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The production of coherent light waves of stable frequency by means of an atomic (or molecular) beam 
is investigated theoretically. Inversion of the atomic-level population in the beam by a coherent beam 
is considered and the dynamics of generation and the frequency stability of a beam laser with coherent 
excitation is investigated. It is shown that such a laser may potentially be a source of light waves with 
a very stable frequency (up to 10-12 ). The potentialities of beam lasers with incoherent excitation are 
considered. 

INTRODUCTION 

As is well known, beams of atoms or molecules are 
used in quantum generators operating in the radio 
band. [1, 21 The use of beams makes it possible, first, to 
obtain very narrow spectral lines, of width smaller by 
several orders of magnitude than the width of the reso
nator line, and, second, to sort the molecules by levels 
in order to create an inverted population. The first 
property is exceedingly important, since it has made it 
possible to develop highly stable frequency standards. 
The development of quantum generators for the optical 
band followed a different path. The inverted population 
of the optical levels of the atoms or molecules can be 
obtained by numerous incoherent pumping methods (us
ing light, current, etc.), without the need for using 
beams, 11 but at the cost of losing the narrowness of the 
spectral line of the active medium, and at the same 
time the stability of the generation frequency. In lasers, 
to the contrary, the spectral width of the active medium 
is as a rule broader than the resonator line and conse
quently the generation frequency is determined by the 
resonator frequency or, in other words, by the resona
tor dimensions. Therefore the frequency stability of 
lasers is worse by several orders of magnitude than 
the frequency stability of masers. 

To construct lasers with a stable emission frequency 
(optical frequency standard) it is necessary to change 
the ratio of the spectral line widths of the active me
dium and the resonator. It was proposed in [41 to use 
for this purpose an atom beam21 excited by optical radi
ation as the active medium with a very narrow emission 
line. It was noted in [41 that when the beam is excited 
with coherent radiation it is possible to obtain a narrow 

I) A quantum generator for the submillimeter band, using a beam of 
molecules, was proposed by A.M. Prokhorov [3 ]. 

2lThe use of forbidden optical transitions between lower levels of 
the atoms was discussed in [ 2 ]. In the infrared region, it is possible to 
use transitions between vibrational levels of the molecules. Particularly 
attractive are the transitions coinciding with the 1emission lines of 
large-gain lasers. For example, the 2947.906cm-1 absorption line of 
CH4 molecules coincides within 0.003 cm-1 with the A=3.3913 p. 
line of the helium-neon laser [5 l' and the 2850.608 cm-1 absorption 
line of ~CO molecules coincides within 0.09 em -1 with the A=3.5070 
p. helium-xenon laser emission lines [6 ]. 
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FIG. I. Diagram of beam 
laser with coherent excitation: 
S-Beam source, B-beam of 
atoms or molecules, R-resona
tor, A-quantum amplifier, 0-
output. 
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spectral line, of width much smaller than the Doppler 
width of the beam and determined only by the travel 
time of the atoms through the exciting field. To obtain 
high frequency stability it was possible to use as the co
herent pump radiation the amplified emission of the 
beam laser itself (Fig. 1). 

In this paper we consider theoretically the problem 
of generating coherent light by beams of atoms (mole
cules). We consider the excitation of atoms in a beam 
by coherent radiation and investigate the dynamics of 
the generation and the stability of the frequency of a 
beam laser with coherent pumping (Fig. 1). We show 
that such a laser can serve potentially as a source of 
optical oscillations of very high frequency stability (to 
10-12 ). We consider also the possibilities of using beam 
lasers with incoherent excitation. 

2. CURRENT BEAM EXCITATION 

The idea of coherent excitation of atoms in a beam 
consists in the following. The atoms cross, parallel to 
the wave front, a ray of coherent light of frequency w 
which coincides with the frequency w21 of transition of 
the atoms to an excited long-lived state. Since there is 
no relaxation, the atom oscillates in the resonance field 
between two levels, with a frequency n proportional to 
the intensity of the optical field. [7] If the time T 0 that 
the atoms stay in the ray coincides with the half -period 
of the oscillations rr/0, then the initially unexcited atom 
becomes excited after passing through the light ray. 
Such an excitation method is analogous to the known 
nuclear -magnetic -resonance method of inverting the 
spin population by 180° Y 1 In our case, the pulsed char
acter of the excitation is connected with the finite time 
that the atoms stay in the ray, and not with the pulsed 
switching of the field. The short length of the light wave 
leads to a unique shape of the line of the beam after 
passing through the light ray. 
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Let an atom moving with velocity v enter at the in
stant of time to into a light wave E0 exp [i(k· r + wt)J 
at a point r 0 • The energy of the resonance interaction 
between the atom and the field is 

liV(t) = -p1~0 exp {ik[r0 + v(t- to)]+ iu!t}, (1) 

where p12 is the matrix element of the dipole moment 
of the atom between states 1 and 2. Considering the 
resonance interaction during the time of flight of the 
atom through the wave T = a/v, it is easy to calculate 
the probability amplitudes of a1 and a 2 of finding the 
atom at the levels 1 and 2[71 (a-diameter of the ray). 
In particular, the expression for the inversion is 

la2 12 -Ia• I'= -1 + (2p,zEo/1iQ) 2 (1- cos Q,;), (2) 
Q =' [ (w- w0 + kv) 2 + (2ptzEo/1i) 2]'i•, (3) 

where w0 = (E 2- E1)/li. The Doppler frequency shift 
k·v is connected with the fact that the atom velocity v 
is parallel to the wave front of the ray. If cp is the an
gle between the velocity v and the wave surface of the 
ray, then k·r = kvcp (cp« 1). 

Let us consider first the case of resonant excitation 
(w = w0 ) of an ideally collimated beam which experi
ences no Doppler broadening (kvcp « 1/T ). The average 
population inversion per atom, A, of such a beam is de
termined by averaging (2) over the velocity distribution 
w0(v) of the atoms: 

A= <lazl 2 -lad•>. (4) 

The velocity distribution in the beam is given by [91 

9 v3 ( 3 v2 \ 
w0 (v)=--expi- 2 :;)• 

2 v04 \ Vo 
(5) 

where v0 = -v'3kT/M-most probable velocity of the at
oms in the beam. It is obvious that the inversion A de
pends on the ratio y of the average time of flight of the 
atom through the light ray, T 0 = a/v0, to the total inver
sion time T i = rr/ll = rrti/2p12 E0, and is maximal when 
y = T 0/T i = 1. The exact A ( y) dependence, obtained by 
numerically averaging (2) over distribution (5), is shown 
in Fig. 2. The maximum possible inversion is Amax 
~o.5. 

Let us consider now the case of a beam of atoms 
with finite angular divergence cp0 • When cp0 > 2/kv0 T 0 
= A/rr a the Doppler width of the beam line Awn = 'Po kvo 
exceeds the line width Awtr = 2/T 0 due to the finite 
travel time of the atoms through the exciting ray, that 
is the line has inhomogeneous broadening. It can be 
e~ected that the only inverted atoms will be those 
whose Doppler frequency displacement lies within the 
limits of the homogeneous width Awtr relative to the 
field frequency w. The dependence of the atom inver
sion A on the frequency w' = w0 + kvcp is determined by 
expression (2) averaged over the velocity distribution 
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FIG. 3. Inversion of atoms 
in the beam after passage of 
exciting ray vs. detuning of 
transition frequency relative 
to the field frequency at 'Y = 1. 

(5). Figure 3 shows the A(w') dependence obtained by 
numerical averaging at the optimal y = 1. In the upper 
part of Fig. 3 is shown the beam absorption line shape 
after passing through the ray: a (w') = A(w') a 0(w'), 
where a 0(w) is the initial beam absorption line shape, 
determined by the angular distribution of the transverse 
atom-velocity component v 1 = v · k/k. The maximum
gain frequency wm is determined by the maximum of 
the product A(w') a 0 (w'). If the field frequency w does 
not coincide with the center of the absorption line W0 , 

the frequency of the maximum gain Wm is "pulled" 
towards the center of the line: 

~Ciltr 
wm=Ulo+--(Ul-Ulo). 

~CilD 
(6) 

An essential feature of the line shape of the excited 
beam is the narrowness of the negative-absorption line. 
The line width is extremely small, since it is deter
mined only by the travel time through the exciting ray. 
We note that in the case of incoherent excitation of the 
beam atoms (for example, by optical or thermal pump
ing[101) the negative-absorption line width coincides 
with the initial absorption line width Awn inasmuch as 
the excitation probability does not depend on the direc
tion of the atom velocity v. When the real beam diver
gence is cp0 > 10-2 rad, we have Awn » Awtr· There
fore the highest potential frequency stability is posses
sed by a beam laser with coherent excitation. However, 
it is impossible to realize high stability if the source of 
the coherent radiation is another laser, since the fre
quency fluctuations of the latter will lead to a change in 
the frequency of the maximum gain of the beam. There 
is a way of getting around this difficultyl 41 by using as 
the exciting radiation the coherent radiation from the 
beam laser itself, first amplified by means of an opti
cal quantum amplifier. We investigate below the dy
namics of the generation and the frequency stability of 
such a closed system. 

3. DYNAMICS OF GENERATOR WITH COHERENT 
EXCITATION 

The excited atom beam enters a closed cavity reso
nator, whose resonance range includes the beam nega
tive-absorption line. In order for all the inversely pop
ulated atoms to interact with the field in the resonator, 
and to minimize the role of the absorbing atoms, the 
travel time through the ray in the resonator, T, is 
chosen equal to T 0. The analysis can then be limited to 
the amplifying atoms, and their emission line can be 
regarded as homogeneously broadened with center at 
the frequency Wm· 
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In this approximation, the interaction between the 
field in the cavity and the atom beam can be described 
by a system of three equations which relates the field 
intensity E, the polarization P, and the inverted-popu-· 
lation density N of the atoms in the cavity: lll, 12J 

.. (I) . .. 

E+QE+wr'E=-4nP, 

.. 2 . wp122 

P+-P+wm2P =- 2-~-NE, . To ,, (7) 
. 1 2 . 

N +- [N- N 0 (E)]=--,;-- EP, 
To nW 

where Q and wr are the figure and merit and the reso
nant frequency of the resonator mode, and N0 (E) is the 
density of the inverted population of the atoms entering 
the resonator. 3> Inasmuch as the beam is excited by 
coherent radiation from the generator itself, the initial 
inverted-population density N0 depends on the amplitude 
of the field of the generated radiation ft : 

N0 (t) = NaA [ Zpli12 1 k0ft (t- '- t')dt' l (8) 
'[I 0 -

where Na is the number of active particles, A( y) the 
excitation function shown in Fig. 2, T the travel time of 
the atoms from the exciting ray to the resonator (delay 
time), and ko the ratio of the field amplitude in the 
resonator and in the exciting ray. 

To investigate the system (7), (8) it is convenient to 
go over to dimensionless variables 

li 
t-+wot, E=--x, P=p12vN.; 

P12To 

Na 
N=-z-W, 

and dimensionless symbols 

2 1 Wr 
J.l =Tow ' IJ.i = Q-;;;' 

Na 
No= - 2 wo 

•-- 4 P122ToN u- '[1-/i- a, 

(9) 

(10) 

The solution of the system of oscillation equations will 
be sought in the form of slow motions:l13 • HJ 

x(t) =X(t)cos[t+<p(t)], v(t) = V(t) cos[t+.p(t)]. (11) 

Then the system (7) reduces to a system of five equa
tions 

. !1t b . . ~. b v 
X= - 2 x + 2 Vsm1D, <p=- 2 - 27cos1D, 

V=- ~ V- ~ WXsiniD, '¢=- ~- ~ w; cosiD, 

i-v=- ~ W-!1A[kX(t-T)l+!1XVsiniD, (12) 
where 

2 1 ,, 
ID='Ijl-rp, k=-ko, X(t)=- ~X(t-t1)dt'. 

rt 'To o 

Assuming all the derivatives in (12) to be equal to zero, 
we obtain the stationary solutions. The stationary value 
of the phase difference <P (tan <P = J.LI A= - J.LU At) de
termines the generation frequency: 

L'lw tr I ~Gl tr L'lW.tr )-1 
w=wo+--t1+--+-- (wr-w0), 

L'lwr \ ~Wr L'lwv 

3lThe initial average polarization of the beam is equal to zero, 
owing to the averaging over the x phase of the exciting ray. 

(13) 

where Awr = w/Q is the width of the resonator line. 
The stationary values of the field amplitude X are de
termined by the relation 

A(kX) =aX'+~. (14) 

where a = J.Lt!B and (3 = ( J.Li + Ai)/ J.l1 <>, with a~ (3 
when I w - wr I « AWr. 

A graphic solution of (14) shows (Fig. 4) that when 
the threshold is exceeded there exist two stationary 
values of the amplitude. For further analysis it is con
venient to approximate A( y) in the region of interest to 
us (0.5 < y < 1.5) by the analytic expression 

A(y) =Amax-2(y-1} 2, (15) 

where Amax = 0.5. Then, solving (14), we obtain the 
threshold value of the amplitude: 

Xthr =2k/(athr +2k2). 

Inasmuch as Xthr > 0, the laser will have a hard self
excitation mode. l13J When threshold is exceeded, there 
are two stationary values of the amplitude: 

2k ± [4k2- (2- Amax +a) (a+ 2k2)]'h (16) 
x,,2 = - a+ 2k2 . . 

To ascertain which of the two states is realized in 
practice, let us investigate the solution of the system 
(12) for stability in the inner stationary states Xs 
(s = 1, 2). We shall first simplify the system ( 12). 

The resonator attenuation time Q/ w is much shorter 
than the relaxation time of the polarization and of the 
number of active beam particles, T 0 (J.L 1 » J.L). Conse
quently, the variation of the field can be regarded as 
"fast" compared with the "slow" variations of the 
polarization and of the inverted population. ll4J In this 
case the field parameters respond instantaneously to 
the variations of V, W, and cp. Mathematically this 
means that the connection between the field amplitudes 
and the polarization becomes algebraic (V = aX). The 
system (12) then reduces to a system of two equations: 

f..t-tX = -X- a-1WX, 

f..t-1W = -W +aX' -A[kX(t- T) ]. 
(17) 

To investigate the stability, we linearize the sys
tem (17). Putting X= Xs + ~. W = Ws( TJ + 1), we get for 
I ~ I « Xs and I TJ I « 1 

f..t-1~ = 'I']X,, 

f..t-1'1'] =-'I']- 21;X,- 4k (kX, -1) '[(t- T). (18) 
a 

Seeking the solution of the linearized system in the 
form e.\t, we obtain the following characteristic equa
tion for the determination of .\: 

b 
i..2+ A.+ a+ ZA. (1- e->')e-2~*' = 0, (19) 

where a= 2X~ and b = 4a-1kXs(kXs- 1). The appear
ance of the quasipolynomial is connected with the delay 

FIG. 4. Illustrating the deter
mination of the stationary states of 
the field amplitudes X 1 and X2 . 

"thr{UX 2) 

CL{f+X1} 
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FIG. 5. Illustrating the determination of 
the stability region. 

T and the integral connection between the excitation and 
the field (8). 

The best method for investigating the roots of the 
quasipolynomial (19) is the D-breakdown method. l15 J 

D-breakdown consists in breaking down the space of the 
coefficients of the quasipolynomial (in our case the 
plane {a, b}) into separate regions by means of hyper
surfaces, the points of which correspond to at least one 
zero on the imaginary axis (including z = 0). Then each 
region uk of the D-breakdown can be assigned a num
ber k, which is the number of zeroes Ai with Re Ai > 0. 
The region of asymptotic stability of the solutions are 
the regions u0 corresponding to the quasipolynomials 
which have not even one root with Re Ai > 0. 

It can be shown that the region u0 of the quasipoly
nomial (19) is the shaded area in Fig. 5, bounded by the 
line a+ b = 0 and the curve b = f(a), where the func
tion b = f(a) is specified parametrically: 

b 
y 

a = Y2 - Y ctg py (O<y<n/p), (20) 
sinysmpy 

where p = 1 + 2T /r 0 is the delay parameter. Stable 
states correspond to those values of the field amplitude 
Xs, for which the coefficients a and b of the quasipoly
nomial (19) lie within the shaded region: -a < b < f(a), 
that is, 

4 
- 2X,2 <- kX,(kX, -1) < /(2X,2). 

a 
(21) 

The left inequality of (21) gives the first stability con
dition 

2k 
X,>---= Xtbr, 

a+2k2 
(22) 

which shows that the smaller of the two stationary val
ues of the amplitude, Xh corresponds to unstable equi
librium (Fig. 4). The right-hand inequality of (21) im
poses an upper limit (Xs < Xlim) on the region of the 
permissible values of the amplitude X2 • An approxi
mate lower estimate of X lim can be obtained by re
placing the function f(a) by its asymptotic form 
b = [ ( rr/p)/sin (rr/p)] a: 

X ~~( 1- ~_!!}_J___)-'. 
lim k 2k2 sin(n/p) 

(23) 

It follows from (23) that when the delay time T is 
decreased compared with the transit time T 0 , the value 
of Xlim increases and the stability region broadens. 
The estimate (23) can be easily made more precise in 
the region a« 1, where the curve f(a) lies much high
er than the asymptote. This leads to an increase in the 
limiting value of the amplitude Xlim• We note that the 

obtained upper limit of the region of admissible values 
of the field amplitude is meaningful only when Xlim 
< 3/2k since X2 < 3/2k (Fig. 4). Thus, the stable gener
ation modes are those having a field amplitude X satis
fying the condition 

Xthr <X< min {XIirn3/2k}. (24) 

4. INCOHERENT EXCITATION OF BEAMS 

In the case of incoherent excitation of the beam at
oms, the width of the negative-absorption spectral line 
is determined by the Doppler broadening. The ratio of 
the homogeneous width of the beam t::.. wt:r determined by 
the transit time of the beam to the resonator, to the in
homogeneous (Doppler) width t::.. wD is 

~U>tr 1 A 
p=--=---

1\(J)v <jlo na 
(25) 

where <Po is the beam divergence and a the resonator 
width (Sec. 2). In the optical range A/a = 10-3 -10-4, 

and therefore, even for a well collimated beam (<Po 
~ 10-2 rad), we have p « 1, that is, the line is broad
ened essentially homogeneously. An increase in the 
line width obviously leads to a corresponding lowering 
of the frequency stability. 

It is known that in lasers with inhomogeneous ampli
fication line a "dip" appears at the generation frequen
cy. wl16 • 17 J. In a beam laser, the width of the resonator 
line is relatively large (t::..wr » t::..wD), and therefore the 
occurrence of the "dip" can lead to lasing at neighbor
ing frequencies. Consequently, when the excitation level 
of such a beam laser is increased, so that the depth of 
the "dip" increases, the single -frequency generation 
regime in the vicinity of the line center may become 
unstable. 

This can be proved by using Lamb's expression for 
the generation frequency w of a laser with a Doppler
broadened line, l17 J modifying this expression for the 
case t::..wr > t::..wD: 

1•)- ffir = _L\ffir { 11 _ _21__-~ L\(J)v [t + 1 I w -~ \T') (26) 
ffio- u> L\(J)v 4 1\u>'lr 2 \ 1\U>tr } _I J ' 

where TJ is the coefficient of the excess of excitation 
above threshold ( TJ = !-threshold) and t::..wD » t::..wtr. 
We represent Eq. (26) in the form 

X (1 + 11 ~ffir \- Xo = 1\(J)r 11 - 1 ---=----, (27) 
1\u>v } 1\ffitr . 2 2 + x2 

where x = (w -wo)/t::..wtrand Xo = (wr -wo)/~wtr· 
Examining the plots of the left and right sides of (27), 
it is easy to verify that the condition for the existence 
of a single root x in the vicinity of the center of the 
line is the requirement that the derivative of the left 
side be larger than the derivative of the right side at 
the point x = 0. This condition can be written in the 
form 

11- 1 < 4 1\ffitr ( 1 + L\(J)v ). 
L\ffiv ' 1\(J)r 

(28) 

Consequently, when t::..wr » t::..wD » t::..wtr the single
frequency regime exists only at a slight excess of exci
tation above threshold. Therefore the generation of co
herent light of stable frequency by means of beams of 
atoms or molecules with incoherent excitation is ap
parently a very complicated problem. 
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5. FREQUENCY STABILITY 

The main advantages of a laser using beams of at
oms or molecules is the high stability of the frequency 
of the generated radiation. In the case of coherent ex
citation of the beams, the stability of the generation 
frequency is determined by the expression (13). A sta
bilizing factor .!lwr/ .!lw tr ~ 10-3 is quite realistic 
(.!lwtr ~ 105 sec-\ .!lwr ~ 108 sec - 1 ). When the resona·· 
tor frequency wr has a stability on the order of 10-8 -

10-9, it is possible to obtain a generation-frequency 
stability on the order of 10-11-10-12• The resonator 
frequency can be stabilized with the required accuracy 
by means of relatively narrow lines of superradiance of 
gases or by means of a generation frequency of a gas 
laser, stabilized accurate to 10-9.[18• 191 We note that 
beam lasers are also subject to a radiation-frequency 
shift due to a decrease in the inverted population of the 
beam on traveling through the field in the resonator. 
The resultant inhomogeneous transverse distribution of 
the gain leads to a shift of the natural frequency of the 
resonator.[201 An estimate shows that this effect neces
sitates a correction on the order of 10-9 in the resona
tor frequency. The degree of transverse inhomogeneity 
depends on the field amplitude. This effect therefore 
leads to a dependence of the generation frequency on 
the field amplitude in the twelfth significant figure when 
.!lwr/ .!lw tr ~ 103 • The remaining effects (instability of 
the optical path of the exciting ray, instability of the 
gain and frequency of the quantum-amplifier, etc.) make 
an even smaller contribution to the instability of the 
generation frequency. 

In conclusion, the authors are deeply grateful to 
Academician N. G. Basov for a discussion of the work 
and valuable remarks, and to A. T. Matachun for help 
with the numerical calculations. 
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