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The problem of exciton interaction in semiconductors is considered in its multi-electron formulation. 
Expressions are obtained, in the approximation linear in the concentration, for the ground-state en­
ergy and for the law of dispersion of elementary excitations. Conditions for the Bose condensation of 
excitons are investigated and it is shown that low-density system of excitons behaves like a weakly 
nonideal Bose-gas. Furthermore, all quantities (the chemical potential, the rate of collective excita­
tions) that depend on the two-particle scattering amplitude in the nonideal Bose-gas case are ex­
pressed in our analysis by the same formulas through the four-fermion interaction amplitude (two 
electrons and two holes) which includes, apart from the two-exciton scattering amplitude, the scatter­
ing amplitudes of two and three fermions as well as the terms connected with the Pauli statistics for 
the electrons and holes, and resulting from the fact that excitons are compound particles. These terms 
yield an essential positive contribution to the exciton scattering amplitude and may in principle ensure 
the stability of the ground Bose-condensed state even if there is a weak attraction between the excitons. 

IN recent years a number of authors [ 1- 4 ] indicated 
that excitons in crystals can reveal properties charac­
teristic of Bose-particle systems, particularly a ten­
dency to Bose condensation. This circumstance is quite 
interesting, at least because the small effective mass 
of the excitons can make the condensation temperature 
for them sufficiently high even at relatively low con­
centrations. Indeed, for an ideal Bose gas, as is well 
knownCsJ, 

where N is the concentration and M the mass of the 
particle. For large-radius excitons, and only these will 
be discussed here, we have M ~ 10-27 - 10-28 g and the 
condensation temperature at N ~ 10 18 em -3 is Tc 
~ lOO":K. Exciton concentrations of 1017 - 10 18 em - 3 

are presently perfectly realistic, since various methods 
of excitation of semiconductor lasers give apparently 
electron and hole concentrations of the same order of 
magnitude. At such densities, the interaction between 
the excitons (e.g., the Vander Waals interaction) be­
comes noticeable, i.e., they form an ideal Bose gas. 
The theory of a weakly-nonideal Bose gas was devel­
oped in sufficient detail[a, 7 J. However, the possibility 
of regarding the system of excitons as a weakly-non­
ideal gas is not obvious. The point is that excitons in 
semiconductors constitute a rather loosely-coupled 
state of two Fermi particles - an electron and a hole. 
The binding energy Eo and the exciton radius G 0 are 
determined in the simplest case by the well known Bohr 
formulas for the hydrogen atom: 

1 e'm 
eo = 2 x2f!2 ~ 10-2 ev' 

xf!2 
ao=- ~ 10-6 em, 

me2 
( 1) 

where e is the electron charge, K the dielectric con­
stant ( K ~ 10), and m the reduced effective mass of 
the electron and hole: 

m = rnemh / (me+ mh) ~ 10-28 g. 

At the concentrations considered above, N ~ 1017 

- 10 18 cm- 3 , the average distance between excitons 
N-113 is of the same order as their radius Go. Under 
such conditions, an important role is assumed by the 
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internal structure of the exciton and by the fact that 
the Fermi particles of which the excitons are made up 
obey the Pauli principle. Two electrons (or two holes) 
contained in different excitons cannot come close to 
each other if their spins are parallel. Consequently, 
at N-1/ 3 ~ G0 the excitons greatly deform each other 
even if no account is taken of the direct dynamic inter­
action, merely by virtue of the Pauli principle for the 
electrons and the holes, and the excitons can therefore 
not be regarded as structureless Bose particles. 

In order to clarify this problem in somewhat greater 
detail, we introduce the operator Qp for the creation 
of an exciton with momentum P, and express this op­
erator in terms of the operators for the creation of an 
electron, Gp /a+p and hole bp 1 2_ p ( p - momentum of 
relative motion): 

where 

s-y; ao''· 
<p(p) = [1 +(Pao/h) 2)2 

(2) 

{3) 

is the normalized wave function of the ground state of 
the hydrogenlike exciton. 

Using the definition (2) and the usual Fermi com­
mutation relations for the operators Gp and bp, we 
can easily obtain the following commutation relations 
for the exciton creation and annihilation operators: 

[Qp, Q~•J = <'Jp, p•- h <jl (p +}) (jl ( p + ~) (a;+P'ap+P + b;+P'bp+P). 

p ' . (4) 

The second term in the right side of (4) is an opera­
tor whose matrix elements, as can be readily shown, 
are of the order of NG~, where N is the concentration 
of the electrons and holes. Thus, (4) corresponds to the 
commutation relations for Bose particles only accurate 
to terms of the order NG~. The fact that a bound com­
plex of two fermions is, strictly speaking, not a Bose 
particle was already indicated earlier in [aJ. We note 
also the following circumstance, which will be of im­
portance later. Effects connected with the deviation of 
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the exciton statistics from Bose statistics come into 
play in the same order of magnitude as the effects con­
nected with the nonideal nature of the Bose gas. Indeed, 
the chemical potential of a weakly-nonideal Bose gas is 

(5) 

where a is the scattering length. But in our problem, 
involving a system of particles interacting by Coulomb's 
law, the only parameter with the dimension of length is 
a0 , and therefore the exciton-exciton scattering length 
should be of the order of a0 • If we take further into 
account the fact that the masses of the electrons and of 
the holes are of the same order of magnitude and 
therefore M =me+ mh ~ m = memh/M, then (5) is 
reduced to the form 11~ Eo(Na~). But corrections of 
exactly this order should arise, as we have already 
seen, as a result of the fact that strictly speaking the 
excitons do not obey the Bose statistics. Therefore the 
problem of an interacting system of excitons, even in 
the lower orders in the concentration, cannot be equated 
to the problem of a weakly-nonideal Bose gas. It is the 
aim of the present paper to examine this question con­
sistently. 

We shall show below that a system of excitons ac­
tually does have many properties similar to the proper­
ties of a weakly-nonideal Bose gas. In particular, at 
sufficiently low temperatures, the excitons becomes 
condensed in a state with momentum P = 0; the cor­
rection to the energy of the ground state Eo is 
quadratic in the concentration, and the correction to 
the chemical potential 11 is linear in the exciton con­
centration: 

Eo /11 = -2Veo(1- 1/dNao3), 

!l = -eo+ feofVao3• 

In these formulas, V is the volume of the system 
and f is a dimensionless parameter of the order of 
unity, an expression for which will be given below 
(formula (35)). The dependence of the energy of the 
moving exciton on its momentum has the usual form 
for a Bose gas 

Iu(P) = fs2P2 + (P2 /2M)', 

(6) 

(7) 

(8) 

i.e., it satisfies the Landau criterion for superfluidity, 
and the speed of "sound" s is connected with the cor­
rection to the energy by the usual hydrodynamic rela­
tion 

Ms2 = (J.t + eo) = feoNao3• (9) 

The essential difference, however, between formulas 
(6)-(9) and the corresponding formulas for a weakly­
nonideal Bose gas is the fact that the coefficient f (the 
sign of which is chosen opposite to that customarily 
used for the scattering amplitude in accordance with 
[ 9J) is not expressed directly in terms of the amplitude 
for the scattering of two free excitons by each other. 
Roughly speaking, the definition of f includes scatter­
ing amplitudes of three different types: exciton-exciton, 
electron-exciton, or hole -exciton, and the corrections 
for the amplitudes of scattering of electrons and holes 
by one another, connected with the presence of the 
exciton condensate. The latter are connected with the 
fact that the presence of the excitons leads to a change 

in the parameters of the electrons and holes (e.g., 
their effective masses) and of the effective interaction 
between them, in the same linear order in the concen­
tration, and this in turn gives rise to a change in the 
internal energy of the exciton and its binding energy, 
and makes a contribution to all the quantities described 
by formulas (6)-(9). 

This circumstance is very significant, since the 
theory of a weakly-nonideal Bose gas shows, as is well 
known, that such a gas can exist at low temperatures 
only when the forces between the particles are on the 
average repulsive, or, more accurately speaking, when 
the scattering amplitude is positive. Otherwise the gas 
state - state with low density - is unstable. In our case 
a similar criterion holds, but not for the scattering 
amplitude but for the quantity f, and the latter will be 
shown subsequently to differ from the amplitude of 
scattering of two excitons in the presence of an essen­
tially positive and rather large term. Therefore the 
exciton gas can exist also in the presence of weak in­
teraction between the excitons, provided this attraction 
does not lead to the formation of bound molecule-like 
states. This is all the more important, since at large 
distances between the excitons a Vander Waals attrac­
tion is certainly present. The system is stabilized in 
this case by the Fermi statistics of the electrons. 

Similar results for the energy and for the chemical 
potential were already obtained by Popov [loJ, but for a 
system that differs essentially from that considered by 
us. Popov considered a system of Fermi particles of 
one kind, and to ensure its stability he proposed that 
the interaction forces between the particles depend es­
sentially on the spins: attraction for one mutual orien­
tation of the spins and repulsion for the other. 

In an experimental investigation of semiconductors 
with large exciton density, the results presented above 
should become manifest in the fact that, at large con­
centrations, the exciton line in the optical spectrum 
should shift towards larger energies by an amount 011 
= fE0Na~. The exciton binding energy decreases by an 
amount of the same order, i.e., the threshold of the 
interband transitions approaches the exciton line. 

At the same time, an additional band appears in the 
luminescence spectrum, the upper edge of which is 
shifted away from the main line into the region of low 
frequencies by an amount equal to the binding energy 
of the exciton 11· This band is a result of exciton 
collisions, in which one of the excitons recombines 
and the other breaks up into an electron and a hole. 
With further increase of the concentration, the intensity 
of the additional band increases, and its upper edge 
approaches the main line. At concentrations Na~ ~ 1 
the binding energy of the exciton tends to zero, i.e., the 
excitons disintegrate into a Fermi gas of electrons and 
holes, and the additional band merges with the region 
of the continuous spectrum. Strictly speaking, our 
analysis is not valid at such high concentrations, but 
the conclusion that the excitons vanish is confirmed by 
an analysis of the opposite limiting case in[ 11 • 12J, where 
it is shown that when Na~ » 1 the gap in the electron 
spectrum, i.e., the effective energy of their binding with 
the holes, tends exponentially to zero at a perfectly 
isotropic dispersion law, and that it vanishes in the 
presence of anisotropy even at zero temperature. The 
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presence of a condensed state and superfluidity should 
apparently become manifest also in an anomalously 
large exciton diffusion. 

We proceed now to a quantitative investigation of our 
problem. The Hamiltonian of the system of electrons 
and holes interacting in accordance with Coulomb's 
law has in the second-quantization representation the 
form 

where ap and bp are the Fermi operators for electron 
and hole annihilation, E~ and Eg are the dependences 

of their energy on the momentum p, and J.le and llh 
are the chemical potentials, determined by the condi­
tions 

(11) 

The symbol ( ... ) denotes averaging over the 
ground state, and K is the dielectric constant of the 
semiconductor. Although it is easy to continue the 
analysis in rather general form, we shall confine our­
selves, in order not to make the subsequent formulas 
too cumbersome, to the case of the simplest dispersion 
law 

(12) 

and, moreover, we put for the time being me = mh 
= 2m ( m = reduced mass). In addition, we disregard 
the spins of the electrons and the holes. The final re­
sult will be presented for the more general case me 
f mh, with allowance for the spin structure in all the 
formulas. 

We note, finally, one more assumption which has al­
ready been made by choosing the Hamiltonian in the 
form (10). Regarding the electrons and the holes as 
two independent types of particles, we neglect the pos­
sibility of the transition of the electron from one band 
to the other, and in particular we omit from the Hamil­
tonian the corresponding matrix elements of the poten­
tial V. This assumption however, is fully justified, for 
owing to the orthogonality of the wave functions of the 
different bands these matrix elements are small com­
pared with those retained in (10) (their relative order 
is Eo/ 6 ~ 10- 2 , where 6 is the width of the forbidden 
band). Because of this we can independently reckon the 
energies of the electrons and holes from the edge of 
the corresponding band, as was done in (12); the exciton 
energy is reckoned in this case from the width of the 
forbidden band. In exactly the same manner, the mo­
menta of the electron and of the hole are reckoned from 
their values at the bottom of each of the bands. 

Taking the foregoing assumptions under considera­
tion, we introduce now Coulomb measurement units, 
i.e., we put m = ti = e 2/ K = 1. Then 

ao = f, Eo= 1/2, Vk = 4:rt/k2, 
(13) 

Ep" = eph = 1hep = p'/4, f!e = [!h = [! /2. 

Here J1. = JJ.e + llh is the chemical potential of the ex-

citons. Finally, we introduce the dimensionless exciton 
concentration 

n = Na03• (14) 

The quantity n is thus the only parameter of the prob­
lem, since J1. should be expressed in terms of n with 
the aid of relations (11), which now take the form 

(15) 
p p 

Formula (15) and all the succeeding ones are referred 
to a unit volume of the system. 

We have already stated above that our problem cor­
responds to the "gas" situation, i.e., n << 1. In this 
sense, it is the opposite of the problem investigated 
in l HJ, which was formally analogous to the problem of 
superconductivity, i.e., it corresponded to weak at­
traction of the electrons and the holes. In the case 
n « 1, the interaction energy is much larger than the 
kinetic energy of the ideal Fermi gas of the electrons 
and holes, and therefore the latter can under no con­
sideration be used as the initial approximation for 
solving our problem. It is clear from physical consid­
erations that the ground state of the system is made 
up of excitons, i.e., of bound electron-hole pairs. It is 
therefore natural to start with the Bogolyubov canonical 
transformation [l3], which is known from the theory of 
superconductivity and is described by the unitary 
operator 

where 

S = exp { S q>p (ap+b_p+- Lpap) }, 
p 

SapS+= upap + upb-p+, 

(16) 

(17) 

Up = cos <jlp, Vp = sin q>p, up2 + Vp2 = 1. ( 18) 

The function lfp should be determined in this case 
from the condition of minimum energy and of stability 
of the ground vacuum state of the system. 

The Hamiltonian (10) is transformed as follows: 

sies+ = u {rpp} + ieo + ie,, (19) 

where U { rpp) is a numerical (not operator) functional 
of rpp, which is separated after reducing the trans­
formed Hamiltonian to the normal form 

lj {rpp} = ~ (ep- ft) Vpz- ~ V p-P' (UpVpUP'Up• + Vp2Up•2 ) • (20) 
p p,p' 

The operator ie0 includes terms that are bilinear in 
the Fermi operators: 

ieo = ~ [ (up2 - Up2 ) cp ;;- ~- ~ V p-p•Vp•2) 

P r 

+ 2upup ~ Vp-p•Up•Vp• J (ap+ap + bp+bp) 
p' 

+ ~ [ ( Ep - [! - 2 ~ V p-p•Upfl) UpVp 
p p' 

- (up2- up2) ~ Vp-p•Up•Vp• J (ap+b_p+ + b_pap). (21) 
p' 

The operator ici contains fourfold combinations of 
the Fermi operators: 
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where 

ie; = .~ Vk {1/2yp, P-kVP', P'+k(ap+ap,+aP'+kaP-k 
pp'k 

+ bp+b.,.+bP'+kbP-k- 2ap+bp.+bp.+kaP-k) 

- + + YP. P-k YP', P'+k (ap+ap,+b_p•-kaP-k 

- ap.+b:!:P'-kbPbP-k + h.c.) + 1/2VP. P-k V•·· P'+k 

b+ b+ + X (a.+a •. + -P'-k -P+k + ap+b_P+kbP'+ka-P' + h.c.)}, 

YP. P' = Up Up• + VpVp• = cos ( q>p - Cj)p•), 

yp, p• = UpVp•- VpUp• = sin(<:pp•- <:pp), 

and obviously the following relation is satisfied. 
2 -2 

YPP' + YPP' = 1. 

(22) 

(23) 

(24) 

The first term in the interaction Hamiltonian Jfi 
describes electron and hole scattering processes simi­
lar to those included in the initial Hamiltonian :Je, ex­
cept that in each vertex, where the momentum of the 
former particle changes from p to q, there appears 
an additional factor Ypq- A graphic representation of 
these matrix elements is given in Fig. la. 

The matrix elements of the second term in ici is 
shown in Fig. lb. They correspond to processes in 
which the Fermi particle is scattered and an electron­
hole pair from the vacuum is created (or annihilated). 
The vertex at which the scattering takes place corre­
sponds in the matrix element to the same factor 
Yp,P.-k' and the vertex at which creation (or annihila­
tion) of an electron with momentum p and a hole with 
momentum -p' - k is produced corresponds to the 
factor Yp,p' +k' We note also that the matrix elements 
:lei corresponding to creation of a pair by an electron 
or a hole have opposite signs. 

In order not to write out the indices e and h on the 
diagrams, we propose henceforth that if creation (or 
annihilation) of an electron-hole pair occurs at any 
one vertex, the upper of the lines drawn from this 
vertex corresponds to the electron and the lower to the 
hole. 

Finally, the last term in iei corresponds to pro­
cesses in which two pairs are produced (or annihilated), 
or else one pair is produced from vacuum and the 
other is annihilated. A graphic representation of these 
processes is shown in Figs. lc, d. To each vertex on 
these diagrams there corresponds a factor y, 

Thus, following the transformation ( 19), our problem 
becomes in some respects similar to the problem of a 
weakly-nonideal Bose gas in the Belyaev analysis [?J: 

the perturbation-theory diagrams include, besides the 
processes describing the particle scattering, also 
vertices in which creation of particles from the vacuum 
(condensate) takes place, or else their annihilation 

···t 'I' '"~ 
p 

-p-H 

Yp',p'-x :• 

p' 
-p-H 

' p p'-x 'Y " p' p-K 'Yp:p'-K p,p-K -p'-K -p+K 

a b c d 

FIG. I. 

(falling into the condensate). This analogy becomes 
even closer if account is taken of the fact that y ~ Vn, 
as will be shown below; consequently, y in our case 
plays the same role as the operators of creation and 
annihilation of condensate particles in Belyaev's tech­
nique. To verify this, we perform the transformation 
(16) also in the normalization condition (15). Then, 
adding both equations of (15), we get 

p 

(25) 

However, as is clear from physical considerations 
(and will be confirmed by the subsequent analysis), the 
mean values ( arPp) and (bpbp) should vanish. Indeed, 
all the levels of the single-particle Fermi excitations 
should lie at energies close to zero (bottom of the band) 
and higher energies, and the chemical potentials of the 
electrons and holes are essentially negative ( fle = J.I.H 
= !1/2 ·- ~ Y4), inasmuch as the chemical potential of the 
excitons fJ. should obviously be somewhere near the 
level of the free exciton. But then all the levels of the 
single·-particle Fermi excitations will be empty, as 
stated above. 

To avoid misunderstanding, we emphasize that al­
though we use as before the terms electron and hole, 
in fact, following the transformation ( 17), ap and bp, 
are operators of certain new Fermi quasiparticles 
corresponding to elementary excitations in the system 
under consideration, and going over into ordinary elec­
trons and holes only when n- 0. 

The last term in (25) must also be set equal to zero, 
i.e., 

(ap+b_p+) = (b_pap) = 0. (26) 

Condition (26) is not satisfied, of course, automatically, 
but we can use the leeway we still possess in the choice 
of the function 'Pp in ( 16), in order to ensure satisfac­
tion of (26). Moreover, we shall verify below that con­
dition (26) is necessary to ensure stability of the 
ground (vacuum) state of the system chosen by us. In 
other words, (26) should be regarded as an equation 
defining cpp, with the normalization obtained simul­
taneously from (25): 

~ vp2 == ~ sin2 <:pp = n. 
p 

(27) 

It f~llows directly from (27) that Vp ~ Vn, and then 
from DB) we get up = 1 - 0 ( n ). Using these estimates 
and the definitions (23), we get y ~ v'n and y ~ 1 
- O(n). Thus, the scattering of the quasiparticles by 
one another is renormalized by the transformation (16) 
only in order n; on the other hand, the appearing new 
processes of creation and annihilation of particle pairs 
contain factors of order Ill, as do the processes con­
nected with the emergence of the particles from the 
condensate in Belyaev's technique. 

We now proceed to obtain the explicit form of (26), 
and to prove that it is a necessary condition for the 
stabil:ity of the ground state. To this end, we note first 
that the transformed Hamiltonian :ie admits of creation 
of single electron-hole pairs with a total momentum 
equal to zero from vacuum. The corresponding matrix 
elements are contained in ic0 , and can also be obtained 
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a b c d 

FIG. 2. 

in higher orders of perturbation theory from :ii. For 
example, the diagrams shown in Figs. 2a, b, which de­
scribe the creation of one pair, can be constructed 
from the matrix elements of Figs. 1b, c. The some­
what more complicated diagram of Fig. 2c can be ob­
tained by making Fig. 2a more complicated by intro­
ducing in it a block <I>, that describes all possible 
processes of scattering of two electrons and two holes 
by one another. It is easy to see that the diagrams of 
Figs. 2a and 2c are of the same order, since the 
quasiparticle scattering processes are of zero order in 
the concentration. Both these diagrams are of order 
n312, since they contain each three vertices y. If we 
confine ourselves to this order, as we shall do in what 
follows, then the block <I> must be replaced by <Po, 
which describes the interaction of two electrons and 
two holes in the absence of other particles, and which 
is obtained from <I> by replacing all the scattering 
vertices y by unity. 

We now call attention to the fact that addition, to the 
diagrams of the perturbation-theory series, of parts 
connected with the remaining part of the diagram by 
only one pair of lines - electron and hole - with zero 
total momentum, leads immediately to divergences. 
Indeed, taking into account the interaction, such a pair 
of lines should be replaced by a complete two -particle 
propagation function G2 of the electron and hole, as 
shown for the diagram of Fig. 2c in Fig. 3a. But the 
function G2 describes also the bound states of the 
electron and the hole, i.e., excitons, with the exciton 
levels corresponding to poles of G2 relative to the total 
pair energy. Since the pair in question was created 
from vacuum, its total momentum is equal to zero, and 
the total energy is f1 = fle + flh· But the energy of an 
exciton with zero momentum, by definition, should 
equal fl. Therefore an electron-hole pair with total 
momentum equal to zero and with energy f1 should 
correspond to a pole of G2, and consequently the dia­
gram of Fig. 3a becomes infinite, as well as all other 
diagrams containing single electron-hole pairs created 
from vacuum. The only possibility of eliminating this 
divergence is to stipulate mutual cancellation of all the 
diagrams that lead to creation of one pair from vacuum. 
This condition, as is well known, should indeed define 
the function <'Pp· We carry out this cancellation with 
accuracy to terms of order n312 inclusive. The diverg­
ences can be eliminated by selecting the function <'Pp· 

In order to analyze this process in somewhat greater 

a b 

FIG. 3. 

detail, we introduce the function 

F(p,e)=-i ~ (Tb_p(t+T)ap(t))ei"d,;, (28) 

which is analogous to the well known pair function in­
troduced by Gor'kov in superconductivity theory. Here 
ap ( t) and b-p ( t) are the Heisenberg operators of an­
nihilation of an electron and a hole. This function can 
be represented symbolically by the diagram of Fig. 3b, 
where the block Leh is the sum of all diagrams with 
one incoming pair of lines - one electron and one hole 
line - and with lines irreducible with respect to such a 
pair inside. The simplest elements of Leh are the co­
efficients of the operator apb~p in :Ko, and the dia­
grams of Figs. 2c, d. All the remaining diagrams con­
tained in Leh are of higher order in the concentration. 
Strictly speaking, it is impossible to satisfy the con­
dition Leh = 0, since we have at our disposal the 
function (/Jp, that depends only on the momentum p, 
and Leh depends on the 4-component quantity 
p = {p, E}, where E is the relative frequency of the 
electron and the hole. However, to cancel out the 
divergences, it suffices, as we shall presently show, 
to satisfy the weaker condition 

r ~ J ~eh(P, e)G,(p, e)Gh(- p,- e)-= 0. 
2n 

(29) 

The point is that the pole term in G2 , which is the 
only one that needs to be cancelled out, depends on E 

only via the entering single-particle Green's functions 
Ge ( p) and Gh ( -p). Therefore the integration with 
respect to E in the pole term of the diagram in Fig. 3b 
reduces to the integral in formula (29) and, if (/Jp is 
chosen such as to satisfy (29), then the diagram on 
Fig. 3b becomes convergent. Taking (21) into account, 
we rewrite, accurate to terms of order n312 inclusive, 
the condition (29) in the form 

p' p' 

+(fl.-ep)) A(p e)ide/2n=O, (30) 

where A ( p, E) denotes the sum of the diagrams of 
Figs. 2c, d. The factor f1 - Ep in front of the last term 
in (30) is the result of the fact that Leh contains the 
coefficient of ar;b:p in (21). After it is multiplied by 
Ge(p, E)Gh(-p, -E), andfollowingintegrationwith 
respect to E, a factor ( f1- Ep rl arises, and Eq. (30) 
is obtained from (29) by multiplication by f1- Ep. 

In the lower approximation in vp, i.e., accurate to 
terms of order Vl:l, Eq. (30) reduces to the ordinary 
Coulomb equation 

d'p' 
( Bp- [to) Vp- ~ V p-poVp• --3 = 0. 

(2n)· 
(31) 

Its solution in conjunction with the normalization condi­
tion (27) takes the form 

vp = 1n¢o(p), fLo= -eo, (32) 

where Eo and 1/!o ( p) are the binding energy and the 
wave function of the ground state of the exciton, deter­
mined by formulas (1) and (3). The correction to the 
chemical potential f1 - flo can now be determined from 
(30) with the aid of ordinary perturbation theory, pro­
vided we substitute in the terms of order n312 , which 
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a b 

FIG. 4. 

were omitted from (31), the zeroth approximation for 
Vp from (32) and we regard them as a small perturba­
tion. After simple calculations we obtain (in Coulomb 
units) 

(33) 

where 

1 id4p ( ) 
A= J A(p,e)vp(~to- Bp) (2:n:)' = n2t.. 34 

We shall show that the quantity A, defined by for­
mula (34), is described by the graphic block shown in 
Fig. 4a. To this end we draw in greater detail, for ex­
ample, the diagram of Fig. 2c, drawing in it a vertical 
section corresponding to the instant of time of the last 
interaction on the Gh ( -p) line. One of the correspond-­
ing diagrams is shown in Fig. 4b. Since the interaction 
vk does not depend on the transferred frequency, the 
entire left part of this diagram does not depend on E. 

In its right side, the functions that depend on E are 
Ge ( p), Gh ( -p), and the three -particle propagation 
function for which E is the summary energy. The 
singularities of the last two functions with respect to E 
lie at E > 0 (i.e., in the lower half-plane), and the 
singularities of Gh( -p) lie at E < 0 (i.e., in the upper 
half-plane). We note now that the product 
(Jl.o- Ep)Ge(p)Gh( -p) simply equals Ge(p) 
+ Gh ( -p). Then, taking into account the forgoing, the 
only term making a contribution is that containing 
Gh ( -p), but not Ge ( p). Therefore when integrating 
the contribution from diagram 2c in (34), we can leave 
out the product ( Jl.o - Ep) Ge ( p). Repeating this rea­
soning for the contribution from diagram 2d, and noting 
that, with the required accuracy, vp - vp ~ Ypp'• we 
can readily verify that A is given by the diagram of 
Fig. 4a, in accordance with the statement made above, 
and is, as clearly seen from this figure, a quantity of 
the order of n2, while .\. is a dimensionless constant 
of the order of unity. From a comparison of formulas 
(7) and (33) it follows that 

f = 13:n:/ 3 +'A, (35) 

where 

'A = ~ [.Po ( ~- P) - .Po(~+ P ) ] [ .Po ( - ~- q) - >Po( - ~2 + q) ] 
[ (k' ) (k' )l[ k' X<D(k,p,q;k',p',q') ¢ 0 \"2-p' -ljl0 \"2+p' _ ¢ 0 (-z--q') 

-ljlo (- ~' + q') J (2:n:)-24d'k d'p d'q d'k' d'p' d'q', (36) 

<I> is the complete single-time propagation function of 
two electrons and two holes with total momentum equal 
to zero and with total energy equal to -2Eo. 

We emphasize now that in obtaining these results we 
actually used the assumption that two excitons cannot 
form a bound state. Indeed, if such a state were to 

exist, then the quantity A ( p, E), regarded as a function 
of fl., would have a pole at fl.< -Eo. In the vicinity of 
this pole, neither the perturbation theory used by us to 
solve (30), nor this equation itself, which is obtained by 
choosing the principal diagrams with respect to the 
powers of the concentration, would be valid. The valid­
ity of the assumption that there are no bound states of 
two excitons will be discussed later. 

We now proceed to consider the spectrum of ele­
mentary excitations in the exciton system. Obviously, 
single-particle excitations (band states of electrons 
and holes) will be separated from the ground state by 
a gap having a width approximately equal to Eo. The 
lowest excited states should be the two-particle states 
corresponding, in the limit as n ~ 0, to the motion of 
the individual exciton as a whole. They are determined 
by the poles of the two-particle Green's function 
Ga(P; p, p') where P = {P, E} is the summary mo­
mentum and frequency of the electron-hole pair, and 
p = { p, c} and p' = { p', E'} are the relative momen­
tum and frequency of the electron-hole pair. The pres­
ence of an exciton condensate makes it necessary to 
introduce into consideration, besides the ordinary pair 
function G2 , also the function G2 ( P; p, p'), which is 
the sum of all the connected diagrams describing 
creation of two electron-hole pairs from vacuum. A 
diagram of this function is shown in Fig. 5a. The 
equivalent diagram shown in Fig. 5b is more convenient 
for tracing out the diagrams, and therefore will also be 
used later. 

It is easy to verify that the functions G2 and ~2 are 
determined by the system of equations of Fig. 6, which 
is analogous in some respect to Belyaev's system of 
equations[?] for a non-ideal Bose gas. In the equations 
of Fig. 6 we have grouped together the terms in such a 
way that Ga denotes not the two-particle Green's func­
tion itself, but only that part corresponding to the con­
nected diagrams. The main difference between these 
equations and the purely algebraic equations of Belyaev 
lies in the fact that the equations of Fig. 6 are integral 
with respect to the momenta of the relative motion of 
the electron and the hole, and therefore describe both 
the motion of the exciton and its internal structure. 
Near the poles corresponding to the exciton-gas 
density oscillations, the main contribution to the func­
tions G2 and Ga is made by diagrams that break up 
into two parts connected by a single electron line and 
a single hole line, directed to one side, i.e., homogene-
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FIG. 6. 
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FIG. 7. 

a b 

FIG. 8. 

ous terms with respect to G2 and G2 in the right sides 
of the equations of Fig. 6. The inhomogeneous terms 
contain the vertices r( P, p, p') and r( P; p, p'), 
which have no pole character and constitute sums of 
diagrams that are irreducible in the indicated sense. 
Accurate to terms linear in n we have 

f (P; p, p') =- V p-p·Yp+P;2, p'+Pi2Yp-P/2, p'-P/2 + v' (P; p, p'), (37) 

where the first term corresponds to Fig. 1a, and the 
second is the sum of the diagrams of Fig. 7a-d. The 
block <I> in these diagrams, just as in Fig. 2, contains 
all possible scatterings of two electrons and two ho'les 
by one another in the zeroth order in the concentration, 
while the block <I>' in the diagrams of Figs. 7a,d dif­
fers from <I> only in that it does not contain the dia­
grams shown in Figs. 8a, b, since they are included in 
the self-energy corrections to the functions Ge and 
Gh. If we join these corrections to the diagrams of 
Fig. 7, then the block <I>' is completed to form the 
block <1>. 

In order not to complicate the derivations that fol­
low, we shall proceed in this fashion, i.e., we shall 
assume that the function v'(P; p, p') is determined by 
the diagrams of Fig. 7, in which <I>' is replaced by <I>, 
and the single-particle Green's functions Ge and Gh 
are taken throughout without the self-energy correc­
tions of second and higher orders in the interaction, 
i.e., in accordance with (21), also in an approximation 
that is linear in n 

Ge(P) = Gh(P)={e- ep- !l _I Vp-p,(VpVp,- Vp,')~+ ib}-'. 
2 .l 8n3 

(38) 

In analogy with formula (37), the vertex part of 'f 
is the sum of all the diagrams describing the creation 
of two pairs from vacuum and of internal lines that are 
irreducible in terms of the pair and go to one side. In 
the approximation linear in n we have 

f(P; p, p') = Vp-p'YP+P2,-P'+P/2Yp'-P/2,-p+P/2+ v(P; p, p'). (39) 

The first of the terms in (39) corresponds to the 
matrix element of Fig. 1c, and the second to the sum 
of the diagrams of Figs. 9a-d. The diagrams of Fig. 9 
have the general property that the outermost interac­
tion occurs on them between one of the particles of the 
first electron-hole pair and the particle from the 
second pair. This property reflects the requirement 
that the diagrams entering in r be irreducible with 
respect to each of the particle pairs. 

~~)P ffl+Jpffh=)P~)P 
klt=Jp' tlJj::Jp'q_jt:)p'tU==Jp' 

a b c d 

FIG. 9. 

~ As seen from (37) and (39), r = V p-p' + 0 ( n), and 
r ~ n. Consequently, the system of Fig. 6 can be 
solved with the aid of perturbation theory, putting in 
the zeroth order r = Vp-p 1 and 'f = 0. We shall as­
sume also that the summary frequency E and the 
kinetic energy P 2/2M of the exciton are small com­
pared with unity, and employing perturbation theory, 
we confine ourselves to terms of the first order in all 
three parameters n, E, and P 2/2M. It can be readily 
seen that accordingly we must put P = 0 in (37) and 
(39). 

We now write out, using the assumed approximation, 
the equations of Fig. 6 in analytic form 

I I id'pt 
G,(P;p,p )=- Ge(P+P/2)Gh(- p+P/2) .l (2n)' Vp_p,Gz(P; p,,p1 ) 

I 2 I I id'p, 
+ Ge(P) G"(- p) .l {V P-P,YvP, + u (p, pi) }G,(P; p,, P ) (2n)' 

r - 2 _ - I id'p, 
+ Ge(P) Gh(- p) .l {V P-v,ypp, + v (p,p,) }G,(P; p,, P) (2n)' 

+ G,(p + P/2)Gh(- p + P/2)f(p,p1 )Ge(P1 + P/2)Gh(- P1 + P/2), 

(40) 

G,(P; p,p1) =- Ge(P- P/2)G"(- p- P/2) I id'pt V v-v,G2 (P; p1,p') 
.l (2n)' 

·a• + Ge(P) G,(- p) ~ {V v-v,Y:v, + V1 (p, Pt) }G,(P; p,, P 1 )--f2~~. 
l , - 2 _ I id'pl + Ge(p)Gh(- p) .l {v v-v,Yvv, + v (p, pt) }Gz(P; p, P) (2n)' 

In the zeroth order in the perturbation, the pole part 
of the functions G2 and G2 is determined by the first 
terms in the right sides of (40) and (41). We see there­
fore that 

G2(P; p, p1 ) = Ge(p)Gh( -p)A (P; p, p1 )Ge(P1 )Gh( -p1 ), 

C,(P; p, p1
) = Ge(p)Gh( -p)A(P; p, p1 )Ge(P1 )G"( -p'). 

(42) 

Substituting (42) in those terms of (40) and (41) 
which pertain to the perturbation, and integrating with 
respect to E, we obtain a system in which the integra­
tion takes place already over the three-dimensional 
momentum p, and in the zeroth order the homogeneous 
parts of both equations reduce to a Coulomb equation of 
the type (31). The solution can be obtained in standard 
fashion with the aid of the Green's function of the 
Schrodinger equation with Coulomb potential. This 
procedure is straightforward but quite laborious, and 
we therefore confine ourselves to presenting the final 
results. 

The pole terms of the two-particle Green's functions 
are of the form ( 42), with 

( p2) ( pl2) 
A(P;p,p1)= .eo+ 2m. ¢o(P)~(P)1Jlo(P1 ) eo+-w 

( p2 \ - ( pl2 \ 
A(P;p,p1 )=\eo+ 2m. )¢o(p)o9(P)'I)lo(P1

) eo+-2~ }• (43) 
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where 

f.l ~ f.lo + P2/2M + E 1 + Np Np 
;§(P) = E2 ~£2(P) = E-E(P)- E+E(P)' (44) 

- f.l-f.lo 
;§(P) =-E 2 -E2 (P)' (45) 

E (P) = [ f.l-;/" P2 + ( :~) 2 r (46) 

N = _!_ {f.l- f.lo + P'/2M _ 1} 
P 2 E(P) . 

(47) 

According to (43)-(47), the factors :9( P ( and 
:1; ( P) of the two -particle Green's functions G2 and G2, 
which depend on the summary 4-momentum of the elec­
tron-hole pair P, coincide in form with the single­
particle Green's function for a weakly non-ideal Bose 
gas [?J, and the energy of the elementary excitations 
E ( P) and the occupation numbers of the "supercon­
densate" excitons Np are connected in the usual 
manner with the correction to the chemical potential 
fJ.- flo· In formulas (43) m* denotes the reduced mass 
of the electron of the hole (without the previous limita­
tion me= mh). It can be shown, in addition, that allow­
ance for the spin variables does not change any of the 
final formulas. 

Let us make one more remark explaining formulas 
(44)-(47). The correction to the chemical potential 
fJ.- flo, which enters in these formulas, is due to such 
terms of the Eqs. (40) and (41), which contain the 
quantities v'(P; p, p') and v(P; p, p'). During the 
course of the solution, as can be readily seen, opera­
tions are performed on these functions, corresponding 
the closing of the diagrams of Figs. 7-9, as a result 
of which they reduce to the already known blocks of 
type shown in Fig. 4a. 

We now discuss the results from the point of view of 
the possibility of their experimental observation. We 
have already mentioned that our analysis, strictly 
speaking, is not valid if the excitons form a bound state 
of the hydrogen-molecule type. Such a state apparently 
arises unavoidably in those cases when the mass of one 
of the particles (usually a hole) is much larger than that 
of the other, i.e., for example, in the majority of semi­
conductors of the type AliiBV, where me+ mh ~ 0.1, 
inasmuch as in this case the problem of the interaction 
of two excitons does not differ in principle from the 
problem of interaction of two hydrogen atoms. The 
situation changes radically, however, if the masses of 
the electron and hole are of the same order. In this 
case the relative contribution made by the kinetic en­
ergy of the exciton motion to the total energy of the 
system increases strongly (the analog of zero-point 
oscillations of the atoms in the hydrogen molecule). 
Indeed, if a bound state with radius a1 is produced, 
then the average kinetic energy of relative motion of 
the excitons should be, by virtue of the uncertainty 
principle,?: n2/(me + mh)ai. When me/mh « 1, this 

quantity is small compared with the interaction energy, 
the order of which is Eo~ n2/mea~. But when me/mh 
~ 1, these two energies are of the same order, if a1 
~ a 0 , which should prevent formation of a bound state 
or, at any rate, should decrease noticeably its binding 
energy E1 and increase the radius a1. 

The limiting case me = mh was considered by 
Hylleras and Ore [14J (bound state of two positrons). 
The binding energy obtained in this case E1 ~ 10-2 Eo 
corresponds in our problem to E1 ;.>j 10- 4 eV and can 
be disregarded, since at temperatures T :2 1 oK this 
bound state no longer exists. It vanishes apparently 
also at zero temperature, if the exciton density is such 
that na~ >> 1, where a 1 ~ n/VmE1 >>ao, i.e., if the 
average distance between excitons is smaller than the 
radius a 1, but still much larger than ao. In this case 
the results obtained by us for T = 0 are valid in the 
region of intermediate concentrations a ~3 << n << a0 3 • 
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