;in 0' 

1/:, ··os 0 sin ::o· ± siu 0' 

u 

2-:i::?. 

1/~ sin 26 sin28' ±sin 6 sin 8' 

() 

P ~~~r: ro:_~~~~~)O' --~ 

1

1 +rosS l'nsW t1 lJ 

:r: lh., sin28 sin (J' : rose ('()S 28' ± I ::__]=cos :20 siu 6' - 1/.:. l'OS 0 sin :..::0'1 1/?. (sin 0 Sill :26' ± siu20 :;in()') 
±. cos :..:o cos e· 

±sin 0 sin 0' -('OS 26' =F :l:: cos 6 sin 8' -+- 1/:. sin 28' 0 
+ cos e cos e· 

0 cos :!6 + II 
=t- eos6 cos8' 

cos 6 ±ens 8' () 

Note. For mixtures E(l) - E(2) (M(l) - M(2)] the quantities a, a' are given by (22) and the quantities b, b 'by (21). 
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CONCLUSION 

The main result of the present paper is the derivation 
of formulas which describe the absorption of y radiation 
which is a mixture of multipole types of opposite pari­
ties, for the case in which the lines are split into com­
ponents both in the source and in the absorber. In par­
ticular, the formulas obtained make it possible to bring 
out specific features of possible Mossbauer experiments 
for the purpose of studying nonconservation of spatial 
parity. 

Whereas ordinarily a method for detecting violations 
of P invariance are based either on an analysis of the 
asymmetry of the angular distribution of intensity of 
individual components of the radiation, [ll or else on an 
analysis of the polarization of the radiation, r 2 ' 3 J 
Mossbauer experiments are simultaneously sensitive to 
effects of a violation of P invariance in both the polar­
ization and the intensity of the radiation. Therefore, for 
example, the difference in the Mossbauer absorption 
with two opposite directions of the magnetic field ap­
plied to the source (or the absorber) 

T:2(•~. 1<, J;')- Tc:(-1;, k, ,~,') 

!2: (ll, k' il') + J.:: ( ~ j,, k, ,;·) 
(25) 

as found from (15) and (17), is not the same as the 
corresponding asymmetry in the angular distribution of 
the intensity (cf. raJ). Another feature of Mossbauer ex­
periments is that with them one can detect both multi­
pole mixtures of the types E(L)- E(L + 1) and M(L) 
- M(L + 1), and mixtures of the type E(L)- M(L). It is 
impossible, for example, to detect mixtures of the 
former type by means of a method analogous tor 2 ' 3 J , 
since the corresponding radiation is not circularly 
polarized. 

We shall give numerical estimates of the effects of 
P-parity nonconservation to be expected in Mossbauer 
experiments. The quantity determined experimentally 
in such experiments is a ratio of the type of (25). As in 
the case of measurements of circular polarization or of 
the asymmetry of the angular distribution of radiation, 
the effect is proportional to the mixing parameter 6 . In 
the Mossbauer experiments, however. the maximum 
value of the proportionality coefficient, for optimal con .. 
ditions for the observation of the effect. is about twice 
as large [see Eqs. (15)-(17)]. We can write the mixing 
parameter for y transitions from nuclear states con­
taining an admixture of the "forbidden" parity in the 
form 6 = FR, where F is the amplitude of the admixed 
state with the ''forbidden" parity in the wave function of 
the nucleus and R is the ratio of the matrix element for 

the "forbidden" process to that for the allowed process. 
The breaking of the parity symmetry of nuclear 

states associated with the breaking of parity symmetry 
in the weak interactions is characterized, according to 
calculations with the theory of weak currents, r4 J by a 
value ofF which lies in the range 10-6-10- 7 • This means 
that the effeet can be observed experimentally only for 
transitions in which the allowed process is strongly im­
peded in comparison with the forbidden process, i.e., 
the ratio R is large. For the most widely known 
Mossbauer transition at 14 keV in 57 Fe the admixture 
amplitude is F ~ 4 · 10-7 , and R ~ 30, r9J and conse­
quently the expected effect is of the order of 10-5 , which 
is about an order of magnitude smaller than the accur­
acy which is achievable experimentally. [Jo J It must be 
pointed out, however, that the value R ~ 30 is by no 
means the maximum value of R. For example, a transi­
tion at 123 keVin 173 Lu is known, for which R ~ 103 • [<J 
Therefore the negative result of experiments with 
57 Fe [JoJ does not exclude the possibility of detecting the 
effect with other Mossbauer transitions, even with the 
existing experimental technique. 

The writer is grateful to V. G. Tsinoev for helpful 
discussions. 
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