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We propose a new method to evaluate the density fluctuations correlations and spectra in a classical 
perfect gas; this method leads to results which are the same as the well-known ones if the gas has in
finite in volume or is enclosed between ideally reflecting screens; new results are obtained for the 
cases when absorption of particles takes place at the screens and also when we take into account the 
fluctuations in the rate at which gas particles are produced. The general formulae derived by us en
able us to calculate the density correlations both for an arbitrary Markovian and also for a non
Markovian character of particle trajectories. As example we evaluate the correlation spectrum for a 
set of particles when they are generated in the volume and through a diffusion current through the 
boundary; we establish the high-frequency asymptotic behavior of such spectra which is different from 
that in earlier published papers [a, 7J. 

1. INTRODUCTION 

ALREADY Smoluchowski [l,2J considered the problem 
of fluctuations in a classical perfect gas, and it has 
recently aroused new interest mainly in connection with 
calculations of conductivity fluctuations in semiconduc
torsP-7J Most recognitionPJ apparently was given to 
Lax's method based upon the relation between the single
time Kp(r, t, r 1 , t) and the different-time 
Kp(r, t, r 1 , t 1 ) density correlations: 

Kp(r,t,r1,t1)= ~ G(r1,t'lr",t)Kp(r",t,r,t)dr",, {1) 
v 

where V is the volume of the system and 
G ( r 1 , t 1 I r ", t) the Green function of the problem which 
characterizes the average rate of dissipation of the 
fluctuations. 

It is well known [8 J that for a uniform, isotropic per
fect gas of infinite extension the single-time correla
tion can be expressed by the formula 

Kv(r, t, l 1, t) = fitl(r1 -r), (2) 

where p is the average density of the gas. At the same 
time it is clear that for a gas bounded by "screens" 
Eq. (2) can not be valid: if the screens are perfectly 
reflecting and the total number P of particles in the 
system is rigorously conserved there must occur in 
Eq. (2) yet one more term which can be determined 
just from this conservation condition: C8 J however, when 
absorption on the screens takes place, p can clearly 
not be conserved and Eq. (2) needs an additional cor
rection. Moreover, a stationary state of a gas en
closed between absorbing screens is brought about by 
the presence of the production of its particles and the 
inevitable fluctuation in the rate of production involves 
in turn a particular change in the equation for 
Kp( r, t, r 1 , t). 

The fluctuations in the quantity P in the presence of 
absorbing screens were considered inC6 ' 7J under the 
assumption that Eq. (2) was valid and this leads, as we 
shall show, to an unjustified conclusion about the form 
of the frequency dependence of the spectral density of 
the fluctuations also in the case where Eq. (1), which 
was obtained in[sJ heuristically, is by itself valid. 

Yet the function Kp ( r, t, r 1 , t 1 ) can be evaluated 
directly by a relatively simple method, the essence of 
which is clear from the following example. 

Let it be necessary to evaluate the density disper
sion in a volume element v of a perfect gas enclosed 
in a vessel of volume V with ideally reflecting walls. 
Each particle in the gas has a probability a = v/V to 
be inside and a probability 1 - a to be outside the vol
ume element v; the dispersion in the gas density pro
duced by one particle is thus determined by the formula 

- (1 1)2 v ( 1)"( v) 1 t:.f= --v-v -v+ -v 1-v =V'a(1-a). (3) 

Since the behavior of different particles in a perfect 
gas is independent, the density dispersion caused by 
the presence of P particles in the system can be found 
from the formula 

- 1 
l!.r."=PV'a(1-a) (4) 

or, if a« 1, by the formula 
- 1 
t:.r.•=Pvoa. (5) 

Equation (4) corresponds to a binomial distribution and 
Eq. (5) to a Poisson distribution of the number of par
ticles in a volume element v; there is, however, no 
necessity whatever to calculate these distributions be
forehand in the present problem. 

The simplest example considered here, that of cal
culating the moment of the density distribution pro
duced by all particles of a perfect gas using the moment 
of the density distribution produced by a single particle, 
can be generalized to calculate the function 
Kp(r, t, r 1 , t 1 ) under various conditions by summing 
the correlation functions of "elementary" random 
density fields caused by the motion of separate parti
cles in the gas. 

The practical advantage of such a procedure is that 
the statistical characteristics of an "elementary" 
random density field can be evaluated by standard 
methods (e.g., by considering the random walk of a 
single particle in configuration space in the diffusion 
approximation and accordingly using the Fokker
Planck equation), while there are no standard equations 
at all for the resulting random density field. 
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2. DENSITY FLUCTUATIONS IN A UNIFORM MEDIUM 

In the present section we shall demonstrate the 
method and consider density fluctuations in a mona
tomic gas enclosed in a vessel with perfectly reflecting 
walls or infinite dimensions (in the latter case we as
sume that as V- 00 we also have P- oo, while 
p = const.). 

We can consider to begin with an "elementary" 
random field Xk ( r, t), namely the number of particles 
in a volume element of arbitrarily small magnitude v r 
(with its center at r) which arises due to the random 
walk of a single particle, and introduce the average 
value xk ( r, t) and the correlation function 
Kxk ( r, t, r', t') of such a field using the standard 
formulae: .. 

Xh(r,t)=) xfth(x,r,t)tk, (6) 

Xr,(r,t)x,(r',.t')= I r ='f2,(x,r,t,x',r',t')tktk', (7) 

K, ,, (r,, t, r', t') = x, (r, t)x, (r', t')- x, (r, t)x, (r', t'), {8) 

where fik(x, r, t) and f2k;(x, r, t, x', r', t') are the 
one- and two-dimensional probability densities for the 
field Xk ( r, t). Since the field Xk ( r, t) has only two 
possible values, 0 and 1, xk ( r, t) is, in accordance 
with Eqs. {6) and (7), simply the probability to find the 
particle at time t inside the element vr, while 
xk(r, t)xk(r', t') is the probability that the particle is 
at time t in vr and at the time t' in the element Vr'· 

In the following we assume that the random walk of 
each particle in the gas is described by some well
known kind of random process, e.g., a diffusion process, 
and that thus the one-dimensional (wk(r, t)), the two
dimensional ( wk( r, t, r', t')), and the conditional 
( Wk( r', t' I r, t)) probability densities which charac
terize the position of the particle in space are well
known functions. If v is sufficiently small, we have 
clearly: 

Xk (r, t) = Wk (r, t) v, 

x,(r, t)x,(r', t') = w,,(r, t, r', t')rr, 

K, .• (r, t, r', t') = w,(r, t, r', t')v2- w,(r, t)w,(r', t')v2. 

(9) 

(10) 

{11) 

The resulting random field of "the total number of 
particles in the volume element Vr" is moreover de
termined by the formula 

p 

n(r, t) = ~ x,(r, t). (12) 

Since the statistical characteristics of all "ele
mentary" random fields are the same in the model 
considered and the behavior of the separate particles 
is independent, we have 

n (r, t) = Px.(r, t); 
Kn(r, t, r', t') = PKx(r, t, r', t'). 

By definition the macroscopic density p ( r, t) 

(13) 
(14) 

= v-1 n(r, t) and from the formulae given here it fol
lows that 

i](r, t) = w(r, t), (15) 

Ky(r, t, r', t') = w(r, t, r', t')- w(r, t)w.(r', t') (16) 

( y ( r, t) is an elementary random density field), 

ji(r, t) =Pw(r, t), (17) 

Kp(r, t, r', !') = ji(r, t)[w(r', t'Jr, t)- w(r', t')], (18) 

while we can show rigorously, letting v - 0, that the 
formulae for the correlations in the density (and in the 
resulting and "elementary" field) are valid also for 
t = t'. 

Of course, in our model the state of the gas is as
sumed to be stationary and therefore w ( r, t) = 1/V 
= const and p = P/V = canst, and we can rewrite Eq. 
(18) as follows 

Kp(r, t, r', t') =p[w(r', t'Jr, t) -1/V] (19) 

and for t = t' 

Kp (r, r') = ji6 (r'- r) - ji IV . (20) 

If V - 00 the second term in Eq. (20) vanishes but 
for any finite V it may be appreciable, e.g., if we 
evaluate the dispersion ( APs) 2 of the number of parti
cles in a volume V s comparable with the volume of the 
whole system; since 

(ilP,)2 = S S Kp(r,r')drdr', (21) 
v, v, 

it follows from (20) that 
-- v 
(!lP,)2 = jiV,- jiV,--' (22) 

v 
and neglect of the second term in (20) may lead to the 
absurd conclusion that the dispersion of the number of 
particles in the volume V, where it is strictly con
served, is different from zero. 

We note that Eq. (20) follows, generally speaking, 
from Eqs. (118.3) and (118.6) ofC8 J; it was also ob
tained inC7J after a preliminary calculation of the 
single-time probability density for the distribution of 
particles in the volume element V. In the framework 
of the model considered here Eq. (1), due to Lax, also 
turns out to be validu, since substitution of (20) into 
(1) again leads to Eq. (19). 

InC 1 • 2J, to characterize the correlations in the fluc
tuations in the number of colloidal particles in an ob
served volume element V S• the quantity 

k?- = [P,(t) -P,(t')]" (23) 

was introduced. 
Under stationary conditions ( ( AP s) 2 = const and 

Ps = const) this quantity can be determined also from 
the equation 

k2= 2[ (ilP,) 2 - !lP,(t) !lP,(t')] (24) 

and evaluated using (22), (19) and the formula 

- 1'1P, (t) !lP, (t') = ~ ~ Kp (r, t, r', t') dr dr'. (25) 

Finally we get 

1>We assume here that the equation determining w(r', t lr, t) is linear 
and that this function is the same as the Green function of the problem 
(we shall return to the problem of the limits of applicability of Eq. (1) 
in Sec. 4); the correlation formulae are written down for the case t > t; 
when t > t these arguments and also r and r' change places on the right
hand side of the equations. 
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JZi = 2P,W, (26) 

where 

W=1- \ ~ :.,w(r',t'lr,t)drdr' (27) 
vs V 8 

is the probability that a particle which at time t is 
somewhere in the observed volume V s will be outside 
it at time t'; this result remains valid also for finite 
values of a volume V bounded by reflecting screens 
and also in the case where the volume V s is part of 
an infinite medium. Equations (26) and (27) are the 
same as those given in[ 1 • 2J, but the method used in 
those papers is suitable only when the volume V is 
infinite since it is based upon the calculation of differ
ent simultaneous probabilities for numbers of particles 
which are at time t in the volume V s and which leave 
the volume V s in the interval t' - t, and so on, while 
it is assumed in particular that the number of particles 
entering in the interval t' - t the volume V s is inde
pendent of Ps ( t). 

3. DENSITY FLUCTUATIONS IN A GAS WHEN PARTI
CLES ARE PRODUCED AND ABSORBED 

In the present section we shall assume that particles 
are absorbed at least on part of the screens, which 
bound the volume of the gas, and that they are produced 
in the whole volume. At the same time we assume that 
the fluctuating rate of production of particles per unit 
volume is characterized by known functions, viz., the 
average rate of generation g( ro, to) and the correlation 
function of the random sources of production 
Kg ( r 0 , t 0 , rb, tb). We note that we actually have in mind 
here the production of particles by electromagnetic or 
other ''ionizing" radiation with well-known statistics 
and in those problems the correlation function of the 
random field of the rate of production is indeed known 
and it is not necessary to evaluate it additionally as is 
the case when we introduce fictitious random sources. 

The scheme for calculations2 > for the given model is 
not greatly different from the one developed in Sec. 2, 
but is is necessary to take at once into account that the 
statistical characteristics of the elementary random 
fields are now no longer the same and depend on the 
time and the place where the corresponding particles 
are produced. What we have just said is, e.g., reflected 
in the fact that Eq. (12) is replaced by the formula 

n(r, t) = ~ x(r, t,ro;, fo;), (28) 
i,j 

where roi and toj indicate the coordinate and time of 
the production of the appropriate particle; morevoer, 
we must introduce in Eqs. (15) and (16) a double index 
i, j: 

!];,;(r, t) = w;,;(r, 1), 

Ay i.i (r, t, r', t') = w;,; (r, t, r', t')- w;.; (r, t) w;,; (r', t') 

( 15a) 
(16a) 

The individuality of the statistical characteristics of 
the elementary random fields can be expressed more 
directly, if we take into account the practical meaning 
of the index i, j: 

2) In the present section we restrict ourselves to calculating only 
equations for p(r, t) and Kp(r, t, r', t ), postponing a discussion of their 
consequences to Sec. 4. 

w,,; (r, to;) = b (r- ro;). (29) 

Defining now the one- and two-dimensional probability 
densities by means of integrals of the probability densi
ties of higher order, i.e., through the formulae 

w;,;(r, t)= ~ w;,;(r, t, r1, t0;)dr" 
v 

<•J;,, (r, t, r', t') = ~ w;,; (r, t, r', t', r" t0;) dr1, 

v 

we get by standard methods 

(30) 

(31) 

!];,;(r, t) = w(r, tiro;, to;), (32) 
KY;,; (r, t, r', t') = w(r', t'Jr, t, ro;. to;)w(r, tjro;, to;) 

-w(r, tiro;, to;)w(r', t'Jro;, to;). (33) 

If the random walk of the particles is described by a 
Markovian random process the following formula holds 

w (r', t' I r, t, ro;, to;) = w (r', t' I r, t), (34) 

i.e., the conditional probability density at time t' for 
a particle which at time t is at a position r, is inde
pendent of the additional information about the position 
and time of its production. The assumption about the 
Markovian nature is not at all necessary for the deri
vation of the subsequent formulae of the present sec
tion and we shall assume it to be satisfied only in order 
to simplify the notation; of course, the use of Eq. (34) 
is not connected with any further assumptions about the 
actual form of the Markovian process. 

For the time being we shall also assume that the 
rate of production does not fluctuate; in that case we 
get the required formulae at once: since the summa
tion of averages and of correlation functions of ele
mentary random fields under easily justified assump
tions can be replaced by an integration, we have 

t 

ji(r,t)= ~ ~ g(ro,to)w(r,tlr0,t)dr0 dt0, (35) 
V -oo 

t 

Kp(r,t,r',t')= ~ ~ g(ro,t0)[w(r',t'\r,t)w(r,t\r0,t0 ) 

V -oo 

- w (r, tIro, to) w (r',, t' I ro, to)] dro dto. (36) 

When we take the fluctuations in the rate of produc
tion into account the number of terms on the right-hand 
side of Eq. (28) itself is a random number. If the single
time and statistical characteristics of all random terms 
are essentially different, it is impossible to obtain the 
explicit dependence of the characteristics of the density 
fluctuations on the statistical characteristics of the 
fluctuations in the number of terms, i.e., the fluctua
tions in the rate of production. However, in the physical 
problem under consideration this difficulty is absent 
since we can clearly ascribe the same statistical char
acteristics3> to all fields produced inside a single 
"physically infinitesimally small" interval D. V D. to. 

3lWe have essentially already used such an assumption in the fore
going, since the replacement of the summation of the statistical charac
teristics of the elementary random fields by their integration with as 
weight the statistical average of the rate of production (Eqs. (35) and 
(36)), which by its definition is a macroscopic quantity, was basically 
just an assumption about the constancy of the statistical characteristics 
of the terms in each of the macroscopic intervals for which the function 
g(r0 , t 0 ) is defined. 
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Taking this fact into account and operating directly with 
the random density fields, we get 

Vfi>V t{l>t 

ji(r, t)arb = ~ ~ a(ro;,t0 p)!J(r,t,r0i,top), (37) 

V/I>V 1£6.1 VII>V t'£6.! 

p(r,t)p(r',t')arb = ~ ~ ~ ~ a(ro;,top)a(rot,toq) 
i=1 P=-oo i=1 Q=-oo 

V/I>V t/6.1 

X !J(r, t, ro;, top) !J (r', t', r0;, t0q) + ~ ~ a(rOi, top)Ky (r, t, r', t', r 0;, top), 

(38) 

where a ( roi, top) is the random number of fields which 
produce particles in the interval ~ Voi ~top· Performing 
then a second averaging over the number of terms and 
writing for sufficiently small intervals 

(39) 

Lla (ro;, top) Lla (ro;, toq) 
= K 11 (r0i, top, ro;, toq)LlrOiLltopLlro;Lltoq, (40) 

we get after changing to integration 
t 

ji(r,t)= ~ ~ g(r0,to)!J(r,t,ro,to)dr0 dto, (41) 
V -oo 

t ,. 

Kp(r,t,r',t')= ~ ~ ~ ~ y(r,t.ro,to)y(r',t',ro',to') 
V -oo V -oo 

X K1 (r0, t0, rr/, t0')dr0 dt0 drr! dto' 

I 

+ ~ j g (r0, t0)Ky (r, t, r', t', ro, to) dr0 dto. ( 42) 
v _.., 

Now, the use of Eqs. (32) and (33) and also of Eq. (34) 
leads to the expressions 

I 

ji(r,t)= ~ ~ t(ro.to)oo(r,tlro,to)drodto, (43) 
V -oo 

t t' 

Kp(r, t,r', t') = ~ ~ ~ ~ oo(r, tiro, to)oo(r', t'lro', to') 
V -~"C V -oo 

I 

XK1 (r0, t0, ro', to')dr0 dt0 dro' dto' + ~ ~ g(ro, to) 
V -oo 

X[oo (r', t' I r, t) oo (r, t lro, lo)- oo (r, t I r0, fo)oo (r', t'lro, to)] dro dto. (44) 

These formulae are suitable both for stationary and 
for non-stationary states if we understand the latter, 
in particular, to mean states where some single equa
tion is valid consistently for the probability density 
( w) while the particle production is non-uniform and 
settles down, let us say, over a finite time interval from 
the start of the observation. 

4. EXAMPLE OF CALCULATION OF A FLUCTUATION 
SPECTRUM AND CONCLUSION 

We consider first the simplest consequences of Eqs. 
(43) and (44) and assume to begin with that the medium 
is either bounded by perfectly reflecting screens or is 
infinite. A stationary state is then only possible if 
there is no systematic production of particles; accord
ingly putting 

g(ro, to) = g(ro, t0) = P6(ro- r,)o(to- t,), (45) 

where r 1 is arbitrary and t1 - - 00, we get again the 
formulae of Sec. 2; in particular, for an infinite medium 
we get the formula 

Kp(r, t,r', t') = jioo(r', t'lr, t), (46) 

which follows also from Eqs. (1) and (2) (of M. Lax) if 
w ( r', t' I r, t) is likened to a Green function. 

The practically common case is the one where one 
can use the approximation 

K, (ro, to, ro', to') = g, (ro, to)·6(ro'- ro) 6 (t' o- to). (47) 

It then follows from Eq. (44) that 
I 

Kp (r, t, r', t') = oo (r', t' I r, t) ~ ~ g (ro, to)w (r, t I r0, t0) dro dt0 

V -oo 

t 

+ ~ ~ [gt(ro,to)- g(ro,to)]oo(r,tlro,to)oo(r',t'lro,to)drodto. (48) 
V -oo 

One can show, at least for a number of particular 
instances, when the function w is determined by the 
Fokker-Planck equation and g( r 0 , to) = g = const, 
gl ( ro, to) = gl = const, that the contributions of the 
first and second terms in Eq. (48) to the spectrum of 
the fluctuations in the quantity P differ only in multi
plying constants. Finally, if the fluctuations in the rate 
of production are Poisson-like, i.e., g1 ( r 0 , to) 
= g( ro, to) only the first term remains in general in 
Eq. (48). In this characteristic case Eq. (48) differs 
from Eq. (46) used in [5- 7 ] and when absorbing screens 
are present only through the natural replacement of 
p = const by p = p( r, t) or p = p( r) under conditions 
which are stationary as far as the particle production 
is concerned. We shall elucidate by an actual example 
how important the changes produced by this substitu
tion are for the spectrum of the fluctuations in the 
quantity P. 

Let the gas be enclosed in a rectangular parallelepe
pid and let one face of it (lying in the plane x = l1 at a 
distance l1 from the opposite face) be perfectly ab
sorbing and the other faces be perfectly reflecting. We 
assume also that the random walk of each particle is 
described by a Fokker-Planck equation of the type 

f) 
Ttoo(r,t)=DV2oo(r,t), (49) 

which determines the conditional probability density 
(which is the same as the Green function of the problem) 
for the appropriate boundary conditions (the solution 
tends to zero at x = l 1 and its normal derivative 
vanishes at all reflecting faces). 

We determine the density correlation from the equa
tion 

t 

Kp(r,t,r',t')= oo(r',t'lr,t) '~ ~ gw(r,tjr0,t0)dr0 dt0 

V -oo 

= ji(r)m(r',t'lr,t), (50) 

which is a particular case of Eq. (48); the results cor
responding to the theory developed in [5- 7] are obtained 
by replacing in all formulae p( r) by 

ji = v-• ~ p(r)dr. 
v 

If the Green function is found as an expansion in 
terms of the functions of the problem, the standard 
formulae 

/lp(t',t)=Kp(t'-t)=Kp("t)= ~ ~ Kp(r,t,r',t')drdr', 
v v 

2 00 

Sp(Q)=- \ Kp("t)cosQ"tdt" 
:rt • 

• 

(51) 

(52) 
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( Sp ( n) is the spectrum of the fluctuations in the 
quantity P) lead to the expressions 

Hi "" 1 -rk2 

Sp(Q) = n'< Vg k~o (2k + 1)2 1 + Q2,;k2 ' (53) 

(54) 

where SpA ( n) is obtained when we assume p = canst. 
We can also derive the expressions for the spectra 

in closed form. In agreement with Eqs. (43) and (49) 
and using the independence (which is obvious in our 
case) of the average density of the coordinates y and 
z, we can find it from the equation 

rJ2 
D d:J;2 p(x)+ g = 0 (55) 

with the boundary conditions p ( lt) = 0 and dp/ dx jx =o 
= 0. This gives 

1 112r x2] 
.P(•)=.P(xJ=--zb'nL1 -l;2 · (56) 

Moreover, performing in (51) the integration over y 
and z (perpendicular only to the reflecting walls) and 
using a Fourier transform to go directly to the fluctua
tions spectrum leads to the formula 

2 VI, I, 

Sp(Q) = Re-~ ~ ~ p(x)go(x,x', Q)dx dx', (57) 
n l1 0 0 

where the function go(x, x', n) is defined by the equa
tion 

rJ2 
iQg,(x, x', Q)- D dx'2g0 (x, x', Q) = ll(x'- x) (58) 

with the boundary conditions 

d ' dx' go(x, X, Q) lx-~o = 0 and go(X, lt. Q) = 0. 

Altogether we get 

2 1 f 1 1 sin 2y ) / ( cos2 y )] ( ) 
Sp(Ql =--;;: Vg g 2\_1- \ cthy +z- sh2y 2y \1 + sh2y , 59 

, _ fi _ (l12 )''~ 1 _ _1_ sin2y \/( cos1 y) 
SP_,(Q)-3:rcVg,D Q'h(Cthy 2sh2y /\1+sh2y ,(60) 

where 

y = (Qit"j2D) 'h. (61) 

Equations (53) and (54) give the total, superposition 
pattern of the spectra 4 > and are convenient for studying 
their low-frequency characteristics since for n = 0 
one can easily sum the appropriate sums using the 
generalized Riemann zeta-function [gJ, and we find, in 
particular, Sp(O)/SpA (O) = 1, 2, 3. 

More important differences in the spectra occur at 
high frequencies: for large values of y we get from 
Eqs. (60) and (59), respectively, 

4> Spectra of the form gr2 /(I + SV r 2), corresponding to the simplest 
exponential correlation characteristic for Gaussian Markovian processes, 
are often found in applications; for an experimental study of spectra of 
the form (53) and (54) one usually manages to obtain at low frequen
cies a "resolution" of several of the first components. 

(62) 

(63) 

where 
2 1 

Sp(QJ,=-;Vg Q 2 . (64) 

For high frequencies we have thus 

Sp(Q) 3 -y2 
Sp (Q) = (h•Q/D)'t. . 

JI 

(65) 

and SpA ( n) may appreciably exceed Sp ( n). From 
the equations given here it follows that the high-fre
quency asymptotic expression Sp (n) ~ n-312 for the 
fluctuations spectra has for the diffusion case a con
siderably less "universal" character than follows 
from[6,7J.s> 

Under conditions which are more complicated than 
in the example considered, the general Eq. (44) leads 
clearly to larger deviations from the results of [s-7]. 
This will occur if the fluctuations in the rate of produc
tion are non-Poisson-like or, all the more, when it is 
necessary to take into account the finite correlation 
radius of random production sources and, finally, when 
the trajectories of the gas particles have a non-Marko
vian character (in the latter case we must write Eq. 
(44), with w ( r', t' I r, t) on the right-hand side re
placed by w(r', t'jr, t, ro, to)). 

In this connection it is not without interest, from a 
methodical point of view, to elucidate within what 
limits Eq. (1) proposed by Lax [sJ is valid when the 
single-time correlations are evaluated correctly; the 
definition of the latter by Eq. ( 44) and substitution into 
Eq. (1) shows that for Markovian trajectories of the 
gas particles Eq. ( 1) is in itself correct if we make the 
additional assumption of a o-correlation in time of the 
random production sources; if, however, the motion of 
the particles is a non-Markovian process, Eq. (1) is not 
valid. 

We note in conclusion that the calculation of the 
fluctuations correlations of a perfect gas using the 
minimally necessary and usually available information 
about the correlation characteristics of the motion of 
the particles and the production field strongly simpli
fies the problem. More detailed density distribution 
functions remain uncalculated but those are not neces
sary if the fluctuations are small and may be assumed 
to be Gaussian [sJ since the correlation characteristics 
are a comprehensive description when they are 
known. [toJ 

------s)]11e difference in the spectra Sp(S1) for p = const and for p(r) can 
be treated also from the point of view of the difference in those two 
cases of the probability characteristics of the behavior of the particles: 
in Eq. (50) the integral 

~ w(r, tiro, t0 )dr0 = ~ w(r0 , qr, t 0 )dr0 

v v 

is the probability for the "survival" up to time t in the volume V of a 
particle which at time t 0 is produced at the point r 0 , while the integral 

t 

) ) w(r, tiro, t0 )dr0 dt0 

has the meaning of the average lifetime of such a particle in the volume 
v. 
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