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The problem of vaporization of a light-absorbing metal into vacuum is considered. It is assumed that 
the density of the light energy flux is not excessively large so that there is no significant absorption of 
light by the vapor. The expansion of the vapor thus occurs in a centered rarefaction wave. The obtained 
boundary conditions relate the values of the hydrodynamic variables in the rarefaction wave with the 
surface temperature of the metal. This is accomplished by an approximate solution of the gaskinetic 
problem of vapor motion within a thin film directly adjacent to the phase interface. The velocity of the 
vaporization front, the surface temperature of the metal, the temperature and velocity of the vapor, and 
the recoil momentum are calculated. 

THE problem under consideration concerns the vapor
ization of metal exposed to laser radiation in the case 
when the radiation flux is not excessive. This limitation 
is necessary because radiation absorption by vapor be
comes significant when the flux density is high enough; 
in such a case the motion of the vaporization front and 
the expansion of the resulting vapor cannot be consid
ered apart from the problem of light absorption. It ap
pears that the range of flux densities for which the va
por absorption of light is insignificant is limited (for 
the majority of metals and a neodymium glass laser) by 
the values of q ~ 1016 - 1017 erg/cm2-sec. A more pre
cise value can be readily obtained in each specific case 
when the problem of vapor motion has been solved. In 
contrast with the papers1-3 that present the same case 
of low radiation flux densities, this paper features cor
rect hydrodynamic boundary conditions on the metal 
surface that allow us to relate the solution of the solid
phase thermal conductivity problem to the gas dynamic 
problem of vapor motion. This, in turn, permits us to 
avoid certain arbitrary assumptions contained in the 
above papers and to obtain more precise formulas for 
the velocity of vaporization, vapor temperature, surface 
temperature, and other parameters. 

As in [l-3 J, we consider a single-dimensional case 
and a time -constant radiation flux. If the vapor is re
garded as an ideal gas and the absorption of light in it 
is neglected, then the expansion of vapor into vacuum is 
described by a centered rarefaction wave. [4 J In this 
case the solution of the thermal conductivity problem 
for a metal shows that a stationary (we use throughout 
this paper a system of coordinates bound to the vapori
zation front) temperature distribution is established in 
the metal in a time period of the order of a/v2 (a is 
thermal conductivity and v is the maximum velocity of 
the phase interface). Under stationary conditions on the 
surface of the metal, the initial vapor velocity in the 
rarefaction wave is equal to the local sound velocity. It 
is clear, however, that such condition is not fulfilled 
rigorously on the metal surface, if only because the ve
locity distribution of the atoms near the surface is sub
stantially different from the local equilibrium distribu
tion, which completely precludes a hydrodynamic de
scription of motion at the surface. Consequently in the 

direct vicinity of the vaporizing surface there is are
gion of several mean free path lengths in which the dis
tribution approaches equilibrium and which should be 
considered as a discontinuity surface in the hydrody
namic treatment. 

The Boltzmann equation must be solved to determine 
the structure of this region and the values of the hydro
dynamic variables beyond the discontinuity. This cannot 
be accomplished by any mathematically correct proce
dure. The situation resembles in this case that of a 
strong shock wave (or rather a "strong rarefaction 
wave"). As in the problem of the structure of a strong 
shock wave, we could probably expect that the method 
of moments with a test function close to the locally equi
librium function[5 J will not yield an adequate approxi
mation. More appropriate is the method consisting in 
the solution of the kinetic equation suggested by Tamm[6 J 
and Mott-Smith[7J in their study of shock wave struc
ture. The special feature of this method is an approxi
mation of the distribution function within the disconti
nuity region by the sum of distribution functions before 
and after the discontinuity with coordinate -dependent 
coefficients. Such an approximation can be acceptable 
if the region containing the main change of the distribu
tion function is narrow enough. 

We write the distribution function in the form 

f(x, v) = a(x)ft(v) + [1- a(x)]/2(v) ... , (1) 

where 

fl(v) = lno( 2rr~To )\xp(- ~~J Vx > 0 

~/2(v) v., < 0, 

( m )''• ( (v.,- u1)2 + vu2+ v.2) 
/2(v) = nt 2:nkTt exp - m 2kTt . 

a (x) is the unknown function that satisfies the condi
tions a(O) = 1 and a(oo) = 0, T 0 is metal surface tem
perature, and n0 is saturated vapor density at this tem
perature. The expression for f1(v) takes into account 
the fact that the vaporized atoms have Maxwellian dis
tribution at a temperature equal to the surface temper
ature.[8J The values of n1, u1, and T1 refer to equilib
rium beyond the discontinuity and are related by 

(2) 
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The conservation laws hold within the discontinuity re
gion 

~ dvvxf(x, v) = Ct, 

~ dvv,N(x, v) = Cz, 

) dvvxv2f(x, v) =Ca. 

(3) 

Relationships (2) and (3) are sufficient for the calcula
tion of flow parameters at the acoustic point. The solu
tion of Boltzmann equation is necessary only to deter
mine the fine structure of the nonequilibrium region and 
is not required in this case. 

By computing the integrals in (3) we obtain a system 
of equations for the equilibrium distribution parameters: 

where 

f(e-M' ) 'Pt(M) =- --_-erfeM , 
2 M)'n 

erfcM 
<pz(M) = <pt(M)- 4MZ , 

( 1 ) erfcM 
<pa(M) = 1 +- !Jlt(M) ---· 

2M2 MZ ' 

2 "' 
erfcx =--= S e-u'du; 

l'n x 

M= y.v. 
2 

For the adiabatic index y we assume the value % cor
responding to monatomic gas, since the equilibrium of 
the "inert" degrees of freedom (electron excitation 
and vapor condensation) is established at a distance 
from the surface that is much larger than the dim en
sian of the region with Maxwellian distribution. We 
solve the system of equations (4) and obtain: {3 = 6.29, 
T1 = 0.67To, and n1 = 0.31no. All the remaining hydro
dynamic variables at the acoustic point can now be 
readily computed. 

The following are some results presented without 
detailed computations. The surface temperature is de
termined by the equation 

-v kTo ( kTo) mn0 (To) - £+2,2- = 3,1q, 
m' m 

where L is the heat of vaporization of unit mass. The 
velocity of the vaporization front is determined by the 
formula 

v = ---,:--:--=-q :----=--;:,-:- -----:-::---:-~q:--:::-
p (L + Wt + UtZ/2) ~- p (L + 2.2kT0/m) 

that differs somewhat from that derived in l3 J without 
solving the gasdynamic problem. The recoil momentum 
acting on the metal can be obtained from 

.!!..._ = 1,69 b 
Q 1/L 1 +2,2bZ 

where Q is energy absorbed by the metal and 
b2 = kTo/mL. We note that the specific momentum p/Q 
has a maximum at a certain value of radiation flux den
sity. This maximum was observed experimentally in a 
number of cases (see for example l9 l ); however, a more 
detailed comparison with experiment is difficult since 
the corresponding values of q are usually close to the 
limit of applicability of this analysis. 

According to computation the flow J _ of atoms con
densed back on the surface of the metal amounts to ap
proximately 18% of the flow J+ = no"kTo/27Tm of the 
vaporized atoms. Finally we note that the density of 
vapor at the metal surface is n(O) = 0.67n0; at the same 
time, the density n1 at the acoustic point (provided that 
To< 0.4mL/k) exceeds the equilibrium density of satu
rated vapor. Therefore the kinetics of vapor condensa
tion must be taken into account in the computation of 
flow in the rarefaction wave. This renders the problem 
more complex sine~ the flow is no longer a simple cen
tered wave. 

In conclusion I sincerely thank I. E. Dzyaloshinskii, 
G. S. Romanov, and Yu. V. Khodyko for useful discus
sions. 
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