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The problem of the current in a short-circuited capacitor containing a dielectric is solved by assum­
ing isotropy of the dielectric and of its polarization on the shock wave front. It is also assumed that 
the matter is nonconducting ahead of the shock wave front and becomes conducting behind the front. 
The density and dielectric constant of the matter experiences an abrupt change. The solutions pre­
sented [1-4] can be derived from the equations as particular cases. 

IT is shown in a number of papers [1•5-11] that shock 
compression of dielectrics is accompanied by their 
polarization. This effect is revealed experimentally by 
the appearance of current in an electric circuit having 
as one of the elements the dielectric under considera­
tion. The question of the polarization mechanism is not 
fully clear, but it is obvious that the main effect is not 
connected with electronic or ionic displacements whose 
characteristic relaxation times are 10-15 - 10-13 sec. 
The relaxation times in the processes under considera­
tion amount to 10-9 - 10~ sec and more [s,wJ. The 
polarization of the matter occurs when the shock-wave 
front (SWF) passes through it. 

An investigation of the shock polarization processes 
yields information on the macroscopic characteristics 
of matter that is strongly compressed by a SWF - the 
dielectric constant, conductivity, and time of establish­
ment of thermodynamic equilibrium. In turn, these 
properties of matter, when obtained simultaneously 
with the magnitude and the sign of the polarization on 
the SWF, can yield interesting information on the 
microstructure of the matter. 

For a phenomenological description of the shock 
polarization process we shall assume that the dielec­
tric is isotropic and consists of polar molecules which 
are oriented along the flow of the material on going 
through the SWF. Actually the nature of the polariza­
tion can be due also to other mechanisms, such as 
vacancy diffusion, charged impurities, diffusion, etc. 

Behind the SWF the matter is in a non-equilibrium 
state and relaxes to equilibrium but with different 
thermodynamic parameters. A distinction must be made 
between two relaxation mechanisms: 

1. The mechanism of thermal disorientation of the 
dipoles. This is the mechanical relaxation considered 
by AllisonC2J. The time of this relaxation will be de­
noted by T. 

2. The mechanism of conductivity relaxation, having 
a time 9. This mechanism was considered by Zel'do­
vich [4J. It results from the fact that free carriers in 
the material can neutralize the oriented dipoles (sur­
face or volume bound charges). 

The existing theories [1-4] describe the experimental 
time dependences of the polarization current only in 
certain particular cases (for more details seeC 10J). We 
present below a solution for a current in a short­
circuited polarization-pickup circuit with allowance for 
both relaxation mechanisms. 
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FORMULATION OF PROBLEM 

Figure 1a illustrates a dielectric in which a SWF 
propagates with a velocity D. The SWF divides the 
dielectric into two regions - uncompressed and com­
pressed matter (1 and 2 respectively). The matter be­
hind the SWF is characterized by a constant dielectric 
constant £ 2, a volume resistivity p, a mass velocity u, 
and a compression o. The corresponding quantities 
ahead of the SWF are ~:1, P1 = co, and u = 0. The matter 
ahead and behind the SW F is isotropic. Since the circuit 
is closed, its time constant is zero. In this sense the 
problem is quasistationary. 

The dielectric on the SWF is polarized to a value Po 
in the direction of motion of the matter or in the oppo­
site direction. Since the problem is one-dimensional, 
the SWF, as any other surface parallel to it, is equipo­
tential. Therefore the compressed matter bounded by 
the planes x = a (a - initial thickness of the dielectric) 
and x = dt can be regarded as a capacitor with capaci­
tance 

c, = e1(4n(a -Dt)]-1• ( 1) 

(We shall solve the problem for a unit SWF area.) 
We shall show that the matter behind the SWF 

bounded by the planes x = ut and x = Dt can also be 
represented in the form of a capacitor. To this end we 
consider some layer of matter of thickness xo with 
E = const and arbitrary specified polarization distribu­
tion P (x). The potential difference between the bound­
aries of such a layer is 

x, 
V = 4n) P(x)dx = crC-1, 

e o 

cr=_!_~0P(x)dx, (2) 
Xo o 

where a is equal to the average value of the polariza­
tion, and the expression for c = d 41TXo r 1 coincides 
with the formula for a parallel-plate capacitor. 

Thus, the capacitance of the layer of matter behind 
the SWF can be written in the form 

(3) 

Starting from this, we can reduce the problem repre­
sented by Fig. 1a at the instant of time t to the equiva­
lent circuit of Fig. 1b where R = o-1p Dt is the resist­
ance of the compressed matter, and C1 and C2 are 
given by ( 1) and (3). 
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FIG. 1. a - formulation of problems, b - equivalent circuit. 1 and 
2 - regions of uncompressed and compressed dielectric; 3 - SWF; 4 
and 5 - stationary and moving boundaries of the dielectric. The direc­
tion of the x axis coincides with the direction of motion of the SWF 
and of the substance. 

The condition for the equality of the voltages across 
C1 and C2 causes a charge -S to flow from C1 by the 
instant of time t, such as to satisfy the relation 

(4) 

where Q is the total charge on the upper electrodes of 
C 1 and C2 in the circuit of Fig. lb. The current j in 
the external circuit (polarization current) is defined as 
the time derivative of the charge S, namely j = dS/dt. 

SOLUTION OF PROBLEM 

The quantity Q in (4) is determined by the following 
processes: 1) shock ionization; 2) mechanical relaxa­
tion ( T); 3) conductivity relaxation ( 8 ). Whereas the 
first process increases the charges in the system un­
der consideration, the second and third decrease them. 

We calculate the change of the charge dQ during the 
time dt. 

1) The increase of the charge (dQ1). Since process 
occurs only in C2 as a result of polarization of the ad­
ditional layers of the dielectric, it follows that dQ1 can 
be easily obtained by opening the circuit at the instant 
of time t (we note that this procedure does not change 
the final result). During the time dt the SWF will cover 
a path Ddt, and the lower electrode of the capacitor 
will move by an amount udt. The charge on C2 is 

Q-S=c.v. (5) 

Hence, 

dQ, = c.av + vac2• (6) 

value of the shock pplarization. According to [a] , 
P = P 0 Tt-1 [ 1 - e-t/T ]. Therefore 

dQ2 = -P0[1- e-t!<]t-1dt. (11) 

3) Let us calculate the loss of charges due to con­
ductivity (dQ3 ) behind the SWF. The quantity 

dQa = --R-'Vdt (12) 

is determined by the conduction current, which depends 
linearly on the voltage. For the system lb we have 
V = C21 (Q - S) and R = o-1 pDt. Hence, 

dQ3 = -(Q -S)S-1dt 
(8 = e2P I 4n). (13) 

Summing (10), (11), and (13) we obtain the change in 
the charge in the system of two capacitors within a 
time dt: 

dQ I dt = t-1 [P0e-tt•- Q]- 8-'(Q -- S). (14) 

Differentiating (4) and comparing the result with 
(14), we obtain the initial differential equation for the 
charge S: 

as +S[~"'-- + 1 x(T-t)~ l = P0e-tt< , (l 5) 
at xT+(1-x)t 9xT+(1-x)l.J xT+(1-x)t 

where K = E;:1 EaO and T =aD-\ For K = 1, this equa­
tion takes the simpler form: 

as T-t - + S ~~- = P0T-1 e-tl<. at 8T 

The solution of (16) with initial conditions S = 0 at 
t = 0 is 

[ T- t ( t t• ) i=PoT-'e-''' 1-~~-exp --+-
8T . }. 28T· 

X 1 exp (.!...- .!....) dtl 
0 f.. 28T . ' 

where A-1 = 8-1 - T-1. 
The solution of (15) is of the formu: 

t 

X etlo ) [xT + (1- x)t]•-1 e-tlo dt }, 
0 -

(16) 

(17) 

(18) 

Substituting here the value of dCa obtafned from (3), where 
we get 

dQ 1 = (Q- S) (V- 1dV- t-'dt). (7) 

The quantity dV is the increment of the potential dif­
ference due to the polarization of the layer of matter 
in the time dt: 

dV = 4nD(P0 - S) (e2b) -'dt. 

Using (5) and (3), we get 

V-'dV= Po-S dt 
Q-S t. 

Substituting (9) in (7) we get finally 

dQ, = (Po - Q) t-1dt. 

2) The decrease of the charges in the system of 
Fig. 1b due to mechanical relaxation will be denoted 
dQa, with dQ2 = -p T-1 dt, where P is the average 

(8) 

(9) 

(10) 

xT 
q>= 1 + 8(1-x) 2 ' 

't8(1-x) 
Jl=--~~. 

8+x(T-8) 

Thus, Eqs. (17) and (18) solve our problem. When 
t = 0 we always have jo = Po(KT)-\ that is, the initial 
current does not depend on the relaxation process and 
is inversely proportional to the initial thickness of the 
dielectric. 

SOME CONCLUSIONS 

A. Let us consider some particular cases. Putting 
T = oo in (17), we get 

1lThe particular solution ( 17) can be obtained from the general 
solution ( 18) by a rather cumbersome evaluation of the indeterminate 
quantities that arise in (18). 
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. •[ T- t ( t t2 \ i ( t t2 ) l ]=PoT- 1----exp --+-, .l exp --- dt (19) 
6T ·. 6 26T 0 6 26T _ ' 

which agrees with the solution obtained by 
Zel'dovich [4J. 

Putting e = 00 in ( 18) we get 
. [xT + (1- x)t] e-tlt- -r(1- x)[1- e-tl<] 
] =Po · 

[xT+(1-x)t]" 
(20) 

Expression (20) coincides with the Allison's solution. 
If we now put in (20) r = oo and 0 = 1, then we arrive 
at the equation described in [1J. Finally, the obtained 
solutions go over into the solutions obtained in [sJ if we 
impose definite limitations on T and (J in the present 
paper and on the impedance of the circuit inC3 J. 

B. As follows from (17) and (18), in the general case 
the density of the polarization current is a function of 
a number of parameters-p, € 2 , r, and P 0 • Therefore 
the theory can be verified if the values of the indicated 
parameters are known beforehand. Unfortunately, the 
present available literature contains individual infor­
mation only on the values of p for certain sub­
stancesC9•12•13J. The comparison made inC6 J of there­
sults of an experiment on organic glass and polystyrene 
with Allison's theory is apparently not quite correct, 
particularly at high pressures, where no account was 
taken of the possible influence of the conductivity. 

C. Figure 2 shows a number of curves calculated 
by means of formulas ( 17) and ( 18) at certain combina­
tions of the parameters. A comparison of these curves 
with the experimental time dependences of the polari­
zation current, obtained with quartz C1J, organic 
glass [s,aJ, epoxy resin and water C sJ, ionic crystals C7 - 11J, 
and also polybutylmethacrylate and the explosive TNT 
(Fig. 3), shows a qualitative agreement of the curves. 
We took into account here the fact that the value of the 
polarization current at t = 0 cannot be determined 
experimentally C10J. 

D. The solution for the polarization-pickup circuit 
was obtained under the assumptim that there is only 
one mechanism of polarization of the substance by the 
shock wave front. At the same time, the fact of ano­
malous polarization in ionic crystals and, in some 
cases, the reversal of the sign of the polarization 
current during the passage of SWF through the 
sample2> [w,uJ can be attributed to the existence of at 
least two independent processes of polarization with 
opposite signs. Each of these processes should be 
characterized by its own values of r and Po C11J. 

In conclusion the authors consider it their present 
duty to thank Ya. B. Zel'dovich for critical remarks 
and interest in their work. 
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