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The probability for ionization of an highly excited atom that passes slowly near a metallic surface is 
calculated. It is assumed that the distance from the metal greatly exceeds the orbit of the excited 
electron. 

KuPRIYANOV [lJ observed in recent experiments that 
a metal grid placed in the path of a thermal beam of 
strongly excited atoms causes the atoms to be ionized. 
In principle, two essential ionization mechanisms are 
possible for an atom moving near a metal. The first is 
detachment of an electron as a result of the time-de
pendent perturbation, that is, an inelastic collision of 
the atom and the metal. The necessary energy is drawn 
from the kinetic energy of the atom, and a free electron 
is produced in the final state. Such a process begins 
with a certain value of the atom velocity (in the experi
ments ofL1J this threshold was quite high, ~o.3 eV in 
energy). The ionization probability should decrease 
rapidly with decreasing velocity, as is usual in a non
adiabatic transition. 

The second mechanism consists of a unique process 
of "charge exchange" between the atom and the metal. 
This mechanism is of the non-activation type if the 
state of the atom corresponds to the region of the al
lowed band of the metal above the Fermi level. In this 
case the transition of the electron into the metal is not 
forbidden by the statistics. For strongly excited atoms 
such a situation is quite probable. Under the experi
mental conditions of [l] the second mechanism appar
ently prevails, owing to the low velocity of the atoms in 
the beam. 

The purpose of the present paper was to calculate 
the probabilities of the described "charge exchange" 
process at low atom velocities. It is first necessary to 
find the ionization probability (per unit volume) of an 
atom resting at a given distance from the surface of 
the metal. We choose the origin at the center of the 
atom, and the boundary of the metal is assumed to be 
plane and defined by the equation z = -R. We shall 
henceforth consider, for concreteness, the hydrogen 
atom; this does not limit the generality of the analysis, 
since highly excited levels of complicated atoms cor
respond to hydrogenlike states. The Hamiltonian of the 
electron should include, besides the Coulomb field of the 
nucleus, also the polarization of the metal. The char
acteristic period of motion of the electron in the hydro
gen atom and a state with principal quantum number 
n >> 1 is of the order of n3 (we use atomic units). This 
is much longer than the relaxation time of the electrons 
of the metal relative to the electromagnetic perturba
tion. We can therefore neglect the retardation effects 
and determine the polarization of the metal by electro
static methods. It is then necessary to add to the 
Hamiltonian of the hydrogen atom the potential of the 
electrostatic image forces of the electron and of the 
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nucleus, H = Ho +HI> and in the region z > -R (o'Jt
side the metal) we have 

Ho =- _!_11- ~' {1) 
2 r 

1 
H, =- + [x' + y' + (z + 2R)2J-'h. {2) 

2(z+R) 

In the region z < -R (inside the metal) the potential 
energy of the metal is constant and is equal to the work 
function taken with a minus sign. When z + R ~ 1, ex
pression (2) is not valid, since the macroscopic descrip
tion becomes meaningless at such short distances from 
the metal. We shall henceforth consider only distances 
greatly exceeding the radius of the atom in the n-th 
state, that is, R >> n2. The details of the behavior of 
the potential in the direct vicinity of the metal turn out 
to be insignificant in this case. As can be seen from 
the foregoing, the problem under consideration in per
fectly analogous to the problem of ionization of an 
atom by a external electric field (see [2J). 

We confine ourselves for simplicity to the axially 
symmetrical states of the atom, in which the magnetic 
quantum number m is equal to zero. (The case 
m f 0 can be considered similarly). It is convenient to 
use the parabolic coordinates ~ = r + z and 7] = r - z. 
The splitting of the degenerate level E <o> ( n) = - 1/2n2 
can be obtained from perturbation theory. Indeed, the 
effective region of values of ~ and 7] in the integrals 
of H1 with unperturbed hydrogen functions is of the 
order n2, that is, much smaller than R. Expanding H1 
in ~/R and 7J/R, we obtain in the first nonvanishing 
approximation H1 = ( ~ - 7])/8R2 • A similar form is 
possessed by the perturbation operator in the case of 
a homogeneous electric field. The results for this pur
pose is known [2J. The correct zeroth-approximation 
functions are the "parabolic" wave functions fn1 ( ~) 
and fn2( 7]), where n1 and nz are the quantum number 
of the Coulomb problem in parabolic coordinates 
(nl + n2 + 1 = n). In the first perturbation-theory ap
proximation we get 

1 3 
E(1l(n1, n2 ) = - Zn' + SR' n(n1 - n2). (3) 

The lifting of the degeneracy described by formula {3) 
is complete for the states with m = 0. The total 
splitting is of the order of n2/ r 2 and is much smaller 
than the binding energy of the electron 1/n2. This is 
sufficient for the applicability of perturbation theory to 
high levels (seeL2J). Thus, {3) determines the instan
taneous terms of an atom that moves slowly near the 
metal. 
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The ionization process, however, is connected with 
the transition of the electron into the region of large 
7J ( 7J ~ R). Here perturbation theory cannot be used at 
all, since H1 2 Ho when 7J Z R. To find the ionization 
probability we can proceed in the same manner as in 
the case of a strong homogeneous field [a]. An impor
tant role is played here by large values of 7J and rela
tively small values of ~: 

l'x2 + y2 = l'~~ ~ n2, I')~ R~n2, 1; ~ n4 /l') <Z,R, 

that is, a narrow cylindrical region near the z axis. In 
this region the Schrodinger equation can be written 
from 

'r] I') k' J ( ) 
+2(2R-I'J)- 4R-I'J -4 (£+1'J) lJl = O, 4 

where k2 = - 2E, and {31 and f3a are the variable
separation constants with /31 + f3a = 1. Equation ( 4) 
follows from the Hamiltonian (1) and (2), if we neglect 
in it the quantity ~ compared with 7]. This means that 
the dependence of the total wave function on ~ is the 
same as in the unperturbed atom: 

lJlk, n, = const · fi(\;) /2 ( I'J); 
/!(£) = l'kexp (-112k1;)F(-n1, 1; k1;), ( 5) 

where F is the confluent hypergeometric function. To 
determine the dependence on 7J we obtain from (4) the 
equation 

a I fJ/2 \ [ k2 11 '11 J 
a11\ 11 ~v+ 11'-4 11 +2(2R-I'J)- 4R- 11 t.=o. (6) 

We are interested in the probability of ionization of 
the atom in the state n1, na. In the case (6) should be 
solved under the condition that for small 7J the function 
fa ( 7]) goes over into the unperturbed wave function of 
the hydrogen atom with quantum number n2 : 

h(I'J-+ 0)-+ l'kexp ( - 1/zki'))F( -nz, 1; kl')). (7) 

Then the normalization constant in (5) equals 
( v'1T n)-1. Another requirement imposed in the solution 
(6) is that its asymptotic form must not contain waves 
incident from the metal on the atom, that is, traveling 
in the direction of negative 7]. 

Introducing the function X ( 7J) = .fTi f2 ( 7J), we obtain 
from (6) an equation of the type of the one-dimensional 
Schrodinger equation: 

" + [ 1 k' + ~. + 1 + 1 X -4- -;) 41'] 2 2-(-2R ___ I'J_)_ 4R 1_ ~-J X= 0. (8) 

Equation (8) cannot be solved exactly. It is possible, 
however, to use the large value of the distance R and 
solve (8) in three different regions. Then, joining to
gether the obtained solutions, we get the wave function 
outside the barrier near the metal, from which we de
termine the ionization probability. 

Let a be a certain value of 7], such that k- 2 << a 
« R. In the region 0 :s 7J :S a in (8) we can neglect fJ 
compared with R in the last two terms. Then the solu
tion X1 ( TJ) satisfying the foregoing condition as 7J - 0 
is 

- ( 1 \ ( i fie• \ X,(q)= l'k11exp --kYJ J F -;--__:.__, 1; kl') 1· 
2 I 2 k / 

(9) 

Under the barrier, at k2 7J >> 1, the asymptotic form of 

x1( TJ) is 

~ (k'l']) -Jl,!k ( k'l']) (ki'J) PJk ( inflz in kTJ) 
X• ~ f('/z -fh/k) exp 2- + f( 1/2 + ~z/k) exp -k--2-2 · 

(10) 
On the complex plane of the variable 7J it is necessary 
to make two cuts along the real axis: (- "", 0 J and 
(2R + oo]. Let us define arg fJ = arg(2R- TJ) = 0 on 
the segment ( 0, 2R ]. The values of ( -TJ) are taken by 
definition on the upper edge of the left cut, that is, 
-TJ = I 7J I ei1T. 

In the region under the barrier, a :s 7J :s 2R - a, Eq. 
(8) can be solved in the quasiclassical approximation. 
Indeed, putting 

pZ(I'J) = r- !kZ+ ~~~+ 4~2+ 2(2~-n)-4R~l]J 
and calculating the parameter of the quasiclassical 
theory d(1/p)/d7J, we get 

max I _cl_ {~)I ~ (a'k3)-'<Z,k<Z, 1. 
d!] I p 

Thus, the condition of the quasiclassical theory is 
satisfied, and we obtain the solution in the internal 
region ( B and C are arbitrary constants): 

X"(lJ)= B expOIP(I'J)Idll)+ C exp(-11P('l)ldi'J). 
l'IP('I1) I a l'IP(Il) I \ a 

(11) 
In the interval under consideration the term with k2 

in p ( 7J) is much larger than the remaining ones, so 
that we can expand I p ( 7J) I in (11). When 7J ~ a, the 
solution Xa ( 7J) should be "joined" with the asymptotic 
value of X1 ( 7J) (formula 10)). Calculating the integrals 
in (11) and comparing with ( 10), we obtain the values of 
the coefficients B and C: 

Vk k~k 
B = - e~• ~-,--~-;-;-:-

2 f( 1/z-~z/k)' 

C = 1/ k e-~, kP,fk exp {in~z/k- in/2} 
V 2 f( 1/z + flz/k) (12) 

where 'P1 = ka/2 - f3ak-1 ln a. 
In the region 2R - a :S 7J < 2R Eq. (8) takes the 

form 1> 

xs"+ [-~k2+--1--]xs=O (13) 4 2(2R-Il) 

(we neglect terms of order 1/R compared with k2 and 
1/a). The general solution of (13) is expressed in 
terms of Whittaker functions (D and E are integration 
constants): 

xs=DW,/2k,'h(kx)+EW_,/2h,'!,(-kx), x=2R-I'). (14) 

In accordance with the definition given above for 
arg ( -7]), we should assume that arg ( - x) = - 1T when 
7J lies outside the segment l 0, 2R ]. The asymptotic 
value of (14) under the barrier when kx » 1/k » 1 
(argument larger than the index) is: 

J(:l(l)(x) ~ De-kxf2(kx)'f2k + Eekxf2(lcxe-in)-l/2k. 

This expression has the same form as X2 ( 7J) from (11) 

1l As already indicated, the region z + R"" R- n/2- I is excluded 
from consideration. Therefore Eq. ( 13) holds for the interval (2r- a, 
2r -/), where l- I. 
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as 7J - 2R - a; from this we determine the coefficients 
D and E; 

- 2B-a 

D = V ~k-112hBe-<i>Jexp ( ~ IPidTJ ). 
k \ 

a 

- I.R-a 

E = V 21, (ke-in)I/2/<Ce~• exp (- ~ IPidTJ), 
ka }na 

cpz=-2+v;-· 
a 

(15) 
Finally, let us find the asymptotic value of X3 outside 
the barrier when 1/k » kx » 1 (index larger than the 
argument) [3 J: 

xsl2> ~ - D (8k2x) ''• exp (- __!. rl- _!_ 1n _!_ l sin ( l'2x - ~ - ~ \ 
2/i! 21< 2k J \ 2k 4 ) 

+ E (..!.. k2x )\xp (__!_-_!In_!_- in + fl'2x ). 
' 2 \ 2k 2k 2k 4 (16) 

In (16) there should remain only the wave traveling 
in the direction of positive 7], that is, negative x. This 
requirement determines the allowed values of the 
parameter {32: 

iDexp (-in/2k) +E(2ek) 11k = 0. (17) 

2R-a 
Using (12), (14), and (17), we calculate J lp(7J)Id'7, 

a 
expanding p ( 7J) in inverse powers of k. As expected, 
the quantity a drops out of the result. The parameter 
{32 is determined by the equation 

r(1/2 + pz/k) = (ek)U~inllJk(2kR)(l!Prl-i)/ke-ZkR. 
f(ifz- pz/k) 2 (18) 

Since kR ~ R/n » 1, the right side of (18) is small; 
consequently the root of the equation is close to the 
pole r( 1/2- {32/k). We put J'2- {32/k = -n2 + E, 

where fi2 is a non-negative integer, and E << 1. From 
(18) we get in the first approximation 

(19) 

The ionization probability w ( n1, fi2 )(per unit time) 
of an atom in the state nh n2 is equal to the integral of 
the z-component of the current density over the plane 
perpendicular to the z axis and located near the metal 
(the region 1/k >> kx » 1). 

(20) 

v z = V2fX is the electron velocity. 
With the aid of (12), (15), and (18) we obtain finally 

u(n~, nz) = _!! ie(nto nz) I = _!!. (ek )Uk--1 -(2kR)11k+2no+ie-2kR (21) 
n2 n2 2 (n2!)2 • 

The dependence of k on n1,2 is determined by the 
formula (3): 

k ~ _1_~ n2(nt-n2) 

n 8 RZ · 

When R » n3 we can confine ourselves in (21) to the 
zeroth approximation 

w(nt,nz) =___! (_!_)" __ 1_ (2R)Zno+n+te-2R/n 
n 3 2n (nzl) 1 n 

n = n,+nz+ 1. 
(22) 

Let us now take into account the motion of the atom 
in the adiabatic approximation. We assume that the 

atom moves in a classical trajectory, so that R is a 
specialized function of the time. The state of the in
coming atom must be described by the spherical quan
tum numbers n, l, and m, since the perturbations in 
the atomic Hamiltonian, which lift the hydrogen de
generacy, have spherical symmetry. As before, we 
assume that m = 0. The wave function of the state n, 
l, m = 0 must be expanded in parabolic functions 

nt+n:~:=n-1 

At finite values of t we get 1/1 ( t) in the adiabatic ap
proximation. 

The parabolic wave functions are regular zeroth
approximation functions, that is, they are weakly dis
torted by a small perturbation. In the adiabatic ap
proximation we obtain 

'l'nro(r, e, q>, t) = 
nrTnsr=n-t 

' X/n,(TJ) exp [- i ~ E(nt,nz; t)dt]. 
-ao 

The total current in the direction of the z axis is 
equal to 

W(t) = ~ ~ ['l'nto' ~'¢nto -c.c.l.nodp 2 oz _f 

~ i ~ ~ c(n~onz)c•(nt',nz')/n,(s)f,.,•(s) 
nt+nP
n,~+n~{=n-t 

I 

(23) 

x [tn,(!J) of,.,~~) -c.cj exfl{i ~ [E(nt'nz')- E(n, n2)] dt }1] ~-- ~~ 
We have used here the relations ajaz ~ 2 ajay and 

dp 2 ~ 7]dl;, which are valid when 7J >> ~. By virtue of 
the orthogonality of the functions fn ( ~) with different 
n1 and identical n (see [2J, only the diagonal terms in 
the double sum (24) 

W(t)= ~ ic(n1,n2)12w[n~,n2;R(t)], (25) 
n,+nF=n-f. 

where w ( n1, nz; R) is determined by formulas (21) and 
(22). Thus, the contributions of the different states are 
summed independently in the total ionization probabil
ity; no interference terms that oscillate in time arise. 

Let us consider in greater detail the case when the 
incoming atom is in the state ns. The initial wave 
function is of the form 

- t (2r) IJlnoo = (l'n n'l•)-•e-rlnLn-f\-;;: , 

where L is a Laguerre polynomial and 2r = ~ + 7]. 

Using the theorem for the addition of Laguerre poly
nomials [3 J, 

J 

~Li'"(x)L;_1 P(y) = L;a#+t (x + y), 

we obtain the expansion coefficients: c ( n1, n2) 
= (nl + n2 + 1r1/2 = n-112. 

The ionization probability of the state ns per unit 
time is 

1 n-i 1 ( e )"(2R)n+i n-i (2R/n)Z"• 
W[R(t)]=- ~w(nt,n2;R) =- - - e-ZR/n ~ . 

n ,...,. n•' 2n n .. - (nzi)Z 

(26) 
Once W ( t) is obtained, it is easy to get a formula 
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for the dimensionless ionization probability per passage 
(for example, passage past a wire forming the grid). 
We denote by P ( t) the fraction of the atoms that are 
ionized at the instant t. In the adiabatic approximation, 
this quantity satisfies the differential equation dP 
= [ 1 - P ( t) ]W ( t) dt with initial condition P = 0 when 
t = - 00 • The atom moves on a classical trajectory, so 
that R ( t) is a specified function of the time. The ioni
zation probability per passage is P ( 00 ) and is equal to - .. P(oo)=1-exp(- )wat)=i-exp(-2~ W(R)vR-1dR) (27) 

-oo B,.,.,., 
where VR is the atom velocity component normal to 
the metallic surface and Rmin is the distance from the 
metal to the nearest point of the trajectory ( VR = 0 
when R = Rmin) 2 '. 

In conclusion we note the following. If we use in our 

2)Although our problem involves dimensions that are large on an 
atomic scale, they are, of course, much smaller than the macroscopic 
quantities, say the radius of curvature of the metallic surface. There
fore, substitution of a plane for a bent surface cannot lead to an 
appreciable error. 

problem, or in the inverse problem of recombination of 
ions at a metallic surface, a simplified model that does 
not take into account the polarization of the metal, when 
we obtain the same argument of the exponential 
W ~ exp( -2kR), but the pre-exponential factor will be 
incorrect. As seen from (21) and (22), the pre -expo
nential factor depends on the quantum number n in an 
exponential manner. Therefore the errors in the sim
plified model are particularly large for strongly ex
cited states. 
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