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The effect of multiple scattering on the angular and energy distributions of charged particles produced 
by photons in a condensed medium is considered. It is shown that multiple scattering lowers the rate 
of the process at small angles and leaves it unchanged in the large-angle range. The formula obtained 
by integration over the angles leads to Migdal's result [lJ. 

1. As shown by Migdal [lJ, the energy distribution of 
charged particles during the process of pair production 
by high-energy photons in condensed media is strongly 
distorted by the strong influence of multiple scattering. 
The existence of such an effect is connected with the 
fact that at high photon energies the pair production 
takes place at large longitudinal distances from the 
nucleus, on the order of E+E-/m2w, where w, E+, and 
E- are respectively the energies of the quantum, the 
positron, and the electron ( li = c = 1 ). 

The analysis of the energy spectrum is greatly facil
itated by the fact that the form of the energy spectrum 
depends only on the multiple scattering over the effec
tive length of the pair production process, and is com
pletely independent of the multiple scattering of the 
charged particles after the end of the process. The 
difficulty in calculating the angular distribution of the 
pair particles lies in the fact that it is impossible to 
separate beforehand the nontrivial influence of the 
scattering over the effective length from the trivial 
effect of the succeeding scattering. 

The analysis of the angular distribution of the 
charged particles during the pair production process 
is best carried out by describing the multiple scatter
ing quantum-mechanically, i.e., by characterizing the 
state of the charged particle in the medium by a wave 
function, as is done in [2 • 3 J. Then the pair-production 
process can be regarded as a first-order process with 
the photon. 

2. We write down the probability of the pair produc
tion process without allowance for multiple scattering 
(averaged over the polarization of the quantum and 
summed over the spins of the charged particles) in the 
form 

dWo(k, P+• P-) 

= d3p+d3p_ ~ d3qwo(k,p+,P-,q)ll(k-p+- P-- q)O(E++E- -w). 

(2.1) 

using the expression for the wave function of the 
charged particle in matter in the form [2 •3 J 

v(r, t) = exp(ipor- iEot)[1- i(2Eo)-1 (aV)] Uo 

X IJ { 1 + _1 ~ d3l/(l) eil(r-R.l } (2. 2} 
(a) 2rt2 12 + 2pl- if! 

(here f ( 1) is the amplitude of the single -center scat
tering as a function of the momentum transfer, Ra is 
the radius vector of the atom, and the product is taken 
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over all the atoms of the substance), we can obtain an 
expression for the probability of the pair-production 
process, averaged over the coordinates of the atoms of 
an amorphous medium, in the form 

dW(k,p+,P-) 

=d3p+d3p_ s· d3qwo(k, P+; P-, q)ll(E++E--w) ·~(P+, P-; k-p+-p--q), 

(2.3) 
where 

r d3r r d•R 
~(P+•P-,s)= J (2rt)l;ar r-yexp<l>(R,r). (2.4) 

In the case when the medium is homogeneous and 
fills the layer between the planes x = 0 and x = L, we 
have .P ( R, r) = .P ( Rx, r,). If the dimensions of the ef
fective region of the process are small compared with 
L, we can obtain 

( ( P-•+p+•) <l>(Rx, r) =-no ~ d'l.Lif(l.L) l2 (exp il.Lr.L- 1) 2 2 $ 
P-P+ 

+2noin[t(O)Rx+ /*(0) (L-Rx) ( P-+P+ .) 
P-P-r 

no ( [ P+ + P- $ 2 \]. ---J d'l.LI!(l.L) 12 (L-$)-i-4--I.L2 (Rx2+(L-Rx) 2+L$+- J • 
P+P- P+P- 2 

(2.5) 
3. The scattering in the effective region can be 

separated from the trivial influence of the subsequent 
scattering by introducing the probability 
WL ( P-, P+; P-, P+) that multiple scattering will cause 
an electron with initial momentum P- or a positron 
with initial momentum P+ will acquire in a layer of 
thickness L momenta P- and P+. By calculating such 
a probability with the aid of the same wave functions as 
in (2 .2), it is easy to see that the probability of pair 
production is connected with the scattering probability 
by the formula 

dW (k, P-t. P-) 
d3p+d3p _ 

__ ( dLR~ r dW(k, P+'•P-') ( , , ) _,. 'd3 , (3.1) 
) J d3 , dS , WL-llx P-oP+; P-oP+ u-P- P+. 

P+ P-

Expression (3.1) can be interpreted as follows: the 
process of pair-production in a layer of thickness L is 
the result of two successive processes--the elementary 
act of pair production over an effected length 
E+E-/m2w near the point Rx, and the succeeding mul
tiple scattering of the particles of the pair over the 
length L - Rx. The quantity dW( k, p~, p~) can conse-
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quently be called the effective probability of the ele
mentary pair-production act. The importance of this 
quantity lies in the fact that in order to calculate the 
cascade processes it is necessary to have just the 
probability of the elementary act of pair production 
with allowance for the influence of scattering on the ef
fective length. 

Using the foregoing, we can easily obtain an explicit 
expression for this quantity: 

dW (k, P+'• P-') 
d'p+d"p_ 

~ d3qw0 (k,p+, p_, q)6(w-E+-E-)tl(k-p+-p--q). 

(3.2) 

From (3.2) we see that the difference between this 
quantity and the expression for the pair-production 
probability in the Born approximation (2.1) lies in re
placing the momentum a-function by a certain 
''smeared" function 

Ll(s)=(2n)-3 ~d3rexpfisr-ixjxj P+x+P-x x} 
l 2P+xP-x 

2P+xP-x 
p= . 

P+x+ P-x 
(3.3) 

Substitution of the explicit form of w0 in (3.2) yields 

where 

Q = 11- z-•F(q) I'· 

Formula (3.4) is the final expression for the distribu
tion over the angles and the frequencies. 

Let us consider two limiting cases. In the low
density limit, when the influence of the multiple scat
tering of the particles in the effective region can be 
neglected, i.e., a!>> b or 

we get 

Z2 3 { dW(k, P+',P-') = __ a_ Q 4n3 [(E-2 + E+') (P+''e+' + p_'2fJ_2 
n3wq4 

+ 2p_'e_p+'e+ cos 'I'+)+ 2E-E+ (P-''e-2 + p/'e+')] 

[ wm2 we+' ]-•[ wm' w8-'l-1 

X 2E+2 + 2 2E_,+ 2 J 

_ 2E_E [ P+''8+' P-'"e-2 ] } 

+ (ffim2/2E+2 + we+'/2) 2+ (wm'/2E-'+ (t)e_•j2)' e+e_ae+d9-d'l'+· 
(3.5) 

this expression coincides with the Bethe-Heitler angu
lar distribution [4J. 

For the second limiting case, when the multiple 
scattering is significant in the effective region, i.e., 
a:t « b or 

(3.6) 

we obtain 

+ 2 , , [ m2w ]-• P-e-P+ 8+cos 'I'+)+ 2E_E+(P-12e_z + P+''e+')] xn0----
2E_2E+2 

-i2 n'!,E_E+ [P+''e+'(wm2/2E+'+w8+2/2) _J_. P-''8-'(wm'/2E-'+we_•/2)]} 
(xnow2w/2E_'E+') '!, ( xn0m2w/2E_2E t') '1' 

x e+ ae+e- de_ a<l'+· ( 3. 7) 

An analysis of (3.6) and (3. 7) shows that multiple scat
tering suppresses the probability of pair production in 
the region of small particle emission angles, but does 
not change the probability in the region of large angles. 
A consequence of this is the increase of the effective 
electron and positron emission angles. The maximum 
of the angular distribution of the emitted particles 
corresponds to 

(3.8) 

It is interesting to note that this conclusion can be 
drawn from a qualitative analysis, just as was done by 
Galitskii and Gurevich for bremsstrahlung [sJ. Indeed, 
the probability of pair production can be represented 
in the form 

w ~ Al', (3.9) 

where l is the coherent length of the process. Let us 
find this quantity in the medium. For a positron or for 
an electron emitted at an angle e± to the trajectory of 
the gamma quantum, with account of the multiple
scattering angle, we obtain the coherent length from 
the condition 

l I v cos (H± + e,) - l = X /2. (3.10) 

For ultrarelativistic velocities we get in the small
angle approximation from (3.10) 

X/2 
l(w, e±) = . 

1-v- e,'/2 + e±2/2 

Recognizing that the coherent length in the absence 
of a medium at 0 o angle is equal to l 0 ( w, 0) 
=II: (E/m) 2 and e~ = (Es/E )2l/Lrad, we get 

(3.11) 

Since the probability is determined by the coherent 
length l, we see from (3.11) that the angular width co
incides with that obtained above in (3.8). Integration of 
(3.4) over the particle emission angles gives the energy 
distribution. In the low density limit we have 

da const ( 2 )( E~- 1 ) ( ) - =--· E+'+E-'+-E~- ln2---7 , 3.12 
dE+ w3 3 m<o 2 

which corresponds to the Bethe-Heitler spectrum. In 
the second limiting case we have 

da -y-;;; ( E,' 1 )-'h 
dE+= const E+ E+' 2Lrad ' (3.13) 

which coincides with Migdal's results [1J. 
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