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On the basis of the Bogolyubov equations it is shown that the distribution functions Ga1 ... ds for a sys

tern of charged particles have an essential singularity at the point p = 0, where pis the density. There
fore it is impossible to represent them in the form of a series in positive powers of p. A method is 
proposed of "decoupling" the Bogolyubov equations based on a consistent method of taking into account 
correlations of higher and higher order. It is shown that already in the first approximation the expres
sion obtained in this manner for the binary distribution function agrees up top "'" 0.3 with data obtained 
by the Monte Carlo method. 

1 For systems with a short range potential 1 > ¢~~) the 
virial expansion of the binary distribution function 

~ 

G12 = ] pkg~;> 
A=O 

in powers of the density pis always equivalent to the 
virial expansion for the free energy 

in the sense that the meaning of each term in the series 
for F is uniquely determined by the value of the corre
sponding term of the series for G12 (i.e., we always have 
F(k) = F(k)(gf~))). It might seem that a similar situation 
should also occur in the case of systems whose particles 
interact with each other in accordance with the law 
tf? = cp(S) + cp(el) where cp(el) = e e /Er is the 

ab ab ab ' ab a b 12 
Coulomb component of the pair potential (here ea is the 
charge of a particle of type a, E is the dielectric per
mittivity of the medium, r12 = lr1- r2l is the distance 
between particles a1 and b2). However, if one utilizes 
the expansions for the binary distribution function ob
tained, for example, in [1-31 , and compares them with the 
series of Mayer [41- Haga [sJ for the free energy, then one 
easily obtains that already the second term of the series 
F = ~okF(k) receives contributions from all the terms 
of the series Gab = ~okgkb (here o is the plasma param
eter). A breakdown of th~ equivalence in this case is 
due to the fact that the expansions obtained in [1-31 even 
though they have the form of virial expansions, are not 
in fact such expansions, since in obtaining them one has 
utilized (explicitly or implicitly) different kinds of ap
proximations which cannot be rigorously justified. 
Moreover, we shall show below that the distribution 
functions for Coulomb systems cannot generally be 
represented in the form of a virial series, since at low 
densities they depend on the expansion parameters in a 
nonanalytic manner. 

This somewhat unexpected result has a very simple 

1)Here and in subsequent discussion the numerical subscripts indi· 
cate the numbers, and the letter subscripts the numbers and the kind of 
particles to which the given function refers. 

physical meaning. As is well known, as the density de
creases the Debye radius rn increases without limit. 
Therefore in the limit o = 0 a correlation in the position 
of all the particles arises in the plasma independently 
of how large (but finite) are the macroscopic dimensions 
R of the system. At the same time the position of the 
particles starts to depend on the shape of the vessel in 
which the system is placed, on the properties of the 
vessel walls, etc., which is quite inessential in the case 
rn « R. A qualitative change in the properties of a 
system of charged particles at very low densities finds 
its expression in the fact that an essential singularity 
appears in the binary distribution function at the point 
o = 0. At the same time the free energy for a Coulomb 
gas does not have any singularities at the point o = 0, 
since as the density decreases the energy of the electro
static interaction of the particles with one another tends 
to zero. Therefore it is quite possible to construct 
virial expansions for the thermodynamic functions for a 
system of charged particles. 

Since the distribution functions for a Coulomb gas 
cannot be represented in the form of a power series in 
o, then in the initial equations we cannot neglect the 
corresponding terms on the basis that they are propor
tional to higher powers of the plasma parameter o. 
Therefore there remains only one way out of this diffi
culty: to carry out simplifications in the initial equations 
based on different kinds of physical considerations, and 
to check the correctness of the solutions so obtained 
a posteriori by comparing them with the virial expan
sions for the free energy' by estimating the neglected 
terms with the aid of a successive approximation 
procedure2> etc. In such an approach there, of course, 
arises a certain arbitrariness in the choice of the equa
tion for the first approximation, but as will be shown 
below, in practice it is not particularly significant. 

In the present article we first investigate the problem 
of the virial expansions basing ourselves on the set of 
Bogolyubov[71 equations for the distribution functions 
Ga d , n = 1, 2, ... , 

1'" n 

2)Bogolyubov[7] was the first to point out the necessity of evaluat
ing the distribution functions for a Coulomb gas by means of the method 
of successive approximations. 
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+ ~ ~ VkGa, ... dn,kn+l v,<I>.,,kn+ld3rn+l = 0 
V i~k:s;;;M 

(1) 

(we have here adopted the followi_I!f; notation: El = kT is 
the temperature, Ua ... d = 2..1. <l>aibJ· is the 

1 n 1::si::SJ::sn 

configuration energy of a complex of n particles of the 
kind a, ... , d, z;a = N/V is the number of particles of 
type a per unit volume, ri is the position vector of the 
particle ai, M is the number of different kinds of parti
cles in the system) and we then consider one of the pos
sible methods of constructing a series of successive 
approximations for the binary distribution function. 

2. From the infinite set of solutions of the Bogolyubov 
equations (1) only those correspond to a canonical dis
tribution, (and, consequently, have physical meaning) 
which satisfy the normalization conditions, the symmetry 
conditions, the condition for reducing the correlations 
etc. These conditions appear here essentially in the role 
of ordinary boundary conditions utilized in solving differ
ential equations. It is therefore natural from the outset 
to attempt to put expression (1) into such a form in which 
the imposition of supplementary conditions (or, at least, 
a f,art of them) would be superfluous. As has been shown 
in 81 , this problem can be solved by going over from the 
distribution functions Ga d to the correlation func-

' ... n > 
tions ga1 ••• dn by means of the relations of the type3 

Gabc = YabYacYbc[1 + (gab+ gac + gbc) + gabc] 
(2) 

etc., where yab = exp[-¢~~/®]. The linear replacement 

(2) is the most general one in the sense that under ap
propriate assumptions with respect to the dependence of 
gabc on gab it includes also arbitrary nonlinear replace
ments. Thus, for example, by setting 

gabc = (gabgac + gabgbc + g~bc) + gabga.gbc + ga~c, 

Cab= 1 +gab, 

we obtain for the triple function the multiplicative re
placement 

Substituting (2) into (1) and going over to the dimen
sionless coordinates ti = r/ro, where r 0 is the diameter 
of the particles we obtain 

Vtb'ab+AabXV,(~)[1+gabl+~ { ~n,[1+(gab+g.,+gbc) (3) 
v c 

Va 
na=-, 

v 

x• = (!!_ )2 = 4nve2r02 , 

rv ee 

V = ] V 0 , ~ na = 1, 
t:s;;;a:s;;;M 

e• 
X=-- p = nro3v. 

e8r0 ' 

In (3) we have assumed for the sake of simplicity that 
Ya·b· = YiJ. do not depend on the kind of particles. 

1 J 

3> A similar replacement was utilized by Tyablikov and Tolma
chev[ 1 ] who, however, defined 'Yab as 'Yab = exp [ -c/J(,~);e- <.p ], where 
<.pis some component of the potential for the average aforce. 

The condition for reducing the correlations in accord
ance with which Gab- 1 as r - oo can only be satisfied 
if the system is as a whole neutral [gJ, i.e., if :Bvaea = 0 
or, what is the same thing, if a 

(4) 

while the condition for the finiteness of the density fluc
tuations from which it follows that lim r 3gab(r) = 0 

r-oo 
only if the system is locally neutral [91 • The latter state-
ment means that the charge ea of each ion must be neu
tralized by the charge of its "atmosphere," i.e., .. 

e.+4n ~ ~ ebvbGab(r)r2dr=O. 

Substituting into this expression Gab from (2), taking 
into account the condition of overall neutrality ( 4), and 
going over to dimensionless variables we can write the 
condition for local neutrality in the form 

X+ X2 f{ ~ nbAabgab(t) }v(t)t2 dt = 0. 
0 b 

(5) 

We note, that due to the condition of overall neutrality 
in (3) the integral satisfies 

= { ~ n,l..,.,} S ( ... )d3ts = 0. 
c v 

Therefore (3) assumes the form 

V,gab+ AabXVI \( .!.._)[1 + g.b] t,. 

+ ::~ {~ n,A.,[(g.,+gbc)+gabcl}y,ayzaV,C~Ja•ta 
v c " 

etc., where fik = Yik - 1 is the Mayer function. Adding 
to (6) the boundary conditions at infinity 

lim g., ... dn = 0 
lk 

and the condition for the symmetry of the functions 

(7) 

ga 1 ••• dn with respect to the permutation of the coordin-

ates and the charges of the particles a,, ... , dn, we obtain 
a complete system of equations. In this case it turns out 
to be superfluous to impose normalization conditions, a 
reduction in the correlations, and a boundary condition 
at "zero." 

3. We investigate first of all the question of the pos
sibility of solving the set of equations (6) by means of 
virial expansions. It is possible to construct from quan
tities characterizing the state of a system of charged 
particles three parameters having the dimensions of 
length: the diameter of the particles r 0 , the Bjerrum 
radius rB = e 2 / E®, and the De bye radius rD 
= (E®/41Tve2 ) 1 / 2 • Therefore in (1) one can go over to the 
dimensionless coordinates in three different ways. If we 
set t = r /ro then, as may be seen from (6), three dimen
sionless parameters appear in the equations -x, K and 
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p, in terms of which the expansion must be carried out4 >. 
Carrying out elementary calculations it can be easily 
shown that the coefficient in the series of the term of the 
first degree in x is equal to Aab/t. Substitution of this 
expression into the formulas for the coefficients of 
higher powers of x, K, and p leads to the result that the 
corresponding integrals diverge at infinity. Therefore, 
it is not possible to perform an expansion in terms of 
x, K, andp. 

Setting T = r /rB we obtain instead of (6) 

v ,gab+ hab vJ _1_ \/ [1 +gab] 
\'I"12 

+ PX3 
{ S ( ... ) V 1 ( _1_) d"rs- Si(. .. ) V,/13 d"<s} = 0. 

n v ~a v 

This equation depends only on the single parameter 
6 * = x 3p. But it is also not possible to expand in terms 
of 6 * since the coefficient of the first term in the series 
g~b = expl-"-ab/T]- 1 falls off at infinity just as slowly 
as in the case of expansions in terms of x, K, and p. 
Therefore, the only possibility remains to go over to 
measuring lengths in terms of the Debye radius. In this 
case (6) assumes the form 

V1gab + hab<W 1 ( ..!__) [1 +gab]+ -4
1 \ ~ n,Aac[(gac + gbc) 

'ti2 rtv c 

etc., where T = r/rD = Kt and 6 = XK is the plasma 
parameter. 

(8) 

6 appears in (8) not only explicitly in the form of fac
tors, but also implicitly through Yik = fik + 1 = y(tik) 
= y(X Tik/6). However, one cannot expand Yik in powers 
of 6 since in this case a pole of order higher than the 
first 5 > appears at the point T = 0 and all the integrals 
diverge at the origin. But abandoning the expansion of 
Yik is equivalent to the fact that in (8) we retain not only 
positive, but also negative powers of 6 and, consequently, 
the series for the correlation functions in this case must 
have the form 

where g(k) depend on 6 through Yik· Therefore, in 
specific calculations one can by no means restrict one
self to a finite portion of the series, since, judging by 
the factors 6- K the neglected terms are certainly grea
ter than the ones that have been retained. However, in 
fact we can in general say nothing about the magnitude 
of the remainder of the series since the coefficients of 
the expansion g(k) = g(k)(6) and, consequently, the limit 
of the product 6kg(k)(6) is not known a priori for 6 - 0. 

Of no lesser significance is the fact that in working 
with the Bogolyubov equations written in the form (8) it 

4) Actually, the expansion must be carried out only in terms of two 
of them, since only two parameters are independent; the magnitude of 
the third parameter is determined by the relation 1<: 2 = 4xp. However, in 
this case this is immaterial. 

s)The presence of such a pole is needed in order that il>ab = rt>~~) + 
rp(~) should tend to -too as r 12 --> 0, which is important in order to guar
a~tee the stability of the system. 

is in general impossible to "uncouple" the whole sys
tem, since terms of the same order of smallness in 6 
appear simultaneously in all the equations of the system 
(this follows from the fact that there is no factor 6 in 
front of the first (Coulomb) integral in all the equations 
in (8); cf., note added in proof). Therefore in practice 
gab cannot be represented in the form of a series in 
powers of 6. And since there exist no other dimension
less parameters in addition to those which have been 
considered above, the latter means that the distribution 
functions for a Coulomb system cannot in general be ex
panded in terms of virial series 6 >. 

4. In order to eliminate the difficulties arising in the 
evaluation of the distribution functions for a Coulomb 
system one ordinarily utilizes different kinds of approxi
mations which, however, cannot be justified from a 
formal point of view7 >. But since in the majority of ca
ses these approximations have a clear physical mean
ing, the results obtained with their aid turn out to be 
quite sensible. Taking into account what has been said 
above, we, from the outset, renounce all attempts of 
justifying the approximation that has been made by esti
mating the value of the letter factor preceding one or 
another of the terms, and will proceed only on the basis 
of physical considerations. 

With this aim in view we note that in a sufficiently 
rarified Coulomb gas the average distances between the 
particles are large, and, consequently, the average en
ergy of the electrostatic interaction expressed per par
ticle is small in comparison with ®. Therefore the 
correlation in the position of individual particles due to 
this interaction is also small. And this means that in the 
first approximation it is possible to retain in (6) under 
the integral only terms with gab which take into account 
the linear components of triple correlations, and to 
neglect terms with gabc which describe the nonlinear 
components of the correlations. In the second approxi
mation it is possible to neglect the nonlinear components 
arising in the simultaneous collision of four particles by 
setting in the equation for gabc the term with gabcd = 0, 
etc. Thus, for the "uncoupling" of the infinite set of 
equations (6) the use of a series of successive approxi
mations in terms of the order of the correlations natur
ally suggests itself and we now proceed to investigate it. 
In doing this we everywhere restrict ourselves to equa
tions of only the first approximation. 

5. We begin by considering two limiting cases: a 
system of uncharged particles and a low density Coulomb 
gas, and we then go over to a dense Coulomb gas. By 
setting in (6) x = K = 0 and gabc = 0 we obtain in the first 
approximation for determining the binary function for a 
system of particles of one kind the equation 

6)Generally speaking an expansion in a series of the type gab= 

f: okg(kb) (o) is possible (cf., for example,(2]), but in this case the 
k=O a 
question of the radius of convergence of such a series remains open 
(since such a series is not a series in powers of a small parameter). 

7lFor example, in[ 1 ] terms with gabc were omitted in (8), although 
they are the same order of smallness (with respect too), as the terms 
that have been retained, in[ 10] terms with 1/5 were omitted, although 
formally they are larger than the terms that have been retained, in[ 11 ] 

the initial expressions were expanded in terms of different parameters 
at large and at small distances, etc. 
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Restricting ourselves for the sake of simplicity to a sys
tem of hard spheres for which 

{ -1 
!= ' 

0, 
O,;;;t<1 
1,;;; t ,;;;oo' 

we obtain after some elementary transformations 

4 1 2 1 
g(t)=pf1+g(1ll( 3 -t+ 12t•)+PO ( 1-4 "z)g('t)d't 

1 1+1 } 
--~ g('t)'t[1-('t-t) 2]d't ' 

t 1 

t+1 

t 

g(t)=- -~ ~ g('t)'t[1-('t- t)2]d't, 
t-1 

1,;;; t,;;; 2; 

2,;;; t,;;; oo. 

We solve this system by the method of iterations. An 
investigation of the behavior of g(t) at large distances 
which was carried out inr121 , has shown that for p :S 1 
the function g(t) tends very rapidly to zero for t - oo. 

Therefore, it is sensible to take for the first approxi
mation 

g<•l(t)={p[1+g(1)](i/a-t+ 1/12t"), 1,;;;t,;;;2 
0 2,;;; t ~ oo. 

Substituting this expression into the equations for g we 
obtain in the second approximation 

{ 91 5 23 1 
g(2) = g('l(t)+ p[1 +g(1)] 70 1+12- 20 t + 2 t2 

1 1 1 } 
+g-t•-12t'+ 2sst• 

etc. Since the pressure Pin a system of hard spheresr121 
is determined by the formula 

p = P ,,.a= 1 + 2/aP[1 +g{1)J, 

then with the aid of some simple calculations we obtain 

12 + 3p + 0.88214p2 - 0.57222p3 + ... 
p = 12 - 5p + 0.88214p2- 0.57222p3 + . . . . <9) 

The results of numer.ical calculations in accordance 
with this equation are exhibited below. We also give 
there for comparison the values of p found with the aid 
of a 5-term portion of the virial series and of the 
Percus- Yevick equation r131 . A comparison of these 
data shows that (9) guarantees quite satisfactory accur
acy up top ~ 1. 

Virial Series (5 terms): 0.238 0.352 0.612 1.069 
l.J76 1.273 1.534 2.163 

Percus- Yevick equation: 
l.J76 1.273 1.532 2.149 

Equation (9): 1.176 1.273 1.535 2;227 

6. In the case of a low density Coulomb gas it is 
possible to neglect in the first approximation not only 
terms with gabc• but also terms proportional top. As a 
result of this we obtain 

V tgab + AabXV 1 ( __!_) [1 +gab] 
\ t12 

+ :• ~ {~ ncAac(gac+gbc) }vtsVzsV1 (_!_)d3t3 =0. (10) 
nv c ~· 

Since the parameters K, x and p are interrelated by the 
equationp = K 2/4x, then the conditionp « 1 which is 
needed to make (10) valid assumes that K 2 « 4x. 

In what follows we restrict ourselves to a discussion 
of the binary system of charged hard spheres of diam
eter ro for which 

{ 0, 
y(t)= 1, 

¢<Bl(t)={oo, O,;;;t<1, 
0, 1,;;; t,;;; 00 

e+ = -e_ = e, "+ = "- = 1/ 2v. (11) 

In this case (10) is equivalent to a system of two equa
tions for the two correlation functions g++ = g __ and 
g._ = g_., instead of which it is convenient to introduce 
the functions M(t) and R(t) by means of the relation 
gab= 1/a{gab(Aab; t) -gab(-Aab; t)} + 1/z{gab(Aab; t) + gab(-A.ab; t)} 
· = -A.atJM(t) +R(t). (12) 

Substituting (12) into (10) and combining terms involving 
Aab we obtain 

v ,M12 + xz rMzayfJ'Y23V I(_!_) d3ta = xR12 vI ( ;-)' (13) 
42r v tta' 12 

V1R12= xM12V,C~) +:: ~ Mtavtavzav,( ~) d•ta, (14) 

where the prime on the integral in (13) indicates that we 
have taken into account the condition of local neutrality 
(5). Replacing in the integrals in (13) and (14) h3 by 
y13 = 1 + f13 we reduce each of them to a sum of two 
integrals one of which is taken over all space with the 
exclusion of a sphere of unit radius with its center at 
t1, and the other over a sphere of unit radius with its 
center at t2. The corresponding integrals can be easily 
evaluated, and as a result of this (13), (14) assume the 
form 

M'(t)+ x:{~ y(T)M('t)t2d't 
t t-1 (15) 

+~'f y('t)M('t)'t[('t-1)2- t2]dt} = -x R~!), 
l-1 

1 1+1 
R'(t)=-; {M(t)+:2p ~ y(t)M(t) 

t-1 

(16) 

We emphasize that this system is exactly equivalent to 
the initial equation (10). 

Omitting in (16) the term proportional top we obtain 

since it follows from (16) that 

"" d 
R(t)= X I M('t) __2_, J -r2 

Finally, substituting the expression for R(t) into (15) and 
differentiating the resultant equation we transform it to 
a more convenient form: 

t+l 

m"(t)=x• m(t) +!_xz r y('t)m('t)d't, (18) 
t• 2 J 

t-1 

where m = tM. This equation determines the function 
m(t) up to a factor A which can be obtained from the 
condition of local neutrality. Substituting into (5) in place 
of gab its expression from (12) we obtain 

.. 
x+x2 ~ m('t)'td't"= 0. 

1 

(19) 
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The system (18), (19) already completely defines the 
problem. 

7. With the aid of the mean value theorem ( 18) can be 
written in the form 

m"(t) == x2m(t) lt"-1-x2m(t + ~). 
where t - 1 ::o t ::o t + 1. From here it follows immed
iately that for t ~ to = -/X1K8 > one can neglect the term 
involvingx 2 in (18), and after this (18) reduces to 

1 t+t 
m"(t) =-%2) m(T)dT, t0 ~t..;; co. (20) 

2 1-1 

The general solution of this equation has the form 

m(t)= Akexp[-aht], (20') 

where 

a3 = x2 sh a. (21) 

In n 41 it was shown that equation (21) has two real roots 
a1 = 0'1 and a2 = 0'2 and an infinite number of complex 
conjugate roots ak = ak + iwk. For K - 0 the quantity 
0'1 - K, while a 2 , a 3 , ••• - 00 , and the inequality 0' 1 ::o 0'2 
< ... < O'k < ... is always satisfied. Because of this one 
can in (20') to a high degree of accuracy retain only one 
term setting m =A exp (- a1t). 

Fort< to one can omit in (18) the term with K2, and 
after this it reduces to 

m"(t) = x2m(t) It', 1.:;; t~to. (22) 

The general solution of this equation has the form 

m(t)=Atsh..!..-1-Btch...!.. (23) 
t t 

However, here because of the relation (12) the constant 
B should be set equal to zero. 

8. In the case of low concentrations when 0'1 - K - 0, 
the solution of equation (18) can be easily obtained by the 
method of iterations. We define the (n + 1)-st approxi
mation by means of the relation 

" mn(t) 1 ir 
mnH(t)=x2-t-.-+T"2 .l y(T)mn(T)d't', (24) 

1-1 

and for m1 we take m1 = A exp (- a1t), since in the case 
of low concentrations the principal contribution to the 

free energy comes from large distances. Substituting 
m 1 into the right-hand sid~ of (24), integrating and omit
ting all terms of the type a~kt-Pexp(-alt) fork 2: 1 and 
arbitrary p 9>, we obtain the recurrence formula 

mn+l = mn + A[x2n I (2n + 1)1] · 
· exp( -a1t) I t2n, 

whence we have 

!immn(t) = m(t) 

= ~ te-«•1 sh...!. . 
X t 

In determining the constant A from the condition of local 
neutrality (19) we obtain 

Gab(t) = y(t) { 1 -1- %~ 
Xexp(-a1(t-1)) 

x[ exp(- ":bX_ )-1 ]}. (25) 

where .. 
B = ~ t2exp(-a1 (t~ 1))sh!dt, 

I t 

and for a1:::; K << 1 the quantity B is given by 
B:::; x(1 + a1)/K 2. If we now substitute (25) into the 
formula which relates the internal energy of the system 
U = - 1hN®x U to Gab and if we set li = x K, then we obtain 

U=~ 
X 

{ 

® x2h-< 

X b-J-<1:~ (2k-l- 1)1(2k-1) 

+ 0((13) }. 
(26) 

and this coincides exactly with the first two terms of the 
series U = :Eklikij(k) obtained by Mayer[41 and Haga[sJ 
by the method of summing ring diagrams. It can already 
be seen from here that all the terms of the series Gab 
= :E)_{likg~lf} give contributions to the term u<2> in (26), 
since after going over to the dimensionless coordinates 
T = Kt we obtain that in (25) 

{ '-•b'X) I Aabb) ~ (-A.b)h ( b )h 
exp\ --t- =exp\ -·-'1'- =k~o k! t . 

Table I 

I I I I I I I 
·~ 

I 
6: 

I I I I 
·a: u 

~ 
I I I 

~ ~ ~ e • € e • 
~ . . iS /:0, /:0, /:0, ;; <. <1 :;, ~ 

0.0014 0.100 0.100 0,0909 0.0932 0.0934 0,0935 0,935 0.0909 0.0941 0.004 0.002 0 .. 002 -0.027 
0.0125 0.298 0.300 0.231 0.238 0,240 0.242 0,242 0,230 0.244 -0.001 0.001 0.{)10 -0.089 
0.0337 0.490 0.500 0.334 0.343 0.345 0.348 0.351 0.329 0.354 -0.013 o.ooo 0.020 -0.193 
0.0635 0.673 0,700 0,412 0.421 0,423 0,426 0,424 0.402 0.437 -0.039 ~.004 0.028 -0,296 
0.0996 0.843 0.900 0,474 0.481 0.482 0,485 0.486 0.457 0.500 ~.080 ~.008 0.035 -0.379 
0.140 0.998 1.100 0.524 0.528 0,530 0 532 0,543 0.499 0.551 --0.134 -0.015 0.041 -0,437 
o. 182 I. 137 I, 300 o. 565 0.567 0, 568 0,570 0. 594 0. 532 o. 592 ~.202 ~.OIJ 0.046 -0.474 
0.223 1.26 1.500 o:600 0.596 0.596 0,596 0,637 0,557 0.626 ~.282 ~.002 0.050 ---0,504 
0.308 I ,48 2.000 0.667 0.650 0,642 0,634 0.678 J.~97 0.690 -0.528 0.017 0.058 -0.766 
0.373 1.63 2.500 0.715 0.687 0,650 -- 0.690 0,620 0.735 -0.823 0.042 0.061 -

*The values of u(M-C) are oblfined by means of a graphical interpolation of the table data given in[ IS]. 
••The values of u(D-H) and A( -H) are evaluated on the basis of formula (30). 

***The values of u(•) and A (a) are evaluated on the basis of fonnula (25). 

8> A more exact estimate shows that t 0 = ~. where a 1 is the 
first root of the transcendental equation (21 ). 

9)Qne cannot expand the exponentials in terms of a 1 since for t--> oo 

the product a 1t can become arbitrarily large for an arbitrary small but 
finite value of a 1• 
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It is essential that in the expansion of the exponential it 
is not possible to neglect a single term since in the 
opposite case it is not possible to obtain an exact value 
for the coefficient of a 2 in (26). 

It can be easily noted that (25) fort- 1 and t-oo 
coincides with the well known formula of Tyablikov
Tolmachev u J 

Gab(t) 

=y(t)exp[- A~b'X e-xt]' (27) 

while for Kt ~ 1 an essential difference arises. Remain
ing within the framework of low densities it is not possi
ble to single out any one of these formulas, since (25) 
and (27) equally lead to physically sensible results both 
at large and at small distances (i.e., where they coincide) 
and equally correctly determine the first two terms of 
the series (26). However, in all probability formula (25) 
is nevertheless more accurate, since in extrapolating 
greater densities it gives considerably better results 
(cf., Fig. 1 and Table 1). 

Formula (25) can be easily made more exact. If in 
the evaluation of the approximations one retains also 
terms of order Cl'!exp(att)/tP then in place of (25) we 
obtain 

Gab(t) = y(t){ 1 + :.Bexp(- a1 (t -1)) [ exp(- 'Aa:'X) -1 J 
x[1 + att( 1 + 'Aab'X exp(-'Aabx/t) )]}. (28) 

\ t exp ( -'Aabx/t) + 1 

where the constant B determined by the condition of 
local neutrality (19) is equal to 

"" 
B = ~ (1 + Utt)t2 exp(-a1(t- 1))sh .3.. dt 

1 t .. 
-xat ~ t2 exp(-Ut(t-1))ch; dt. 

I 

One can also group terms of higher order in at, but the 
final expressions in this case turn out to be too awkward. 

ff 
aa 

A' 
v. I'"( 24 

0,7 

.b v 
# 

0,5 

/: .... --f---
' '5 

1// 

,I 
1/ I 

0.2 

a 

0 0,3 0.6 0.9 1.2 /.5 K 

FIG. I. The internal energy U = -Y2NE>xU for a system of charged 
spheres evaluated: 1-by the Monte Carlo method, 2-for lf(oo), 3-by 
means of formula (25), 4-by means of the Debye-Hilckel formula (31), 
5-by means of the Tyablikov-Tolmachev formula (27). The notation I 
indicates the change in the value of lf(M-C) with an increase in the 
number of particles in a cell in the Monte Carlo method. 

Table II 

{ ffi') 0.334 0.334 0.334 0.334 0.334 0.334 
0.490 fJI'J 0,333 0,336 0,345 0.360 0,378 0,398 

i'JI') 0,333 o. 337 0. 348 0.368 0. 395 0.429 

{fJI'> 0.500 0,500 0. 500 0,.500 0. 500 0, 500 
0.922 [jl') 0.496 0.499 0.508 0,522 0.539 0.557 

'iJI'J 0,495 0.499 0,511 0,531 0,555 0,577 

{[JI'l 0.600 0.600 0.600 0.600 0,600 0.600 
1.26 {jl') 0.587 0,590 0.598 0,610 0,629 0,639 

[Ji') 0.585 0,588 0,599 0.618 0,639 0,648 

{ 'iJI') 0.667 0,667 0.667 0.667 0,667 0,667 
1.48 'iJI'l 0.644 0,646 0,652 0,661 0,672 0,684 

[jl') 0,637 0.637 0.645 0,663 0.681 0.691 

9. From the preceding it can be seen that the series 
Gab = ~ng~r:} based on a consistent taking into account 
of correlations of higher and higher orders already in 
the first approximation correctly determines the first 
two terms of the series F = ~anF(n) for the free energy. 
At the same time the series for the binary function is 
certainly not virial and, consequently, it cannot be 
a priori asserted that its radius of convergence is 
restricted by the condition a ~ 1. Moreover, there are 
definite qualitative considerations which indicate that 
the domain of convergence of the series with respect to 
the order of the correlations is restricted by the con
siderably weaker condition p :=:; 1. 

Indeed, for a > 1/3 the screening of the charge of 
each ion is accomplished by only a single "anti-ion" to>, 
and this is only possible in the case if both particles 
appear to unite into a single neutral quasimolecule. At 
the same time for p :=:; 1 the average distance between 
such quasimolecules is so great that the probability of 
a simultaneous collision of two or more "molecules" 
is small. Therefore one can assume that for a > 1, but 
p ~ 1, the contribution to the free energy of nonlinear 
correlations arising due to the simultaneous collision 
of three or more particles with one another is negligibly 
small. 

In order to check these considerations we obtained a 
numerical solution of (8) for such values of K for which 
it is no longer possible to regard at as small. This 
solution was also obtained by the method of iterations 
where for fit we have as before taken the solution of 
(20) mt(t) = exp(- Ott). From (17) and (19) it follows that 
in this case in the first approximation the binary distri
bution function Gab is equal to 

Ill { (at \z X e-«,(t-t) 
Gab (t)=y(t) 1-'Aab - -----

,_; 1+at t 

( at )2 1(2 r e-!Z,{"<-I) } +- --J----d-r:. 
x 1+at, ,;3 (29) 

Subsequent approximations have been evaluated with the 
aid of (24), f~ in each approximation terms of arbitrary 
order in at e attjtP were retained. A total of three 

to) It is precisely this that explains the fact that for ll ;<: 1/3 the 
terms of the virial series F = :Enllnp(n) cease to fall off and the series 
diverges [ 9). 
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FIG. 2. The dependence of the 
value of G+- (a1; t = I) on the con
centration a 1 = f(K) for x = 1.78: l-in 
accordance with formula (29), 2-in 

~.t-"'<-"k-+----+--+----j1 accordance with the formula for the 
second approximation, 3-in accord
ance with formula (25). 

approximations was calculatedu> and after this extra
polation to n ~ oo was made. The results of these cal
culations are shown in the graphs of Figs. 1, 2 and 3, 
and also in Table I. In all these cases we have taken 
X = 1.78, and this enabled us to compare the results ob
tained for the internal ene~ ~ith the results of the 
calculation of the quantity U = u(M- C) by the Monte 
Carlo method directly from the cannonical distribu
tion [1sJ 12>. 

From the data of Table I it can be seen that as the 
ordinal number of the approximation n increases the 
magnitude of ij(n) rapidly tends to its limit, and for 
p::; 0.1 (this corresponds to K;:;; 0.9) the difference be-

tween u(oo) and u(M- C) lies within the limits of error 
of the calculations-it is less than 1%. Asp increases 
to"'" 0.3 (this correSJ?Onds to K "=' 1.5) the error 
t.U= (U(M-C)_ ij(ooJ)(tJ(M-C) increasesto"'"6% 13 >. 
Moreover with the aid of the well known formula connect
ing the binary distribution function Gab with the pressure 
P the quantity p(n) was evaluated in different approxima
tions, and then it was checked as to how exactly the 
thermodynamic identity (BU/BV)6 = ®(BP/B®)y- Pis 
satisfied. In Table I we give the corresponding values 
of the quantity 

L\ = {[ 8 ( :=) v -P J- ( 0a~) e} / ( :~ )e' 

11lit can be easily shown that with the given choice of m 1 the ex
pression for m(n)(t) has the form m(n) = m(l) + X2m(2 )+ K2m(2)+ 

k u ( ) 00 20 02 
x•m~~+ ... + x2 K m2~ I" We do not quote the corresponding ex-
pressions for m~t) since t~ey are too awkward. 

t2)lt would be more consistent to estimate the contribution of 
gabc obtaining it from the second equation of the Bogolyubov chain. 
However owing to mathematical difficulties we have not yet succeeded 
in doing so. 

13)Since li = /i 0 "" 1/3 defines the boundary for the convergence of 
the virial series for F, Eq. (18) enables one for x = 1.78 to move through 
approximately two orders of magnitude into the region of greater con
centrations compared with an expansion in terms of the plasma param
eter. For x = I 0 this displacement should amount to,., I 04 since with 
increasing x the range of concentrations within which the Mayer-Haga 
series (26) converges falls off as x-3 (since p 0 = 0. 25/i 02 /x3) while the 
domain of applicability of ( 18) is as before determined by the condition 
p :=;;; I. For an ordinary plasma for which e = I such a displacement with 
respect to p does not have much significance, since the region of con
vergence of the virial series includes almost all the practically obtainable 
values of temperatures and densities. But for solutions of electrolytes 
( e = 80) this is very essential since it enables us to develop a theory of 
solutions of finite concentration[9]. 

FIG. 3. The dependence of 
G+- (a1 = 1.1; t) on the distance 
t for x = 1.78: l-in accordance 
with formula (29), 2-in accord
ance with the formula for the 
second approximation and 3-in 
accordance with formula (25). 

1,2 [---+---t---= ....... c±--------1 

w 1.4 1.8 

from which it can be seen that as the number of the ap
proximation n increases the magnitude of t,.(n) also 
rapidly tends to zero. 

From all that has been said above it follows that the 
equation of the first approximation with respect to the 
correlations (18) in practice exactly defines the free 
energy of the system up top "'" 0.3. If in the initial equa
tions we would have retained terms of order p, then 
quite probably the boundary on the applicability of the 
equation of the first approximation would have increased 
top "'" 1. 

10. The expressions obtained as a result of solving 
(18) by the method of iterations are not suitable for 
practical use due to their awkwardness; for this purpose 
it is necessary to find simpler formulas. In the case 
x » 1 we can recommend as such a formula either (25) 
or (28), since evidently in the nearer domain they satisfy 
sufficiently well (22), while in the further domain they 
satisfy (20). For x "'" 1 we can also utilize formula (25) 
since it determines sufficiently a£_curately both Gab 
( cf., Figs. 2, 3), and the value of U ( cf., Table I). But 
the values of the "single- valuedness" parameter 
t. = t. (a) evaluated on its basis are quite large ( cf., 
Table I). Therefore it does not guarantee great accuracy 
in the evaluation of other thermodynamic functions of 
the system. 

More satisfactory for x "'" 1 is formula (29) forK = a 1, 
when 

(D·H) { X e-x(t-i) 
Gab(t) =Gab = y(t} 1- Aab _____ _ 

1 +x t 
00 x2 I e-X(t-i) } +-- J--d"C 

1 +x , "C3 ' 
(30) 

which leads to the well known expression for the internal 
energy: 

1 X 
U=--Nex--z 1 +X' 

(31) 

which was first obtained by Debye and Hiickel. Up to 
those values of K for which a1"'" K (i.e., up to K::; 1) it 
not only gives a sufficiently good description of the 
binary function (cf., Figs. 2, 3) but it also gives satis
factory values for U and t. (cf., Table I). It is just this 
that explains the fact that on the basis of formula (30) it 
turns out to be possible to develop the thermodJ7namics 
of monovalent solutions of strong electrolytes [gJ 14 > 

14lWe recall that for monovalent electrolytes x"" 2 - 3. 
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which gives good agreement with experiment[aJ. F.!:,om 
the data of Table 2 it can be seen that the value of U 
right up to x ~ 3-5 does not depend strongly on the 
value of the parameter X 15 ). Therefore formula (30) is 
valid for small values of X~ 3-5, but does not hold for 
large values of X > 5. 

1i. As can be seen from the data of Table I for 
K ~ 1.5 the series of successive approximations ceases 
to converge. The same occurs also in the case of the 
Monte Carlo method (cf., Fig. 1). All this indicates that 
somewhere near the point K = 1.5-1.7 a singularity 
arises in the system of charged spheres. And, indeed, 
an investigation of the transcendental equation (21) shows 
that when K = 1.642 the two real roots 0'1 and 0'2 merge 
and two complex conjugate roots a1,2 = Qll + iw 1 are 
formed in their place. Correspondingly forK > 1.642 
the binary distribution function for t > to falls off not as 
C1exp(-Qiit), but as t-1exp(-Qilt)cos w1t. In other words, 
at the point K = 1.642 a change of structure occurs in the 
system which, possibly, is accompanied by a phase tran
sition. 

In the region K > 1.642 a system of charged particles 
acquires all the features characteristic of systems with 
a short range potential. This manifests itself not only 
in the appearance of oscillations in Gab which are always 
observed for uncharged particles with a hard core, but 
also in the fact that for K > 1.642 the correlation radius 
Rk = ro/ Qll does not fall off with increasing concentration 
(i.e., with increasing K), as is characteristic for a dilute 
plasma, but, on the contrary, increases (the latter can 
be established by means of investigating the behavior of 
the roots of the transcendental equation (21)). At the 
present time there are some indications obtained in the 
course of an experimental investigation of concentrated 
solutions of strong electrolytes which confirm this con
clusion. 

In conclusion the author expresses his deep gratitude 
to V. I. Kogan for a detailed discussion of the manuscript 
of the present article. 

Note added in proof (December II, 1967). One can verify that terms 
of the same order of smallness in li appear in all the equations of the 
Bogolyubov chain in the following manner: we replace in (8) all the 
'Yik by fik = 'Yik - I and we assume that fik = i31ifik, where i3 is a parame
ter which in finite expressions should be set equal to li-1 . If we now sub
stitute 

IS) This is a consequence of the fact that 

~ ~ 

U = ~ m(x, t)dt j ~ m(x, t)t dt, 
t t 

as a result of which both the numerator and the denominator increase 
simultaneously with increasing x. 

m,n=O 

into (8) and equate terms involving the same powers of i3 and li, then it 
becomes formally possible to uncouple the infinite chain (8), and more
over after a transition to the dimensionless coordinate t = r/r0 we ob
tain a series in powers ofx,K and p, obtained earlier by Strel'tsova[ 3 ]. 

But the transition to X,K and pis not justified, since the initial equa
tions cannot be expanded in terms of these parameters. But if we as 
before measure distances in terms of the De bye radius then it turns 
out that it is not possible to evaluate the exact value of the coefficient 
of on since it contains an infinite number of terms (since for i3 = li-1 

all the terms of the type f3k&n+kg(k,n+k), k = 0, I, ... , turn out to be of 
order on. Since the distribution function of order k G(k) gives a con
tribution to g(k,n+k), then terms of the same order of smallness ap
pear simultaneously in all the equations of the Bogolyubov chain. 
This explains the impossibility of obtaining a closed equation for the 
distribution functions if they are expanded in powers of li. 
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