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The degree of ordering of a binary crystal produced during a phase transition, say during crystalli
zation of a vapor, depends on the kinetics of the process if the particle mobility in the crystal is 
small. As the deviation from equilibrium increases, the long range order parameter decreases and 
vanishes at a certain point; thus a phase transition occurs in which supersaturation plays the role of 
temperature. Such a transition has been termed a kinetic phase transition. Its theory is developed 
on the basis of an analysis of the kinetics of cooperative phenomena by a method which circumvents 
the use of an infinite set of linked kinetic equations. Satisfactory agreement with experiments per
formed on a digital computer is obtained. 

1. FORMULATION OF PROBLEM 

OsTWAW'S step rule indicates, as is well known, that 
in principle it is possible for metastable modifications 
to appear in systems undergoing a phase transition, but 
says nothing concerning the conditions and mechanism 
for realizing this possibility. A clarification of the 
latter circumstance calls for an analysis of concrete 
systems, and has not been carried out so far. In this 
paper we consider a microscopic model of crystalliza
tion, which actually leads to an appearance of a meta
stable phase. It turns out here that the transition from 
a stable atomic structure to an unstable one, occurring 
with increasing degree of deviation from equilibrium, 
has the character of a phase transition, which we call 
critical. The role played by the temperature in ordinary 
thermodynamic phase transitions is played in kinetic 
transitions by the degree of deviation from equilibrium. 

The model investigated is as follows. We have a 
semi-infinite crystal with a single corner on a single 
step (Fig. 1). The crystal and its surrounding medium 
are made up of particles of type A and B. They can be 
attached to the crystal at the corner or be detached 
from it. The attachment and detachment acts are as
sumed to be perfectly random. The properties of the 
corner are determined by the type of its component 

KX. 
particles, that is by the set a{3 (Fig. 1), where a, {3, 

YJJ. 
K, x., A, fJ. =A, B. The frequency of attachment of a 
particle of type y ( y = A, B) to a kink made up of the 

. X. 
group {3K IS denoted by w + ( {3y), and the frequency of 

fJ. JJ. X 
detachment of the particle y from the corner f3y is 

denoted by W- ( {3~). Confinement to these indic~s cor·
fJ. 

responds approximately to the nearest-neighbor ap-
proximation in the energy interaction of the particles. 

X. 
The quantities w ± ( /3~) represent the specified 

parameters of the problem. Knowing these, we must 
find the average velocity of the corner during the sta
tionary growth and the distribution of the particles A 
and B in the produced crystal, if all its preceding 
layers are produced as a result of motion of the same 
corner and if the particles inside the crystal cannot 

FIG. I. Entering trihedral corner on the f!..-------1 
surface of a crystal. 

interchange places - the structure is "frozen." The 
lattice is assumed primitive cubic. 

From now on we confine ourselves in the concrete 
analysis of the solution, to the case 

(1.1) 

and the frequency of detachment will be represented in 
the form 

w_(Bi)=vexp{--€Bv_+e~v+e,.,_}• (1.2) 

where v and Ea{3 have the meaning of the oscillation 
frequency and the binding energy of the particles a 
and {3, and T is the temperature of the crystal. If 
EAA =EBB and EAB = EBA (but EAB = mEAA, m f 1 ), 
then the particles A and B are equivalent and their 
concentrations in the crystal will be the same under 
all crystallization conditions. In the case of an order
ing alloy, the crystallization leads under conditions 
close to equilibrium to an ordered crystal when the 
equilibrium temperature is lower than the Curie tem
perature (Te < Tc), and to a disordered crystal in 

FIG. 2. Dependence of the long-range 
order parameter T/ and of the velocity of 
the corner Von the quantity q = exp 

II 
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( -€ AA/T). Model experiment with a com- 0.4 
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the opposite case. On the other hand, for sufficiently 
large deviations from equilibrium, practically any 
particle, once attached to the crystal, remains in it 
forever, since the forward moving, corner hardly 
fluctuates. Inasmuch as the acts of attachment of A 
and B are random, the produced crystals will be dis
ordered. Consequently, with increasing deviation from 
equilibrium, the degree of long-range order TJ should 
change from a value close to unity near equilibrium to 
zero far from equilibrium. How does TJ behave in inter
mediate degrees of supersaturation? 

The retention in the lattice of any particle attached 
to the corner depends on the nearest neighbors of the 
particle, and also on the entry and retention of the 
next particle in the corner, that is, on the distribution 
of A and B along the entire future path of the corner. 
This dependence determines the collective interaction 
upon crystallization. The existence of a kinetic collec
tive interaction suggests that the kinetic order-disor
der transition should take place at a strictly defined 
critical supersaturation. The foregoing hypothesis was 
confirmed by model experiments on a computer [lJ. 

Figure 2 shows plots of the long-range order TJ and of 
the velocity V of the corner on the quantity 
Q=exp(-EAA/T), i.e.,onthecrystaltemperature T, 
obtained in these "experiments" for v/w+ = 104 and 
m = 2. At the point of the kinetic phase transition, 
( q = 0.14) TJ vanishes and V has a corner singularity. 
We now proceed to an approximate analytic theory of 
kinetic phase transitions for the description of the 
foregoing model. 

2. METHOD OF CONSERVATION PROBABILITIES 
AND FUNDAMENTAL EQUATIONS 

Owing to the attachment and detachment of the 
particles, the corner performs a random walk, during 
the course of which there takes place the selection of 
particles which remain forever in the lattice, that is, 
the formation of the composition and structure of the 
crystal. 

These characteristics can be obtained from an in
finite system of coupled kinetic equations for the dis
tribution functions with respect to different atomic 
configurations making up the corner. It is more effec
tive, however, to use the method of conservation func
tions, developed earlier for the crystallization of a 
binary chain [2 J 

In this case the conservation function U a{3 is the 
probability that a given particle of type {3 attached to 
the corner at the end of an incomplete array terminated 
by particle a (Fig. 1) will never leave the lattice. The 
conservation probability defined in this manner is ac
tually the result of averaging over the types of particles 
K and A., which form the corner together with {3 (Fig. 
1), and also over all the distributions of the particles 
forming a dihedral angle along the step on the entire 
infinite path of subsequent motion of the corner (parti
cles x, J.L, etc.). The sought quantities, namely the 
ordering parameter TJ and the velocity of the comer V, 
are expressed in terms of U a{3 (see below). 

We now set up equations for the conservation proba
bilities. We break up the lattice, as is customarily 
done in order-disorder transition problef?S, into two 
sublattices with alternating sites. Let x~) be the 

probability of encountering the particle of type a in a 
site of the i-th sublattice (i = 1, 2). Then 

xl11 = 1/z(1+1']), x.~'= 1/2(1-1']), 

x~11 = 1/z(1-1']), xi;1 = 1/2(1+1']). 
(2.1) 

We put 

p ( ari) = w+ (~i); [ w_ ( ar) + ~ w+ (~D J. 
y 

q (a~:) =w_(af) /[w-H) +~w+(~~)]. (2.2) 

y 
The first of these quantities is the probability of at-
tachment of the particle y to the corner with configura

KX 
tion a{3 and the second is the probability of loss of 

A.J.L 
particle from this corner. We introduce further the 

average probabilities p~1Y and g~ky' neglecting in 
the averaging the correlations in the types of neighbor
ing particles: 

(2.3) 

and analogously for i = 2, interchanging the indices of 
the sublattices in (2.3). Here and throughout the upper 
index - of the sublattice - pertains to the first of the 
lower indices - those of the particle types. 

We denote by u(i) the probability of conserving in 
a{3 

the corner the outermost particle the growing array 
( ..• a{3), if a belongs to i-th sublattice. Using a 
reasoning similar to that used in the solution of the 
chain problem [2 J we get 

Let 

(I) '\;1 (!) ~) (2) (!, u .. ~ =.::.. p .. ~,[U~, +(1- u~, )Ua.~ ], 
y 

(2, '\;1 (2) (I) (I) (2) 

Uo.~ = LJ Po.~v[U~v +(1- U~v )Uo.~ ]. 
v 

(!) -(I) (2) I "' . (I) (2) 
Po.~v = Pa~v U ~Y LJ Po.~v U ~v, 

v 

(2) .\:!) .(1) I "' (2) (1) 
Pa~v = fJo.~v [; flv LJ PaBv Ur<v · 

v 

(2.4) 

(2.5) 

The probability p(i)ll is the fraction of the cases in 
a'"'y 

which the array terminated by the pair a{3 will be 
"bricked in" forever by the particle of type y, relative 
to the total number of cases in which this array will be 
"bricked in" by some particle. Neglecting the correla
tions again, as in (2. 3), we have 

~ (1) (2) (!, (2) 

a~ Xa X13 Pa.fjv = Xv , (2.6) 

The system (2.1) -(2.6) determines TJ as a function 
K 

of the frequencies W±( a{3), i.e., as a function of the 
A. 

temperature of the crystallization and of the partial 
pressures (or concentrations) of the components in the 
initial phase. 

If the attachment and detachment frequenci~~ are 
represented in the form (1.1) and (1.2), then p\iJil 

(') a'"'y 
= p ~{3' that is, it does not depend on y, and 

(1) (2) (2, (2) 

Pa~v = U~v /t!J~ = P~,, 
(2) (1) (1, (1) 

Papy = U~v /t!J~ = P~v, 
(2. 7) 
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where 

'" (i) - ""' u (i) 
"'~ - LJ ~v. 

v 

Equations (2.4) reduce in this case to the form 

where 

(i) (i) - (i) 

s~~ = ii~~ I P~~ · 

(2.8) 

(2.9) 

( 2.10) 

Since the two sublattices and the two types of parti·
cles are equivalent, the system (2.9) and (2.10) should 
indeed be invariant against the substitutions ( 1) - (2), 
(2)- (1), A- B, and B- A, i.e., 

(2.11) 

so that (2.9) reduces to two equations 

( 1 ) 'I'» 
'iJA 1 - SAs+'iJA = SAA + 'iJa ' 

( 1 ) 'iJA 'i'a 1- = . 
SBA + 'iJB SBB + 'iJA 

( 2.12) 

Here and throughout the absence of a sublattice index 
denotes i = 1. 

Only two of the equations in (2.6) are independent, 
since summation over y transforms each of the lines 
of (2.6) into an identity. In the investigated case of 
frequencies of the type (1.1)-(1.2), only one equation is 
independent, which we can choose to be, for example, 

~ (f) (I) (2, 
LJ x~ P~v = xv . (2.13) 

From this, with account of (2.7) and (2.1), we arrive at 
the condition 

(1+11)(1- 1 )=(1-1'})(1--1--). (2.14) 
SAs+'iJA SsA+'iJB 

Together with (2.21), this condition determines the 
functions 1)(q), 1/JA(q), and 1/JB(q). 

The concentration of particles of any particular type 
is different in the deep parts of the developing array 
and in the corner at the end of the same array. The 
latter concentration xlcl! is the fraction of the time 

during which the end of the array is made up of parti
cles of type Cl! belonging to the i-th sublattice. At the 
end of the array, W+ particles are attached per unit 
time, and out of the particles attached at a given instant 
of time, the fraction finally retained is 1/J. Therefore 
the actual growth rate is 

V = w+ /' x/V'i'~l = w+~ x\~'1'~'>. (2.1~5) 
~ a 

The concentration x~~' just is in case of polymeri-· 
zation of a chain [2 J, is determined by the obvious rela
tions 

whence 

and 

(i) (i) I ""' (i) (i) (i, 
x1 ~ 'I'~ L x1 ~ 'I'~ = x~ 

~ 

Xs'iJA 
XtB=-----

XA'iJB + Xs'iJA 

(2.1H) 

(2.17) 

(2.18) 

3. ANALYSIS OF THE SOLUTION 

From the definition of s Cl!{3 (see 2 .10) it follows 
directly that 

SAa(q,T]) = SsA(q, -T]), SAA(q,T]) = Sss(q, -T]) 

and consequently 

(3.1) 

which is a direct consequence of the equivalence of the 
particles and of the sublattices, and represents a dif
ferent form of writing down (2.11). By virtue of (3.1) 
we have 1/i A ( q, 0) = 1/JB ( q, 0 ) , that is, the equations 

T]=O, 'iJA='iJs='iJ= 112((2-sAs-SAA) (3.2) 
+ { (2- SAB- SAA) 2 + 4(2- SAB- SAA).(sAB + SAA- SABSAA) }'!.] 

are the solution of the system (2.12) and (2.14). This 
solution is not unique. We shall seek the other branch 
separately in the vicinity of the equilibrium ( q S qe) 
and separately in the region of the kinetic phase transi
tion. 

1. Small deviations from equilibrium. In this region 
the conservation probabilities are small, so that 1/J Cl! 
« 1 and the solution (2.12) takes the form 

'iJA = _1_(_1 ___ (SAB -1) (sBA -f)) 
SAA ·. SAASBB SABSBA 

The growth stops when both quantities ( 1/JA and 1/JB) 
vanish simultaneously, that is, the equilibrium condi
tion is 

(3.4) 

The right side of (3.4) is positive for the growth 
region and negative for the evaporation region of the 
crystal.'> 

If the equilibrium temperature is noticeably lower 
than the Curie temperature ( qe < qc), then a crystal 
with 1) ~ 1, i.e., an ordered phase, should grow near 
equilibrium. Therefore we should expect at equilibrium 
W+ ~ vq3 m, that is, Rq3m ~ 1 where R = v/w+- Ac
cording to (1.1) and (1.2); the detachment and attach
ment probability (2.2), meaning also sCl!{3' depends only 
on the ratio R (and also on q and 1)). Assuming for 
estimating purposes W+ ~ 106 sec_,, corresponding to 
a direct entry of the particle into the corner from the 
gas at a pressure ~10 Torr, and assuming 
v ~ 1012 sec-1 , we get R ~ 106 • The model experiments 
were performed for R = 104 and R = 106 at m = 2 
( EAB = 2EAA). Taking into account the large value of 
R we obtain tentatively ~ << 1. The foregoing consid
erations indicate that it is advisable to seek the solu
tion by expanding sCl!{3 in a series in (1- 1)), with ac
count taken of the smallness of q: 
SAB = Rq3m[1 + 3(1- T])], SBA = Rqm+2[1- ql-m(1- T]) ], 

SAA = Rq3[1- ql-m(1- T])]; Sss = Rq2m+l[1 + (1- 11)]. (3· 5) 

1lln the case of decomposition of a crystal, its structure, of course, 
should be specified beforehand, and only the rate of decrystallization is 
unknown. 
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Expressions (3.5) are valid when q1-m ( 1 - 7J) << 1. 
Substituting (3.5) in (3.3) and discarding terms of 
higher order of smallness than qm+ 2 and ( 1 - 17), we 
have 

1 
11JA = ---- [Rq3m -1 + 3(1- 1])]. R2q2m+4 (3.6) 

With the same degree of accuracy we get from (2.14) 
and (3.6) 

!']= 1-21 R2q2<m+2) 

and in accordance with (3.6) and (3.3) 

lJlA =' 1 - Rq3m - 5 I R'q2(m+2), 

lJlB = lJlA I Rq2m+t. 

(3. 7) 

(3.8) 

The equilibrium condition in the form ¢A = 0 leads to 
an equation for qe 

(3.9) 

and to an equilibrium long-range order parameter 

l']e = 1- 2q~m-1). (3.10) 

It is easy to find that qe = 0.215 and 7Je = 0.998 for 
m = 2 and R = 10\ and % = 0.100 and 7Je = 0.9998 for 
R = 106 , is in good agreement with the results of the 
model experiments [IJ. The growth rate in the investi
gated approximation is 

(3.11) 

For m = 2 and R = 10\ formula (3.11) yields 
w~1 Bv/Bqj q=qe =- 27.9, whereas the "experimental" 

value of this quantity is approximately - 28. 
2. Vicinity of the kinetic phase transition. In this 

region 7J « 1. The differences ¢A - </! and zf!B - 1/J are 
also small, where ¢ is the solution for the disordered 
phase, given in (3 .2). Linearizing (2 .12) and (2 .4) with 
the aid of these small parameters, we get a homogen
eous linear system of equations with respect to 
</!A - </!, ¢B - 1/!1 and 7J. The condition for the existence 
of its solution in the form of the vanishing of the cor
responding determinant gives an equation for the criti
cal value of ~' that is, the temperature of the kinetic 
phase transition: 

Here all the Saf3 are taken at 7J = 0. Numerical solu
tion of (3.12) leads to qk = 0.12 for R = 104 and qk 
= 0.035 for R = 106 ( m = 2). In the model experiments, 
the kinetic phase transitions occur when qk = 0.14 and 
qk = 0.046. 

The character of the vanishing of the ordering 
parameter as q- qk follows from (2.12) and (2.14) 
after expansion up to the third powers of TJ, ¢A - </!, 
and ¢B - </! inclusive. The symmetry properties dis
cussed above (see (3.1)) lead to the vanishing of the 
terms quadratic in 7J from this expansion, so that 

(3.13) 

FIG. 3. Schematic 17(q) dependence for 
different relations between the Curie tem
perature and the temperature of equilib
rium between crystal and the medium or 
the quantities qc and qe. Dashed lines~ 
thermodynamic curves, solid lines~kinetic 
curves. ~b ___ c --- ........... 

' 
0 

q 
~. q, q, 

where C is a function of q and the determinant D is 
written out in (3.12). Consequently, besides the solution 
7J = 0, there is also the solution 

(3.14) 

which vanishes at the point of the kinetic phase transi
tion. Since, in general, D has a root of first order at 
q = ~' we get 

(3.15) 

Thus, the vanishing of the degree of long-range 
order at the kinetic phase transition follows the same 
law as at the point of the thermodynamic order-disor
der phase transition in the Bragg-Williams approxima
tion. It is appropriate to note here that the averaging 
used in (2.3), (2.4), and (2.6) also does not take the 
correlations into account and is analogous to the Bragg
Williams approximation in the thermodynamic theory. 
The formulas (3.14) and (3.15) must be judged withal
lowance for this fact. 

The symmetry relation (3.1) leads to an expansion 
of 1/! A and ¢B in the form 

(3.16) 

where a and b are functions of q and R. Substituting 
the expressions (3.16) and (3.2) in (2.18) we obtain for 
the growth rate 

{
W+lJl, q ~ qk 

V = W+lJl [ 1 + 11' ( a: b - ~: ) J , q ~ q, (3.17) 

It follows from (3.17) and (3.15), that there exists a 
corner point on the plot of G ( q) that q = qk, again in 
agreement with Fig. 2. 

We considered above a situation in which % << qc, 
as shown in Fig. 2 and schematically in Fig. 3a. The 
dashed lines on Fig. 3 show the thermodynamic equili
brium relations for 7](q), and the solid lines show the 
kinetic relations. If qe ~ qc, we can expect of TJ( q) 
plots of the type shown in Fig. 3b, and if qc $ qe, plots 
of the type of Fig. 3c. When qc << qe, the ordered 
phase may not appear at all, although the crystal is 
produced in the region of its stability. 

The model of the isolated corner on a step, which we 
have discussed here, is of course too simple to expect 
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quantitative agreement between the characteristics ob
tained for it and the real situation, when there is a 
large number of corners and steps. Apparently a less 
important circumstance is that actually the crystal ex
changes particles not directly with the parent medium, 
but with a layer of adsorbed surface particles. The 
latter means simply a change in the effective frequen
cies and of the energies of the particle detachment and 
attachment. However, the collective interaction is re
tained during the course of real crystalization. This is 
manifest in our case in a more complicated fashion, 
owing to the interaction of the corners and of the steps. 
But since it is precisely the collective interaction that 
leads to a kinetic phase transition, it should actually 
exist. In this connection, attention should be paid to the 
behavior of the ordered alloys which form a disordered 
crystal film if sputtered on a sufficiently cold substrate. 
When the temperature of the substrate is increased, a 
kinetic phase transition can be expected for such sub
stances. 

The kinetic transition discussed above is the analog 
of a thermodynamic second-order phase transition. It 

also corresponds apparently to kinetic analogs of first
order transitions, which can be transitions from stable 
to unstable crystal modifications with increasing de
gree of deviation from equilibrium (supersaturation, 
supercooling). Mention should be made here of the 
formation of amorphous films of germanium, silicon, 
antimony, or selenium, when sputtered on sufficiently 
cold substrates. Unfortunately, the author knows of no 
data on the character of the transition from the crystal
line to the amorphous modification under changing 
kinetic conditions. 
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