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We consider the electric conductivity of metals due to isotopic disorder. We show that the residual 
resistivity appears already in the Born approximation with respect to the electron-phonon interaction 
if account is taken of the actual amplitude of the elastic scattering of electrons in the vibrating crystal. 
The temperature-dependent part of the resistivity is analyzed. 

1. INTRODUCTION 

IN an earlier paper l1J we developed the theory of elec­
tric conductivity of metals with nonmagnetic impurities, 
when the concentration of the latter is small. This 
theory can, naturally, be directly extended to include the 
case when the impurity atoms are isotopes. This, how­
ever, affords an opportunity of considering an arbitrary 
isotopic concentration, for now it is possible to use in 
the problem of a second small parameter, namely the 
ratio of the difference of the isotope masses to the aver­
age mass. 

The dependence of the electric conductivity on the 
isotopic composition is physically due to two causes. 
First, the phonon spectrum of the metal changes with 
changing composition, and with it the resistance due to 
the scattering of the electrons by the phonons. On the 
other hand, although it can be assumed that the ampli­
tude for the scattering of the electrons by an individual 
ion has the same value for the different isotopes, and 
consequently static ordering is present, nonetheless, 
owing to the difference in the isotope masses, dynamic 
disorder appears. This leads to an additional source of 
electron scattering, and consequently to an additional 
resistance. The presence of an isotopic dynamic dis­
order should lead, in particular, to the appearance of a 
residual resistance in an ideally pure metal. 

This fact was first pointed out by Pomeranchukl2 J. 

He found that the residual resistance appears only if ac­
count is taken of an approximation higher than the Born 
approximation in the electron-phonon interaction, and 
by virtue of this his final result depended on the constant 
of this interaction to the fourth power. 

Actually, the residual resistance appears already in 
the Born approximation. This is connected with the fact 
that the true amplitude of the elastic scattering of the 
electron in the n-th ion, bn(q), is not the amplitude of 
scattering by the fixed ion, an(q), but the product 

(1.1) 

where the factor exp(- Wn(q)/2) determines the ampli­
tude of the probability of non- excitation of the phonons 
when a momentum q is transferred to the ion (Wn(q) is 
the usual Debye- Waller factor). Here 

bn(q)- bm(q) = a,(q)(e-Wn(q)'2 - o . .,·,,<q)/2 ). (1.2) 

But when T = 0 the Debye- Waller fac .0r differs from 
zero as a result of the zero-point oscillations and de­
pends on the mass of the oscillating atom. Thus, for 
different isotopes the difference (1.2) turns out to be 
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different from zero, and the residual resistance appears 
already in the first Born approximation. 

In the present paper we develop a theory which takes 
into account in explicit form the causes of the influence 
of the isotopic composition on the electric conductivity 
of the metal. For the interaction between the electron 
and the individual ion we use here the ordinary concept 
of the pseudopotential, and we solve the problem under 
the same assumptions as inl1J. We note, however, that 
the two main important assumptions used in l1J, namely 
the invariance of the electron spectrum and the invari­
ance of the force constants in the dynamic oscillation 
matrix upon introduction of the impurities, are satisfied 
automatically in the isotopic case. 

2. DETERMINATION OF THE SCATTERING CORRE­
LATION FUNCTION 

The general expression for the resistance is 
II , (o) (O)w l 1 J J dkdk (cpk- cpk') 2ik (1- fk•) kk'(q,ro 

(2.1) 
p = ?T j ~ dkevkcpk(8f~l/i1ek) j" 

where the probability Wkk' of the transition of the elec­
tron from the state k to the state k' upon scattering is 
defined by 

. (2:rt)2 
Wkk'=--.--v a2 (q)S(q,ro), (2.2) 

rtz. 0 

II. "" (0) S (q, cu) =-L.J exp{iq(Rn - Rw ) } \exp{- (IV,+ W,.)/2} {2:rtli(w) 
LV nn' 

+ ((qun(t)) (qu,.(O) ))w}>c := S 1 (q, ro) + Sz(q,w), (2.3) 
Wn(q) = <(qu,(0))2). (2.4) 

For rpk we assume the usual first-approximation 
value rpk = K • k. We use throughout the same notation as 
in l1J. The angle brackets ( ... )c denote averaging over 
the configurations of the isotopes, and we consider an 
arbitrary isotopic composition. 

We have left out from (2.3) the terms corresponding 
to multiphonon scattering of the electrons. It is easy to 
show, however, that even the two-phonon term contains, 
when compared with the single-phonon term retained in 
(2.3), so small a parameter as v'ffi,7M', where m and M 
are the masses of the electron and the ion. 

Let us consider the term S1(q, w) corresponding to 
pure elastic scattering of the electrons. Recognizing 
that Wn << 1, we expand the exponential in a series, 
retaining the first three terms of the expansion. It is 
easy to see that all terms of the expansion, with the ex­
ception of the one containing the mixed product Wn Wn', 
leads to the appearance of c5 ( q). But those terms of Wkk' 
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which contain simultaneously 6 functions in the energy 
and in the momentum will of course lead to no resistance 
whatever. Thus, the only term responsible for the actual 
scattering of the electrons is 

1 ~ . (0) IOJ 1 ( . > (2 5) S1(q,w)=--;y 4-Jexp {tq(Rn -R ... )}2nl\(w) 4 UnW".. • 
nn' 

Thus, to determine the resistance we have to find 
correlators of two types-the ordinary correlator con­
tained in (2.3) and responsible for the inelastic single­
phonon scattering of the electrons, and the correlator in 
(2.5), which actually determines the residual resistance. 

We introduce the retarded Green's function, defined 
in terms of the displacements: 

an~~ (t} = - i8 (t) ([un" (t} Ur.•~ (0) ]), (2.6) 

where ® (t) is the usual step function. The Hamiltonian 
of the vibrational problem has in our case the form 

~ Pn2 1 
H = L..i2M;; + 2 2; lP"~ (n- n') u,"u .. ~. 

n nn' 

(2.7) 

We then obtain directly for the Dyson equation corre­
sponding to the Green's function (2.6) 

an~(w) = G~·.o(w)+ w2 ~ an~;,o(w) (Me- Mn,)a:,~·(w), (2.8) 
n, 

. (0) (0) } 
a~ 1 ~ vf/'vdexp{tf(Rn - Rn•) (2.9) 

anw,o(w}= M N L..J w'-w,·" · 
c fj J 

Here Me = ( Mn) c' and the Green's function (2. 9) corre­
sponds to an ideal lattice with M = Me· 

The solution of (2.8) can be represented in the form 
of an iteration series, which is in fact a series in powers 
of the relative change of the isotope mass-the small 
parameter of the problem. Retaining terms quadratic 
in this parameter, we have 

n, 

, ~ . av v6 , 6~ ( 2.1 0) + '" LG,m,,o(ru) (Me- Mn,}an,n,o(w) (21Ic- M,,)an,n•,o(ul). 
nn1 

To calculate the cor relator contained in S2 ( q, w) it is 
necessary to average the Green's function over the con­
figurations of the isotopes. It is important that when the 
zeroth Green's function is chosen in the form (2.9), the 
linear term of (2.10) disappears. We have 

(a~~( w}) c = a.~f .. o ( w) 
(2.11) 

n, 

where 

(2.12) 

To determine the correlator in S1(q, w) we shall use 
the usual connection between the correlation functions 
and the imaginary part of the Green's function 

(2.13) 

(Here and below ti = 1 and T is in energy units.) Then, 
taking into consideration the explicit form of (2.3), 

q"q~q>q6 ) ) 1 
(WnWn)c = --- dw1 dwa 1, 

(2n) 2 1- e-w,; 

1 ( a~ >6 ) 
X 1 _ e-w,!T Im ann ( w,) Im an'n' ( w2 ) c. 

(2.14) 

we use the expansion (2.10). Here, however, none of the 
Green's functions which enter into the obtained expres­
sions can be replaced by the zeroth function, again be­
cause in this case a 6 function in the momentum trans­
fer appears in S1 of (2.5). Therefore the first nonvanish­
ing approximation for the residual resistance corre­
sponds to a replacement of both Green's functions in 
(2.12) by the terms linear in the mass difference of 
(2.10). Then 

(Im a::! (w,) Im G1-~. ( wz) )c-+ w12wz2Mc2 

X "<"''(I a"" ()a~· '" "6 LJ m nn,•,o W1 n,•n,o(w!)) (Iman•n,o(w,)an,no,o(w 2}). 

n, 

Substituting here (2.9), we obtain after appropriate 
calculations the final expression for 

We now determine S2(q, w). Using (2.13), (2.11), and 
(2.9), we get 

(2.16) 

Expressions (2.15) and (2.16) define, in accordance 
with (2.2) and (2.3), the scattering probability Wkk' in an 
approximation which is quadratic in the isotope mass 
difference, and at the same time determine also the 
value of the resistance (2.1) in an isotopically disordered 
metal. 

3. RESISTANCE OF ISOTOPICALLY DISORDERED 
METAL. DISCUSSION OF RESULTS 

1. When T- 0, the contribution made top by the 
term (2.16) vanishes, and the residual resistance is 
determined only by the term (2.15). Let us write down 
the explicit form of this correlation function for T = 0: 

(0) s' 
S 1 (q,w)= 2nl\(w} 16Mc' 

(3.1) 

Calculating ( 3.1), we get approximately 

'O' (;'q' ( 3 2) 
Sl' (q) ~ 32Mc'wv' fl'(q), fl'(q)~ 1, • 

where WD is the end-point frequency of the phonon spec­
trum. 

To find the residual resistance t.po we substitute 
(3.1) in (2.1) and (2.2). The integral contained in the 
numerator of (2.1) can be transformed to 

(2n) 3T 

clm,'Vo 
( 3. 3) 

In the case of inelastic scattering by phonons in a regu­
lar monatomic crystal with M = Me, the same integral 
will be determined by the first term of (2.16). The 
corresponding value is 
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1 
X M, ~ (qvq;) 2n(wq;) (n(wq;)+ 1). 

(3.4) 

] 

When T ;2; wD we have n(wqj)(n(wqj) + 1)- T2/wqj)· 

Comparing (3.3) with (3.4) and taking into consideration 
the form of the expression (2.1), we get directly 

Po= p(T = WD), ( 3.5) 

where the first factor is the resistance of the regular 
metal at T = WD, and y is a certain mean value of the 
ratio 

over the phase volume involved in (3.3) and (3.4), with a 
weight corresponding to the integrand of (3.4). Taking 
into account (3.2) as well as the fact that the main con­
tribution to (3.3) and to (3.4) (in the latter case when 
T > wD) is made by large momentum transfers q ~ 2kF, 
we obtain as an estimate 

(3.6) 

Expressions (3.5) and (3.6), with allowance for (2.12), 
make it possible to estimate the residual resistance and, 
in particular, to estimate the limiting electron mean free 
path corresponding to the concrete isotopic composition. 
The resistance, of course, turns out to be quite small, 
since y ~ ~ 2Vm/M. 

We note that Pomeranchuk's resultl2 J contains, com­
pared with (3.5) and (3.6), an additional small parameter 
of the order V 2kF/ E F « 1, where V 2k F is the Fourier 
component of the pseudopotential. However, the numer­
ical estimates are close to those obtained on the basis 
of (3.5) and (3.6), since the parameter V2kF/EF was as­
sumed to be close to unity. 

2. We consider now the temperature-dependent part 
of the resistance. The influence of the isotopic composi­
tion on the resistance is manifest most strongly in this 
case by the first term of (2.16), where the isotope con­
centration appears in explicit form via Me and in im­
plicit form via wqj. The point is that in the derivation 

of (2.7) and (2.8) it was assumed that the lattice with 
atom mass M = Me is ideal. Therefore, for any isotopic 
composition we have rigorously, for fixed q and j, 

(3.7) 

Taking this into consideration, we can easily determine 
the dependence of (3.4) on the isotopic composition. Let 
us assume for concreteness some fixed isotopic com­
position (index co) and retain only the first term in 
(2.16); we get 

p,(T) = p,,(T')l/Meo I M,, T' = Tl/ivl, I M,,. (3.8) 

At low temperatures, where Bloch's law is valid, this 
leads directly to 

p, (T) = a,, (M, I Meo) 2T5• ( 3. 9) 

The coefficient of T5 is quite sensitive to the isotopic 
composition, since it depends linearly on the isotope 
mass difference, and not quadratically (this, of course, 
pertains to the general temperature dependence of (3.8)). 

Thus, in the case of a binary mixture (c-concentration 
of the first isotope), if we choose, for example, co= 0, 
then 

( 3.10) 

which coincides in the case of small concentration c 
with the result obtained in llJ for the case of equal am­
plitudes of electron scattering by the impurity ions and 
by the matrix. 

In the classical limit with respect to temperature we 
have 

p, (T) - T'l/ ivlc, I M,, 

and the resistance ceases to depend at all on the isotopic 
composition. We note that an analysis of (3.8) shows that 
the relative change of p with change of the composition 
decreases very sharply with increasing temperature. 

3. The results obtained in the preceding section ac­
tually coincide with the result for a regular lattice, the 
mass of the atoms in which has a value Me and changes 
with changing isotopic composition. The isotopic irregu­
larity itself manifest and the coherent electron scatter­
ing that it produces become in those terms which are 
quadratic in the mass difference. The corresponding 
contribution to the resistance is made by both terms of 
(2.3). As to the elastic scattering of the electrons, this 
circumstance is already reflected in the residual resis­
tance fl.po. However, elastic scattering produces also a 
temperature-dependent resistance component tl.p', 
which can be determined from (2.1) by introducing in it 
S1(q, w)- S~0>(q, w). 

For the low-temperature region, taking into account 
the explicit form of (2.15) and (3.1) as well as (3.6), we 
get 

(3.11) 

where WT is the energy of the phonon gas at the tem­
perature T and is referred to the first mode. It follows 
therefore that t:J.p' ~ T4 • 

The contribution of the inelastic scattering in the 
resistance component under consideration (t:J.p ") is de­
termined by the second term of (2.16). A direct analysis 
gives for the low-temperature region t:J.p" ~ T7 • Thus, 
in an isotopically disordered metal, the low-tempera­
ture expansion of the resistance begins with a term 
proportional to T4 • It must be emphasized that this is 
of interest mostly from the fundamental point of view, 
since the term itself is small and it is very difficult to 
separate it against the background of the main term. 

It follows from the form of (2.15) that in the classical 
region of temperatures fl. Po + fl.p' - 0. On the other 
hand, it can be shown that in this region tl.p"- 0. Thus, 
at high temperatures the influence of the isotopic dis­
order on the resistance of metals, and of the isotopic 
composition in general, disappears completely. 

4. It is evident from the foregoing that in considering 
the dependence of the resistance of a metal on the iso­
topic composition we encounter two types of effects, one 
linearly and the other quadratically dependent on the 
isotope mass difference. At the present time the purity 
of crystals and the measurement accuracy have reached 
such a level that the quadratic effect should become 
manifest already in the case of a natural isotopic com­
position, let alone artificial isotopic mixtures. We have 
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in mind here principally the residual resistance .6.po. 
Naturally, measurement of the linear effects connec­

ted with the change of the temperature-dependent part 
of the resistance with changing composition, is much 
easier experimentally, primarily because of the much 
less stringent requirements with respect to the purity 
of the crystal. Indeed, in the three experimental studies 
performed to date of the dependence of the resistance 
on the isotopic composition (for Lil3' 4 J and Cdl5l), only 
the linear effect was analyzed. Special notice should be 
taken ofl5 J, where precision measurements were made 
for five isotopic compositions in a wide range of tem­
peratures, and a specially detailed study was made of 
the low-temperature region. The observed results 
agree with the theory. 
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