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The reflectance of semiconductors is calculated on the basis of the model of free electrons (holes) in
teracting with "randomly" distributed scattering centers. The parameters of the scattering mecha
nism are introduced into the theory phenomenologically. An explicit expression for the conductivity of 
the system is obtained for any frequency of the external field. 

1. INTRODUCTION 

THE optical properties of alloyed semiconductors in 
the infrared region of the spectrum lying beyond the 
edge of the main absorption band (on the side of longer 
wavelengths) are due essentially to the behavior of the 
system of free carriers in the external field. Nonselec
tive absorption observed in this region is attributed to 
the intraband transitions of electrons in the conduction 
band and of holes in the valence band. 

Measurements of the reflectance R 
R = (n-1)2+-xa (1) 

(n + 1) 2 + x2 

where n and K are respectively the refractive index 
and the absorption coefficient, point to the presence of 
a minimum in this region. With increasing free-carrier 
density, this minimum shifts towards longer wave
lengths [I]. By measuring the frequency at which the 
minimum of the reflectance takes place it is possible to 
calculate the effective mass of the free carriers [2 J • 

The optical coefficients n and K are determined by 
the relation 

n+ix=[e+i:cr(w)J". (2) 

Here E is the dielectric constant of the medium, meas
ured at very high frequencies, without allowance for 
the contribution of the free carriers, w is the angular 
frequency of the external field, and a( w) is the con
ductivity. 

Thus, a determination of these coefficients involves 
calculation of the conductivity as a function of the fre
quency. In practical calculations it is customary to in
troduce the assumption of the existence of a frequency
independent relaxation time, which in the case of the 
"plasma" model leads to the classical expression 

e'n. 't' 
cr(w)=--c-, 

m 1-zm,; 
(3) 

where e, ne, and m are respectively the charge, 
density, and effective mass of the free carriers. It is 
well known, however, that this expression for the con
ductivity still does not explain the optical properties of 
the materials in the spectral region under considera
tion, and it is customary to introduce into considera
tion extraneous factors, such as the interaction between 
the radiation and the lattice, the influence of induced 
interband transitions, etc. However, disregarding the 
influence of these factors and investigating the optical 
properties of the system of free carriers in itself, the 
validity of the assumed independence of the relaxation 
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time of the frequency is more than just doubtful. This 
is also indicated by measurements of the reflectance of 
pure metals [3J, where the free -electron model is a 
good approximation. The authors of that paper believe 
that the decrease of reflectance observed in the infra
red region is due to the frequency dependence of the 
relaxation time of the system. 

In the present paper we present a calculation of the 
electric conductivity of a system of free carriers in
teracting with "randomly" arranged scattering centers. 
The potential of the scatterers, which may be, for ex
ample, impurities or inhomogeneities of the crystal 
structure, are introduced into the theory phenomenolog
ically, by "joining together" at the low-frequency limit 
( WT « 1) the obtained expression for the conductivity 
with the de conductivity a= e2neT/m. This could be 
done by assuming that the scatterers have a short
range potential. The latter assumption is perfectly 
valid, if account is taken of the screening of the scat
tering centers. We note, however, that the de relaxa
tion time which enters in our expression for the con
ductivity is only a phenomenological parameter. No
where do we assume that the relaxation time is inde
pendent of the frequency, as is done in the classical 
theory. 

We assume that the carrier mean free path is much 
smaller than the depth of penetration of the field, and 
calculate the response of the system to external radia
tion in the long-wave limit. Thus, in spite of the fact 
that we are considering a rather wide range of frequen
cies, for which WT « 1 in the low-frequency region and 
wT >> 1 in the high-frequency region, the periodic ex
ternal field 

E (r, t) = Ee-i"'t (4) 

is assumed by us to be homogeneous in space. 
The present model has been considered in many 

papers. So far, however, the solution of the problem 
was confined to two limiting cases of low and very high 
frequencies. A distinguishing feature of our approach 
is the possibility of obtaining results for the entire 
spectrum, including frequencies for which wT ~ 1. 

The applicability of the model under consideration 
to a description of the optical properties of alloyed 
semiconductors is bounded on the high-frequency side 
by the main absorption edge. At these frequencies 
another absorption mechanism begins to prevail, 
namely interband transitions. Therefore the model of 
the free carriers is no longer consistent here, although 
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our calculation is valid within the framework of the 
model in question even at higher frequencies. 

In Sec. 2 we derive a transport equation, on the 
basis of which we calculate in Sec. 3 the conductivity of 
the system. Starting from the obtained expression for 
the conductivity, we calculate, using (2), the reflectance 
( 1). Section 4 is devoted to a discussion of the results. 

2. TRANSPORT EQUATION 

We consider a model in which the free carriers, 
which obey Fermi statistics, interact with randomly 
disposed scattering centers under the influence of an 
external periodic electric field. The carriers, which 
can be either electrons or holes, will be referred to 
for brevity as electrons, and will be assigned a charge 
e, an effective mass m, and a density ne· The external 
electric field E ( t) is by assumption homogeneous in 
space. The scattering centers are distributed with a 
density N and have a mass M that exceeds greatly the 
mass of the electrons ( M >> m), and therefore can be 
regarded as stationary in the time scale of the field 
variation. Their interaction with the external field will 
thus be neglected. In view of the fact that the electrons 
do not interact with one another (or else interact in the 
Hartree-Fock approximation, which is manifest in 
their effective mass), it is possible to investigate the 
response of the system to an external field with the aid 
of the single -particle density matrix p. 

The total Hamiltonian of the system consists thus of 
three parts: 

a) The kinetic energy of the electron 

He= p2 /2m, 

where p denotes the momentum. 
b) The energy of interaction between the electron 

and the scattering centers 
N 

V = ~q>(r-r;). 
i=i 

( 5) 

(6) 

Here cp ( r - ri) is the interaction between the electron 
whose radius vector is r, and the i-th scattering center 
located at the point ri. The summation is over all the 
scatterers i = 1, ... , N. 

c) The energy of interaction with the external elec
tric field 

HF = -eE(t)r. (7) 

The method of deriving the transport equation for 
the system in question was developed by Kohn and 
LuttingerC4J who, however, confined themselves to low
frequency external fields ( WT « 1). Our calculation of 
the electric conductivity of the system will be based on 
a transport equation obtained, following their method 
and generalizing their approach, by one of us earlierC 5J. 
Using the eigenfunctions of the kinetic energy operator 
normalized in the volume n ( l:i = 1) 

1 . 
'I' P = --;::::::::::.ezpr.1 

l'Q 
(8) 

and satisfying the equation 

(9) 

with eigenvalues 

Bp = p2 /2m, (10) 

we denote the diagonal elements of the density matrix 
in this representation by fp. We now represent the 
distribution function fp in the form 

fp = /~) + t:~ (11) 

where the symbol <o> denotes terms that do not depend 
on the field E ( t), and <I> denotes the terms propor
tional to the field. We have [sJ 

• ,(1) {} (I) 
-I(J)Tp +eE~jp 

{Jp 

N , 1 1 8 ~~~!<. -f:> =e~~ l<tJ~<I'(--~--o---:-+-----. )E~---e k WP+k.P- !il- IT] !ilp+J<.,P + w+ITJ ,. ilp WP+k.p 

. N ~, I 1 1 \ (I) (I) 
-1~ Li I'Pkl 2 1·- . --. ---~--.- 1 UP+k-1. ), 

Q k \ 'Op+J<,p- !il- IT] ffip+k,P + <•l +IT] I 

TJ->-+0. (12) 
Here wp,k = Ep - Ek, and the primed sums do not con
tain terms with k = 0. Since the time dependence of the 
functions f< 1 > and E ( t), 

E(t) = E exp {-i(ffi + iT])t} (13) 

(adiabatic application of the external field) is the same, 
(12) contains the time-independent function f< 1 > (for 
convenience we retain for it the same symbol as before), 
which is proportional to the amplitude of the external 
electric field E. 

Equation (12) describes the linear response for the 
system to external fields of any frequency. Its deriva
tion is based on the following two assumptions: a) the 
off-diagonal elements of the single-particle density 
matrix are small compared with the diagonal ones; 
b) the time between two succeeding collisions greatly 
exceeds the duration of each of the collisions. This 
transport equation will serve as the starting point for 
the calculation of the electric conductivity and hence 
the reflectance of the system. 

3. ELECTRIC CONDUCTIVITY 

A solution of the transport equation (12) for f~> can 
be found only in two limiting cases: wT « 1 [4 J and wT 

>> 1 [sJ. However, knowledge of these solution is not 
sufficient in our case, unfortunately, since the infrared 
region of interest to us contains frequencies for which 
the condition WT- 1 may be satisfied (the de relaxa
tion time in a semiconductor varies with the carrier 
density over a rather broad range). Therefore, being 
unable to solve Eq. (12) in general form, we proceed 
to consider its current moment. By the same token, 
we forgo a determination of the distribution function 
for the entire frequency spectrum. The latter, in fact, 
is not our main purpose. We are interested in deter
mining the conductivity at any frequency, for which it 
is sufficient to find an equation for the current density 
induced in the system by the external field. 

To this end, starting from the definition of the cur
rent density j, 

. e I d3p (I) ( 4) 
J(ffi)=-mJ (2rr)'p/p' 1 

we multiply (12) by ep/m and sum it over the momenta, 
changing over at the same time from summation to in
tegration in accordance with the scheme 

~ ~ ...... ~ d3p 
Q ";· (2rr) 3 • 
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The left side of (12), with allowance for the equality 

e' i d'p ( a \ (0) e2ne 
m)'(Zrc)'P Eapifp =--;;-E, ( 15) 

can be readily transformed, and we obtain 

e2ne e2N (" d'p I d3k ( 1 
- iwj(w)--E =- \ -- p J -- / 'l'k j2 

m m • (2rc) 3 (211) 3 wP+k.P- w-it] 

( 1 1 ) X-------------- (/(!) -!''>) · . P+k v · 
Wp+k.P- UJ- lT} UJp+k,p + (J) + ~T} (16) 

The second term of the right side of this equation 
still contains the unknown functions f.({>. In order to 
eliminate them both here and in the left side with the 
aid of (14), and thus obtain an equation for the current, 
it is necessary to make two assumptions. The first is 
based on the premise that the scatterers have a short
range potential. It can be concluded hence that its 
Fourier transform cpk will have a weak dependence on 
k. We neglect this dependence and approximate rpk by 
a certain constant rp0 • This is equivalent to assuming 
that the scattering mechanism under consideration 
represents elastic collisions of electrons with pointlike 
scatterers (potential represented by a 6-function). 
Noting, in addition, that in order to determine the cur
rent in accord with ( 14) it is sufficient to know the 
antisymmetrical part of fp> (with respect to p), we 
represent the last term of ( 16), following simple trans
formations, in the form 

( 17) 

where 

l(e~,w)=N/<po/'SI~3k ( 1"-.-- 1 ). 
(2rc) 3 Bk- Bp- W- !Tj Bk- Bp + W +iT] . 

( 18) 

Our second assumption is that I ( Ep, w) in the inte
grand of (17) can be replaced by its value for the Fermi 
energy EF· This is based on the fact that at high fre
quencies the left side of (12) is a small quantity com
pared with the right side, and in first approximation 
we have 

!.~~> = -i-ll.__E~ /~o>. 
(J) i)p 

For a Fermi distribution function 

(19) 

fJ0
> = { exp [k:J' ( ep- ep) J + 1} -1

, (20) 

where kB is Boltzmann's constant, at sufficiently low 
temperatures (including room temperature, under the 
condition that kBT « EF), expression (19) will contain 
6 ( Ep - EF). This is also the situation at low frequen
cies, w << EF, although for an entirely different rea
son. In this case, owing to the Pauli principle, the 
dominant contribution to the current induced by the 
radiation is made by electrons in the immediate vicinity 
of the Fermi level. Thus, averaging the integral in a 
definite sense, we obtain for the final form of the term 
of (17) in question 

ii(eF, w)j(w). (21) 

Taking into account the assumption made concerning 
the distribution function (20), i.e., assuming that 

of~0 >jaEp ~ - 6 ( Ep _ EF), we represent the remaining 
term of (16) (the first one on the right side), after 
simple transformations, in the form 

Here 

where 

e2n 
-•(l(ep, w) + F(ep, w)] E. 
mw 

(22) 

(23) 

(24) 

(The electron density ne is connected with the 
Fermi energy by the relation ne = (2mEF) 312 37T2.) 

Now taking (21) and (22) into consideration, we re
write (16) in the form 

e2n e2n 
-iwj (w)- -"E = -'(I(ep,(()) + F(eF, w)] E + il(eF, w)j(w). {2 5) 

m nl-(1) 

This equation makes it possible to express the current 
induced in the system by the external field in terms of 
the functions I ( EF, w) and F ( EF, w), determined by 
(18) and (23) respectively. Whence, according to 

j{w) = u{w)E, 

follows directly an expression for the conductivity 

u{w)= u<0>(w) [1 + F(eF,w) ] , (26) 
w+I(e.,,uJ) 

where a'0 >( w) denotes the high-frequency reactance 

a(O>(w) = ie2n,/ mw. (27) 

The functions I ( EF, w) and F ( EF, w) are complex. 
To calculate their real and imaginary parts we shall 
use the formal relation 

1 1 
---. = P--+ ircll(wpp•), 
fJJ.,,,p,± l1) (!)p,p' 

where P means that the integral is taken in the sense 
of the principal value. 

For the first of these functions, (18), this yields 

l(sp.w)=l1 +il2 =N/'I'o/'P5 '!"k ( 1 _ 1 ) 
(2rc) 3 "•- ,-,..- <>l f-k- Bp + <•' 

+ irrN/'I'o/ 2 S (::~)6(e•- Bp- w) + 6(e,- ert- w)]. (28) 

Here the integrands do not depend on the direction of 
the vector k, and consequently d3k = 47Tedk 
= 47Tm v' 2mEk dEk, introducing the symbol y = w/ EF, 
and integrating, we obtain for the real part 

{ 0, 
11 (e,-, w) = --

NmpF/'!'o/21y-1/2rr, 

and for the imaginary part 

if y,:;;; 1, 
if y;;. 1, 

(29) 

h(e.-,w)= Nmpp/<po/ 2 _ {11+v+l'1-y, if y,:;; 1, ( 30) 
2rc 11 + y, if y ;;. 1. 

Here PF = v'2mEF is the momentum corresponding to 
the Fermi energy. 

The function F( EF, w) = F1 + iF2 is calculated in 
similar fashion. Using the Fermi distribution function 
(20) at absolute zero, we obtain for the imaginary part 

F( ) - Nmppj<p0 j2 {(i+yf!'-(1-y)'f,, if y,:;;1 {31) 
2 CFJW --- . . 

3"y (1 +v)'h, 1f y ;;.1 

To calculate the real part, F1, it is best to use the 
dispersion relation 
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F 1 1"F2(BF,w') , 
t(BF,W)=-P J-, ---dw, 

:rt -oo (t) -w (32) 

the existence of which can in our case be easily verified 
by direct substitution. As a result we get 

F1(fp,ul)= 2Nmpli'IIJlol 2 ,1, .• I 0, if v,;;; 1, 

- 3ny (y- 1) ' lf V:;;;.: 1. (33) 

The dependence of the conductivity on the frequency 
is determined by substituting the functions I ( EF, w) 
and F( EF, w) in (26). However, as can be readily seen 
from their explicit expressions, these functions contain 
I cpo 12 , a factor due to the potential of the scatterers. 
Since the latter is assumed unknown in our analysis, 
we exclude the latter, comparing the conductivity in the 
low-frequency limit with the de conductivity 

cro = e2ner I m. (34) 

As a result of this we introduce into the theory phe
nomenologically the quantity T. However, unlike in the 
classical analysis, the relaxation time in our case is 
not assumed to be independent of the frequency. Its de 
value, taken from experiment, is introduced here only 
as a numerical characteristic of the scattering mecha
nism. 

It follows from (30) and (31) that at low frequencies, 
when y = w/EF- 0, 

l2(e.,, 0) = -F2(eF, 0) = NmpFIIJlol 2 In. (35) 

On the other hand, the real parts of these functions, I1 

and F1, vanish identically at frequencies w ~ EF· Ac
cordingly, we obtain from (26) 

en, n (36) 
cr(O) = -,;;_- NmpFIIJloli' 

and the relaxation time, according to (34), is 

T = n I NmpFIIJlol 2• (37) 

Finally, substituting the obtained expressions for 
I(EF, w) and F(EF, w) [(29), (30), (31), and(33)]in 
(26) and introducing the dimensionless parameter 
b = EFT, we obtain for the real and imaginary parts of 
the conductivity a= a1 + ia2 the following expressions: 

1 wp• { 1(2:_!~!:(~:';v<~~;~·~)• , if v,;;; 1, 
a,(y)=--· (38) 3nyeF 

l'Fi + by(y + 1)'1• ' if y:;;;.: 1, 
2y2 2b'v + 2b l'v- 1 + 1 

1 
3(by) 2 - 1/z(1-if=-y2) 

cr,(y)=-31 wp•. (2bv)"+0'1+v+l'.1-y)•' if y,;;;1, 
n ye., 

3 r 2 by(y- 1)''•+ (v2+1) J 
::-1 1 - ' if y:;;;.: 1, 
4 L 3y2 2b•v + 2b l'v- 1 + 1 

(39) 

where wp 2 = 41Te~/m is the plasma frequency. The 
parameter b also takes into account the temperature 
dependence of the conductivity. 

In the low-frequency limit, y = w/ t:F « 1, under 
the condition b = EFT » 1 (which incidentally is satis
fied in the majority of the practical cases), the conduc
tivity obtained by us coincides with the classical ex
pression (3). This can be verified by expanding the 
corresponding expressions (38) and (39) in powers of y 
and discarding terms of order higher than the second 
in this expansion. 

Rr-------
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Reflectance of Single- 8.6 
crystal Bi2 Se3 • The solid 
line is the result of the 
theoretical calculation, 
and the dashed line is the 
experimental curve. u,z 

4. DISCUSSION OF THE RESULTS 
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Comparison of the reflectance calculated by us with 
the experimental data is shown in the figure. The ex
perimental curve (dashed line) is taken from [l] and 
represents the reflectance of single -crystal BbSe3 at 
300°K. Using the parameters given their for the ma
terial (carrier density ne = 2 x 1019 em - 3 and mobility 
J.1. = 720 cm2/V -sec), we calculate our parameter 
b = t:FT. The relaxation time contained in it is deter
mined from the relation 

f.l = neeT. 

For the effective mass we assumed a value 
m = 0.125mo, where mo is the mass of the free elec
tron, in lieu of the value m = (0.10 ± 0.01)m0 , which 
is determined in [l] on the basis of the classical theory. 
Having thus determined the parameter b, we calculate 
from (38) and (39) the complex conductivity and find 
with the reflectance (1) the aid of (2). 

The model considered by us is a rather crude ap
proximation of reality. However, as can be verified 
from the results, it provides a fairly good qualitative 
description of the observed phenomena. 

The minimum of the reflectance is located in the 
vicinity of the frequency corresponding to the energy 
of the Fermi level of a system of free carriers. The 
decrease of the concentration of the latter leads to a 
lowering of this level, which causes a shift of the mini
mum towards lower frequencies, in full agreement with 
experiment. In metals, where the Fermi level lies be
yond the edge of the main absorption band, the observed 
decrease of the reflectance C3J is apparently only part 
of the total picture described here. 

In conclusion, it is our pleasant duty to thank Joseph 
Regev for help with the numerical calculations. 
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