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The effect of deformation on the electron spectrum of bismuth is considered. Simple results are ob
tained in the small deformation limit, when in a first approximation the electron and hole Fermi sur
faces vary similarly to themselves. If the deformation does not change the symmetry of the lattice, 
then the change of the hole spectrum can be described by two parameters, one of which depends only 
on the displacement of the sublattices. 

IT is known that the number of carriers in bismuth de
creases C1J under pressure. New information was 
published recently CaJ 1'. It turned out, for example, that 
the Fermi surface of the holes decreases and exhibits 
a certain tendency to spherization. The transformation 
into a dielectric should apparently occur at a pressure 
on the order of 25 kbar (at helium temperature). At 
higher pressure, approximately 40 kbar, bismuth be
comes a substance possessing the properties of a good 
metal, for example, superconductivity. Unfortunately, 
the lattice parameters of the bismuth were measured 
only at atmospheric pressure. The most interesting 
parameter is u, which determines the position of the 
two atoms in the unit cell - their rhombohedral coordi
nates ( u, u, u) and (IT, IT, IT). Under ordinary condi
tions, Ui = 0.234, and a lattice with a single atom per 
cell is produced when ui = 0.25. In the latter case, the 
bismuth should be a good metal. If the vector T = u 
- u0 changes by an amount of the order of its own 
magnitude, then the deformation should be regarded as 
large. However, with respect to a lattice with a single 
atom per cell, such a deformation is small if the 
doubling of the cell volume is suitably taken into ac
count. 

Abrikosov and the present author proposed earlier 
for the energy spectrum a theory C3J in which the start
ing point was the small deviation between the space 
lattice of the bismuth from primitive cubic. If the 
elementary vectors of the primitive cubic lattice are 
denoted by ai, then the elementary vectors of the bis .. 
muth-type lattice can be written in the form a{ 
= ( oik + uik) ak, where a1 = ag + a~, aa = a~ + a~, and 
a3 = a~ + a~. :The position of any atom is determined by 
the vector Rh = (ni + ju1)a{; here j = ±1 for two 
atoms per cell, and ni are integers. The vector u be
haves like an axial vector under those symmetry trans
formations (for example, inversions) which interchange 
the locations of the two atoms in the cell. In the unde
formed bismuth lattice all three components Ui (in 
terms of the axes a{) are equal and the tensor Uik has 
two independent components which can be determined 
if the values of the vectors a i and the angle between 
them are known. We are left with the quantity a~. It 

1li take the opportunity to thank E. S. Itskevich, L. M. Fisher and 
V. V. Kechin for reporting their experimental results prior to publica
tion. 

can be chosen, for example, in such a way that for un
deformed bismuth Ui = 0. The smallness of Uik is in
sured by the fact that the angle between the pair of 
vectors a{ in the bismuth lattice amounts to 57°14', 
and in the primitive cubic lattice it is equal to 60 o. 

The spectrum E(p) was determined inC3J by con
sidering the vicinity of the points of intersection of the 
threefold symmetry axes of the cube with the bounda
ries of the Brillouin zone of bismuth. To find the 
spectrum it was necessary, in analogy of the procedure 
used in semiconductor theory, to diagonalize a certain 
matrix. This entire procedure can be transferred to 
the case of deformed bismuth. The only difference is 
that Uik and Ti no longer have, generally speaking, 
the symmetry of the undeformed lattice. For holes we 
obtain the following equation 

'~>+(T) ><,+~+I -e "++~+ 'I 6, 

IJ>_(T) "-+~- ><,-~+!-• 6_ 'I 

IJ>+(-T) 'I 6+ -><,+ ~ -'-! -e -X~ -i- ~-+-

1jl_(-T) a_ 'I -><-+ ~- -x,- ~-i-/-e 

=0, 

(1) 

where 

%z = ap,, %± = b(py ± ipx), ~± = ~i("ty ± hx) + ~2(Uyz ± iUxz), 

6± = i\1 (Ty ± i-rx), "\' = "\'1"tz, f = /JT, + /2Uzz + fauii, 

and the proportionality coefficients are certain real 
numbers. We use here a rectangular coordinate system 
with the z axis along a threefold axis of the unde
formed crystal. On the left are indicated the basis 
functions, which transform in accordance with the two
dimensional representation of the group C3v - the 
small group of the point T in the cube. The points T 
and -T become equivalent as a result of the displace
ment of the sublattice, and the corresponding nondiag
onal elements are proportional to Ti· The equation 
corresponding to the second projection of the spin is 
obtained from (1) by replacing the sign in front of the 
constant ~ that takes into account the spin-orbit inter
action and does not depend on the deformation. It leads 
to the same eigenvalues as (1). Equation (1) is very 
similar to the equation that determines the spectrum of 
the electrons in undeformed bismuth C3J. In (1), how
ever, besides inversion of the space coordinates and of 
the time, there are no symmetry elements, whereas 
for electrons in undeformed bismuth there is still a 
twofold axis (and consequently a symmetry plane). 

The electron spectrum can be obtained from (1) by 
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a rotation that transforms the point T in the cube into 
the point L, near which the electrons are located. This 
yields an equation of the same type as in (1), and cer
tain parameters of the electron spectrum can be ex
pressed in terms of the hole parameters [3 ]. 

In view of the complicated character of (1), we shall 
consider two limiting cases. 

1. Deformation that does not change the lattice sym
metry; holes. In this case the only nonzero components 
of Uik and Ti are those which do not change under 
lattice symmetry transformations, i.e., T z, Uzz, and 
Uii· Therefore {j± = o± = 0 and the hole spectrum is 

8 = j- {tJ.2 + Y' + (ap,)2 + (bp..t.)'- 2[ (y!'J.)' (2) 
+ (abp,p..t.)' + (atJ.p,)']'f•}'l•, 

where Pi = p~ + P~· The top of the band ( p = 0) corre
sponds to E0 = f - y + ~ (here and below we assume 
y, ~ > 0, since their squares are contained in ( 2). The 
experimentally measured quantities 'will change under 
pressure both as a consequence of the displacement of 
the top of the band and as a result of the change in the 
Fermi level. The latter is determined by the condition 
that the numbers of electrons and holes be equal, and 
thus depend also on the deformation of the electron 
spectrum. It is therefore convenient to use the Fermi 
energy E reckoned from E0 (in the undeformed crystal 
the Fermi energy E < 0), as well as the parameter y. 
We emphasize that y is determined only by the dis
placement of the sublattices T. The general expres
sions for the experimentally measured extremal sec
tions of the surface {2) and of the cyclotron masses 
are given in[4J. We present the expansions in y and 
E' for the sections of Sz and Sx by the planes Pz = 0 
and Px = 0, and also for the extremal cyclotron mass 
( Pz = 0 ); 

as a; dy 
-=:::-+-s 8 y 

dSx _ dS, __ a; _ tJ. .!!_ 
Sx S, - 4:1 2y2 ' 

dm, a;-dy 
~--y-J'J.. 

(3a) 

(3b) 

(3c) 

In calculating the derivatives we have retained here 
only the principal terms of the expansion in E/ ~ and 
~/2y, inasmuch a comparison of the theoryC3 J with the 
experimental data on undeformed bismuth has revealed 
that these quantities are of the order of 0.1 [4 J. There
fore the areas Sz and Sx change essentially in a simi
lar manner (3a) (they decrease when dE> 0), and the 
difference appears only in the next higher approxima
tion (3b). For the same reason, expressions (3a) and 
(3b) are determined essentially by the variation of E, 
whereas in (3c) dE and dy are on par. 

2. Electrons, two-band approximation. In a com
parison C4J of the experimental data with the theory [3 J, 
it turned out that only two out of the four bands taken 
into account in (1) are particularly close at the point L, 
and the distance betwee~ them Eg = Eg - Eg is smaller 
than the Fermi energy E, which is now reckoned from 
the bottom of the conduction band E~. Therefore the 
free term in the equation (see (9) ofC4J) that deter
mines the electron spectrum in undeformed bismuth 
can now be represented in the form 

C-AB=- (e- 81°) (e- e2°) (e- Ea0) (e- e,0) ~ 

~ -e,0e."ege(1 + e/eg). 

If we are interested in small values of p, we can 
neglect the dependence of the coefficients A, B, and D 
on E, after which we arrive at the nonquadratic el
lipsoidal model 

(4) 

where Ol.xy = Ol.xz = 0, if the x axis is chosen along the 
twofold axis of the small group of the point L. We have 
departed here from the traditional notation, separating 
the gap Eg in explicit form. 

In order to take into account the influence of the 
deformation, it is convenient to return to the matrix 
notation (see, for example,C5J): 

ljl; 
~ 

0 -'- Bg- 8 u 
ljl2- 0 -Bg-B -u· t 

1Jl8 -u -e 0 =0, 

IJla- u• 0 -e 
( 5) 

where t = VxPx and u = VyPy + Vzpz; Vx is a real con
stant and vy and v z are complex constants. On the 
left are indicated the basis functions, which transform 
in accordance with the double -valued representations 
of the small group C2h of the point L (the spin-orbit 
interaction cannot be regarded as small in this case, 
since it plays the same role as the deviation from the 
primitive cube). 

The two-valued representations of the group Czh 
are one-dimensional, and the functions fa and lfa 
with identical 01. transform in accordance with complex
conjugate representations, while 1/!3 and 1/Jz have differ
ent parities with respect to inversion. From the com
ponents u{k of the deformation tensor and the T{ of the 
displacement tensor, which are now taken with respect 
to the lattice of the undeformed bismuth and not the 
cubic lattice, we can make up two types of quantities, 
depending on the parity upon reflection in a plane per
pendicular to the twofold axis (the x axis). To abbrevi
ate the notation, we shall write down only one repre
sentation of each of the even components (which are 
conveniently taken in the form u~z, uli' uyz' uyy 
- ~' T ~ and T Y' the z axis being a threefold axis of 
the crystal) and of the odd components ( u~Y' ~z' and 
T ~). Taking into account the requirement of invariance 
to time inversion, we see that in the approximation that 
is linear in the deformation it is necessary to make the 
following substitutions in ( 5): 

t-+ t' = Px ( Vx + c,u,') + c2u,' xuPu + cauxu' p,, 
u -+u' = py (vy + d1u,') + p, ( v, + d,u,') + d,u.y' Px. ( 6) 

Bg ~ eg' = Bg + euzz', 

where c and e are real constants and d are complex 
constants. The latter statement, besides the one made 
earlier that Vx is real and vy and Vz are complex, 
can be verified with the aid of the formulas given in[6 J. 
To this end it is sufficient to combine the representa
tions according to which 1/J; and 1/!3 transform, and de
termine how many times the representation according 
to which the sought-for component Pb u! , or piulk is 
contained in the corresponding product ~ymmetrical, 
antisymmetrical, or the product of two complex-con
jugates). 

We again reckon the energy from the bottom of the 
conduction band, whose displacement as a result of 
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the deformation is of the same form as E.g. We note 
that this shift depends both on the components u~Z' 
u{i' and Ti, which do not change on going from one 
point L to another by rotation around a threefold axis, 
as well as on Uyz• Uyy - u~, and T Y' which are 
changed by this rotation. If the deformation changes 
the symmetry of the lattice, the latter differ from 
zero, and the extrema of the bands at different points 
L are not displaced in the same manner. 

Substituting ( 6) in ( 5), we arrive at an equation of 
the same type as (4), but now all the Cl!ik are different 
from zero. Since the components Pi corresponding to 
the Fermi level in the undeformed bismuth are small, 
the crossing terms of the type UikPj in (6) are also 
small, and the principal result of the deformation is a 
change of the gap and of the Fermi level. 
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