
SOVIET PHYSICS JETP VOLUME 26, NUMBER 3 MARCH, 1968 

FORMATION OF BOUND STATES OF CONDUCTION-ELECTRON WITH 

LOCALIZED SPINS IN METALS 

A. A. ABRIKOSOV 

Institute of Theoretical Physics, U.S.S.R. Academy of Sciences 

Submitted April 5, 1967 

Zh. Eksp. Tear. Fiz. 53, 1078-1088 (September, 1967) 

A theory is developed which can be employed to study the electron bound states with localized spins of 
arbitrary magnitude. It is shown that no states with a total spin S + 1/ 2 are realized. The problem for 
states with S- 1/z cannot be solved conclusively within the framework of the logarithmic approxima
tion, since the amplitude of the state is proportional to an unknown constant which may even be zero. It 
is shown that if the amplitude is not zero the formation of bound states lowers the energy of the system. 

1. INTRODUCTION 

THE question of the possible occurrence of bound 
states of electrons with magnetic impurity atoms pos
sessing localized spins has been under discussion in the 
literature since the publication of the paper by Nagao
ka. [1 J This idea was suggested by the complex poles of 
the amplitude for scattering of electrons by magnetic 
atoms, observed by Suhl[2J and the present authorY 3 

These poles arise when account is taken of perturba
tion-theory terms of higher order in the exchange in
teraction. This singularity recalls the well known sin
gularity in the amplitude of mutual scattering of elec
trons in a metal, which evidences the instability of the 
ordinary "normal" state and the phase transition into 
the superconducting state. 

The many papers written on this topic do not make it 
possible, unfortunately, to answer the raised question. 
The papers in which the possibility of bound states is 
proved either use a variational procedure[ 4 J or else ob
tain, by means of very complicated calculations, sev
eral terms of an expansion in J ln (EF/~) (where J is 
the exchange interaction and ~ the electron energy), [SJ 

which is not valid, since this parameter is not small~ 
Nagaoka, [13 who started these studies, used a method of 
simplifying complicated matrix elements, wherein it is 
very difficult to estimate the order of the discarded 
terms. In the paper of Takano and Ogawa/63 which is 
closest to ours, they did not take into account all the 
types of the F-functions, and therefore their result was 
incorrect (see below). Finally, most papers consider 
actually only an impurity spin S = %, whereas the sin
gularity of the scattering amplitude appears for any 
impurity spin. 

On the other hand, Suhl and Wong, [73 and also Mal
eev, [83 have shown, when solving the equation obtained 
for the scattering amplitude by the Chew and Low meth
od, that it is possible to obtain a scattering amplitude 
without a singularity by means of a correct analytic 
continuation with respect to the temperature, the cou
pling constant, or the electron energy. Nonetheless, 
this does not solve the problem of the bound states. 
First of all, the equation solved in [7J and [83 , which is 
based on a definite assumption concerning the form of 
the intermediate states, while agreeing with the equa-

tion obtained in the more consistent theory[3 J in a log
arithmic approximation, is not equally justified in 
higher approximations with respect to J. Second, at
through the singularity of the scattering amplitude is 
indeed a definite "hint" of the instability of the state, 
it cannot be stated that the possibility of constructing a 
nonsingular amplitude excludes such a possibility. Fi
nally, one cannot exclude the possibility that the Solu
tion of Suhl and Wong actually corresponds to a bound 
state. [1 , 53 

In the present paper we make the next step necessary 
to clarify the question of bound states. In the technique 
developed by us earlier, [3 J the assumption concerning 
the bound state is manifest in the occurrence of four 
new "Green's functions," similar to F and F + in the 
Gor'kov method[9 J for superconductors. Solution of the 
equations for the corresponding "amplitudes" makes it 
possible in principle to solve completely the problem of 
the bound states. In the present paper we confine our
selves only to the logarithmic approximation (that is, to 
allowance for terms with the maximum degree of 
ln (EF/ ~) at a specified degree of J). Unlike Yosida and 
Okiji, [53 we take into account in this approximation all 
the necessary terms. It is then possible to show that no 
states with total spin S + Yz are produced, regardless 
of the sign of the exchange interaction. As to the states 
with total spins S- 1/ 2 , if the exchange-interaction term 
has the antiferromagnetic sign, then, within the frame
work of the logarithmic approximation, the bound state 
can be produced, although this approximation is inade
quate for a final answer to the question. The energy of 
such a state is considered. 

2. FUNDAMENTAL EQUATIONS 

We confine ourselves here to the study of one im
purity center at the point r = 0. We shall use the field
theory technique for the spins, [33 based on representing 
the spin operators in the form 

(1) 

where a13 are Fermi operators, and S~(3' are the ma
trices of the spin operators. The Hamiltonian of the in
teraction takes the form 

Hint= -(l/N)"¢a+(O)ap+ap•1Jla•(O)a~"'S:p' {2) 
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FIG. I FIG. 2 

(aha'- Pauli matrices-electron spin, N-number of 
atoms of the basic metal per unit volume). 

It was already mentioned in C3 J that introduction of 
the spin pseudoparticles leads to the appearance of un
physical states. They were eliminated there by an ar
tificial device. In the present paper, however, this will 
not be necessary. Indeed, we consider here only T = 0. 
Then we need only the mean values averaged over the 
ground state of the system. The function .'9< 01 

= i (T(aj3 (t)aj3' (t' ))) which is needed for the calculations 
should satisfy the equation 

c (0) 
i{).'f}BB•(t-t')/ilt= cS(t-t')6~B·, 

which is merely the consequence of the commutation 
relation of the operators a13• From this we get 

.'9~~· = w-1 1\~B'· {3) 

All that depends on the choice of the state over which 
the averaging is carried out is the method of going 
around the pole at w = 0. But in all the subsequent cal
culations only the principal value of .'9 <o> will be sign if
icant. Incidentally, the ground state could be introduced 
by using a transition to the limit in an infinitesimally 
weak magnetic field. 

In calculating the scattering amplitude in c3 J , loga
rithmic singularities appeared in the diagrams for the 
vertex part, shown in Fig. 1. We now use the analogy 
with superconductivity. In the latter sense, a logarith
mic singularity occurred in the diagram shown in Fig. 2. 
This led to the assumption of occurrence of electron 
pairs. To describe these pairs, there were introduced 
in the Gor'kov methodc9 J two functions 

F= (T('Ijl(x)'ljl(x'))), F+= (T('Ijl+(x)'ljl+(x'))), 

corresponding to pair annihilation and production. In 
the present case, the singularity arises in two types of 
diagrams, and not one. In view of this, we introduce 
four new F-functions: 

F~~ (x, t') = (T ('ljla(x)aB(t') )>, Fc?J (x, t') = (T ('ljla+(x) aB+(t')) ), 

(4) 
F~~ (x, t')= (T('Ijla(x)aB+(t'))), F~~ (x. t')= (T('Ijla+(x)aB(t'))). 

In superconductivity theory one considers only that part 
of the interaction which leads to the occurrence or anni
hilation of bound states, and one "throws out" the part 
connected with the scattering. As applied to our prob
lem, this would mean that it is necessary to go over 
from the Hamiltonian (2) to the expression 

(2) (1) (4) (3) ( ) 
H'"' = d,B 'i>dO)aB +daB 'ljla+(O)aB+- daB 'ljla(O)aB+- daB 'IJla+(O)aB, 5 

where, for example, 

daB= JN-1 ('ljla, (0, t)aB, (t)> CJa,aSB,B· 

In this case, however, owing to the presence of two 
types of diverging elements (a and b in Fig. 1), the 
situation is somewhat more complicated, and part of 
the "scattering" effects must be taken into account. 
This question will be considered somewhat later. For 
the time being we note only that the result is equivalent 
to formula (5), except that each term must be trans-

r; r;l'! tfl! c;l'! t:PI c,l'! tJ'"! 
==>-----7 + >-----7•-<----<·=+:---~·>----'»·=+ 

{j{l) {j(J) ])+ {j(J) {j(l) 

+ >-----7 • ~---< . ~ + >-------"» • >-- -"» • = 
FIG. 3 

formed in accordance with the principle 

d~~'ljla(O)aB-+d~J (t- t')'ljla(O, t)aB(t') 

and the averaging of all the ~aj3 is more complicated. 
We must now take into account the fact that the pro

duced states have a total spin I = S + 1/2, or else 
I = S- Y2. This is expressed by the following condi
tions: 

(1) (1) (1) (1) 
(aS)aB, a,B, Fa,B, = SFaB (aS)aB, a,B, Fa,B, ==- (S + 1)FaB 

(oS)aB,, a,BFa<~b, =-SF~~ (aS)aB,, a,BF~~B, = (S + 1)F~~ 
(aS)a,B,aB,FS~ = -SFa~1 (oS)a,B,aB,F~:1B, '= (S + 1)F~;1 . 

(6) 

The Hamiltonian (5) leads to an equation for the elec
tron function G(r, r', w), shown schematically in Fig. 3: 

Gaa• (r, r', w) = G<01 (w, r- r') iiaa• 

+ G<">(w, r)[d~~ (w)d~';B(- w) .'9<01(-· w) 

- d~~ ( ul) d~~B (- w) ;§COl( w)] Ga,w(w, 0, r') 

(1) (3) + GC01(w,r)[daB (w)da,B(- w) .'9<01(-- ul) 

- di~ (u1)d~~B(- w) ,'f}C01(w)] Dt,a•(W, 0, r'), {7) 

where D~a' = i(T( ¢~ ¢~~)) (by iJ we mean the Heisen
ber operators). The equation for D~a' can be obtained 
in similar fashion: 

+ (2) (1) c 
Daa•(w, r, r') = G<01(- w, r)[daB (w)da,B(- w) .f.M(w) 

- dd~ (w )d~3,1B( -w) .'9<01(-,w)] D!,a•(w, 0, r') 

+ G<"l(- w, r)[d,?i ( w) d~~B (- w) .'f) COl ( w) 

-d~B (w)d~~B(-w).'9<01(-w)]Ga,a•(w,O,r'). {8) 

With the aid of (7) and (8) we can find .G and D+, by 
expressing them in terms of G<o> and ~ m. To this end 
it is necessary to put r = 0, after which the equations 
will contain only G(w, 0, r') and D+(w, 0, r'). By find
ing them, we can obtain also the complete G and D+. 
With the aid of these functions we can determine the 
functions F. For example, for F< 2 > we have the dia
gram equations shown in Fig. 4. It corresponds to 

w w 
FaB (w, r, 0) = - iGaa, (- w, r, 0) .'§COI(w)d",B(ffi) 

+ .D+ ) C£! QlJ 
I aa,(w,r,O .y(DI(w)d~,B(w). 

Analogously we have 

(I) 
FaB (w,r,O)= ·-iGaa,(w,r,O).'f}CO!(-w)L'>~~B(w) 

+ iDaa, (w, r, 0) .'9<01(- w)d~~B(ffi), 

F~~ (w, r, 0) =- iGaa, (w, r, 0) ,'f}COI(w)i~,B(ffi) 

+ iDaa, (w, r, 0) .'9<0>(.w) d~~B ( w), 

F~~ (w, r, 0) = - iGaa, (- w, r, 0) ,'f}(Oi(w)d~~B(ffi) 

+iDa~, (w, r, 0) .'9<01(- w) d~~B ( w), 

(9a) 

{9b) 
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Here 

D._._.(x,x') = -i(T('IJ._(x}-¢ .. •(x'))). 

The equation for this function is similar to (8): 

n._._;({i), r,r')= G<Ol(ro, r){~ .. ~)({i))~.p(- ro) [q(OJ(- {i)) 
(10) 

~ w ' - ~ .. p (ro)~o.,p(- ro) [q<OJ(ro)]D._,._.(ro, O,r) 

(I) (3) + G<Ol(ro,r){~ .. p (•ro)~._,p(-{1)) [q<0l(-ro) 

~ w ~ ' - ~ .. p (ro)~o.,p(-ro) [q<0>(ro)] G._, ... (-w, O,r ). 

Finally, the complete function ;q is expressed in terms 
of Fi (see Fig. 5): 

(4) (3) 
[qpp-(ro) = [q<0>(·ro)llw- i[q<0l({i))~o.P (-ro )Fo.p•(ro, 0, 0) 

• (I) (2) + ~[q<OJ(ro)~ .. p (-ro)Fap•(·ro, 0, 0). 
(11) 

Thus, all the functions can .in principle be expressed 
in terms of a<o> , .<g<o>, and t::.m. It i.s necessary to add 
to this the equations defining the t::. n>. 

~v ~w ~ 
~=~ = ~. >----;. + ~ 0 >----.;. 

FIG. 4 

.g ~~~! p<•J A(f) 
:====~ = >----') + >----'). ===~ + >----~ 0 ==="' 

FIG. 5 

3o SOLUTION OF THE EQUATIONS 

We shall obtain all the quantities in the logarithmic 
approximation. To this end it is not necessary to solve 
all the equations written out above .. We note simply the 
fol.lowing circumstance. To find t::. <1> we shall need 
F<ll(w, 0, 0). These quantities are expressed in terms 
of G(w, 0, 0), D+(w, 0, 0), and D(w, 0, 0). It follows 
from {7) that, accurate to corrections of order rrt::.201/w 
(where 01 = p0m/2rr 2) we have G(w, 0, 0) = a<o>(w, 0) 
= -irr 01 sign w, the quantities D+ and D are of first or
der in rrt::.201/w, ~(w) R: ;q<o>(w), and finally, in the ex
pressions for the functions F we can discard the terms 
with D and D+, and replace G by a<o> in the first 
terms. We obtain here 

(ll na <Q 
Fo.p ({1),0,0) ~ -r;T~ap, 

<•> na <•l 
Fap (ro, 0, 0) = ~ ~ .. ~. 

.43> na <•> (4) na (4) ( 12) 
l'izp ({1),0,0)= --r;T~._p, F._p (ro,O,O)= -~~ .. p 

In the first approximation in J/N we get for 6.<~>(3 

a~~ 1 = JN-1( '¢cz, (0. t) ap, (t)) o! .. ,s:p, 
lrllw<t> 11 =N J 2nF,.,p,(ro,O,O)uczcz,Spp,. 

It follows from (12) that this expression is essentially 
reduced to a logarithmic integral. The upper limit, as 
always, will be cF, and the lower will be of the order 
rr01t::.2 • In other words, we need with logarithmic accu
racy actually I w I » rr01tf, which fully justifies the ex
pressions in (12). The expression given above for t::.<u 
corresponds to the diagram of Fig. 6a. 

Let us consider now the diagram 6b. The new ele
ment contained in it yields a factor JN-1 ln (cF/0. The 
quantity can in no way be regarded as small. In this 

0 
a b 

FIG. 6 

c 

lies the difference from the superconductivity case. 
The situation with two singular logarithmic elements 

of the vertex part was considered in a recent paper by 
Bychkov, Gor'kov, and Dzyaloshinskii/10 J devoted to 
one-dimensional superconductivity. That paper con
tains a method of finding t::., which we shall follow here. 
It is easy to see that, with logarithmic accuracy, it is 
necessary to replace the simple vertex y = JN-10S in 
the expression for t::.0 > in terms of F<1> by the sum 
y +A <2>, where A< 2> is the aggregate of diagrams which 
can be cut apart by two antiparallel electron and spin 
fermion lines, but cannot be cut by similar two parallel 
lines (see [3 J ). Thus, the total expression corresponds 
to diagram 6a, and to diagram 6c. This is an integral 
expression, which takes the form 

(13) 

It ~s possible to write similarly equations for the other 
t::. <1>; the only difference is that in the expressions for 
for t::. <3 > and t::. <4> the quantity A< 2> is replaced by A< 1> 
and, in addition, the sequence of the multiplication in 
the spin indices will be different in all the expressions 
(it is the same as in the left side of (6)). 

In [3 J we derived expressions for A< 2 > and A< 1> in 
terms of the total vertex r and the total vertex itself is 

aS 
rm= N/l +2a~; 

t 

A~,a·wm= -a) rap•,a,p,(1])ra,p,,a•P(1J)d1J, 
0 

(14) 

(15) 

where !; = ln (cF/ I w I). Substituting (14) in (15), we get 

A<t> = (1 + a~l/N)aS + a~!S(S + 1)/N 
v+ N/l +2a~ ' 

(1 + aV/N)aS- a~!S(S + 1)/N 
v+A<•>=--- Nfl+2a~ (16) 

In the integral of (13) there are two regions: I w1l » I w I, 
where the argument in A< 1> and A< 2 > is equal to 
ln (cF/ I w1l) and I w1l « I w I, where the argument ip. 
A< 1> and A< 2> is equal to ln (EF/ I w I), that is, y + A<lJ 
can be taken outside the integral sign. . 

The result of multiplication of y + A(l) by the corre
sponding F-function is determined by the formulas in 
(6). From them an\f from (12) it follows that the equa
tions for all the t::,.<ll are the same for a given I. When 
I = S + % we have 

f 8(1- JN-18 ) 8(1- JN-18 ~) '' 
~(~)=a { N/1+2a1]a1] ~(1J)d1J+a NfJ+2at i ~(1J)d1J 

(17a) 

and when I = S- Y2 
t 

i (S+1){1+JN-1 (S+1)a1J) (17b) 
~m= -a J N/l + 2a11 ~(1J)lt1J 
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t. 

-a (S + 1){1 + JN-•(S + 1)a1;] ~ ~(1J)d1J, 
N/1 + 2a1; 

where 1J = ln (£F/Iwll), and t 0 = ln (£F/ml!A2) is the 
boundary of the logarithmic region. Inasmuch as A de
pends on the frequency, it is necessary to take in t0 

that value of the frequency, at which JTCl!A 2 ~ w. We note 
that integration with respect to w1 in (13) includes two 
signs of w1, which of necessity leads to the conclusion 
that Aw = A(-w) and to a doubling of the integrals. This 
was taken into account in (17). 

To solve (17) it is convenient to go over to a new 
variable z = N/J + 2at. We then obtain 

1 ' f J S(S + 2) ' ~(z)=- ~ \ --S'+ }~(u)du 
4 N/J. N u 

(18a) 

for I= S +%and 

1 ' J S'-1) ~(z)=- i { --(S+1JZ+-- ~(u)du 
4 J \ N u I 

1\T/J 

1 1 J S2 -1 '" 
+-tt--(S+1)'+--) \ ~(u)du 

4\ N z . ; (18b) 

for I = S- Y2. 
Differentiating twice with respect to z, we obtain 

the differential equations 

z'~" + 2z~'- S(S!_2) ~ = 0, I= S + 1/,; (19a) 

S2 -1 
z2~" + 2z~'- ---4 - ~ = 0, I= S- 1/z. (19b) 

It follows hence that 

~ = PzSf2 + Qz-(S/2+11, I= S + 1/2; 

~ = pz(B-111' + Qz-jS+1112, I= S- If2. 

(20a) 

(20b) 

Actually, however, the differential equations (19) 
have more solutions than the initial equations (18). Sub
tituting (20) in (18), we get the following conditions: 

p = 0, Qzo-1:3/2 =OJ I= S + 1/2; (2la) 

Q = 0, Pz0 (S+II/Z = 0, I= S- 1/ 2• (21b) 

Inasmuch as z0 = N/J + 2at, it follows from (21a) 
that we must have Q = 0, and consequently also A= 0. 
In other words, no bound system with I = S + % can be 
produced. A similar conclusion for S = Y2 was reached 
by Yosida, [SJ although, as already mentioned, his meth
od, which contains an expansion in JN-1 ln (£F/ I w I), 
did not make it possible to draw a rigorous conclusion. 

In the case I = S = % for A* 0 it is necessary to 
have z0 = 0, which is possible in principle if J < 0. 
Taking into account the logarithmic accuracy, we obtain 
from this 

speaking, however, the question of the existence of the 
bound states still remains unclear. 

We propose, however, that the constant C * 0, and 
consequently also A * 0. How must we interpret for
mula (20b) in this case? The point is that formula (20b) 
determines A only in the region I w I » JTCl!A 2. From 
(20b) we see that with decreasing w (with increasing z) 
A(w) increases when S = %, remains unchanged when 
S = 1, and decreases when S 2::%. We cannot determine 
the exact behavior of A in the region lwl ~JTaA2• From 
(22) we can conclude, apparently, that in this region A 
begins to change more rapidly than logarithmically, 
and tends to the constant value (22). 

4. ENERGY OF THE BOUND STATE 

In conclusion let us find the energy of the bound state 
for I = S- %, J < 0. As usual (see [llJ) we have 

iJE (Hint> 

oJl/NI = ll/NI 

Substituting (2) in this equation, we again take only the 
terms corresponding to creation and annihilation of the 
bound states. Here, however, the simple vertex y must 
be replaced by y + A< 11 in one type of pairing and by 
y + A< 21 in the other. As a result we get 

iJE I J I i dw, dw, <•I (21 --·- = - J--- {Fa,~,(wt)Fa~(w,)[y +A<21(wz + Wt)]a~,a.~, 
ojl/Nl N (2n)' 

- F~~~(w,)F~~. (w,)[y + .A<11(wt- wz)]a~. a,~,}. 

Using the expressions for A< 21 and .ci 41 in terms of the 
corresponding F, similar to relation (16), and substi
tuting (12), we g:et 

to 

_!!!__ = -· _a_ i [~ <•> (")~ (21 (")+ ~~~ (")~~·> (1;))d1;. (23) 
ajl/Nl Jl/Nl ~ a~ " a~ " ~ s ~ 

The quantities A<i 1 are actually not fully independent. 
This is specially easy to see in the first order of per
turbation theory, where, for example, 

(I) J i i 
~a~, 1 = N (t!Ja,a~)aaa,S~~" 

It is seen from these two formulas that A? 1 = (-A\21 )*. 
It can be verified that the same connection is retained 
also in the higher orders, in any case at the assumed 
accuracy. The same is valid also with respect to A< 31 
and A< 41 . It follows therefore that formula (23) can be 
written in the form 

•• 
iJE a ~ ~ {1~~1J(1;)J'+ l~d~(~)i'}d1;. 

oJl/NI =- ll/NI a~ 0 

The previously obtained expressions for A<i 1 can be 
written in the form 

(i) (i) (IN I \(S-1)/2 
~a~ =Pa~ T -2a1;) . 

(24) 

(25) 

(2:2) Let us substitute this in (24). We get 

The constant C, which generally speaking is of the or
der of unity, is not determined in the logarithm!c ap
proximation. It can be different for different Am, but in 
principle it can also equal zero. In view of this, the 
only thing that can be stated is that the assumption 
A * 0 in the case J < 0 and I = S- Y2 does not contra
dict the equations in the logarithmic accuracy. Strictly 

aE 1 I N Is+• (I) (3' 

oJl/NI = -2s T ~[IPa~ I'+ IPa~ 1'1, (26) 

where we have used the condition that N/J- 2at0 = 0. 
It is seen already from this expression ~hat the for

mation of bound complexes, if possible (p<u * 0), lowers 
the energy of the system. To obtain the energy in this 
case it is necessary to know the dependence of the coef-
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ficients P on IJ/N 1. This can be done by using the fol
lowing considerations. The next approximation beyond 
the logarithmic one should produce an addition t9 t on 
the order of unity in (25). The expression for l:!..n' can 
in this case be already reduced to w "'1TCYI:!..g. From this 
and from (22) we get 

where C1 and C are of the order of unity. Obtaining P 
from this, substituting in (26), and integrating we get 

_ ( N )s-1 {-_!!__ l 
E- KeF all I exp 2alll J 

(27) 

where K "'1. 
In conclusion, the author wishes to express his in

debtedness to Professor K. Yosida for a valuable dis
cussion of the physical aspects of the theory and to 
I. E. Dzyaloshinski'i for friendly criticism. 

APPENDIX 

We wish to note here certain details of the spin tech
nique proposed in l 3 J. It is already stated there that the 
introduction of Fermi operators a{3 for the spins, by 
the method 

(A.1) 

can be carried out in two different ways. In the case of 
a spin S = % we can use the fact that the operators 
give zero when acting on the unphysical states (0, 0) 
and (1, 1). We could therefore use the operators di
rectly in the form (A.1), following which we could cor
rect the normalization during the averaging. But if 
S > Y2, this is no longer the case, and in [31 we artifi
cially introduced an energy A for each spin pseudopar
ticle. Acting on the state (0, 0, ... , 0), the operators 
§i gave 0, and the next states in terms of energy were 
the physical states with N = 1, that is, of the type 
(0, o, ... ' 0, 1, o, ... ' 0). 

This procedure involves a certain inconvenience. 
The energy A is an utterly unphysical quantity-it takes 
part in the sums over the frequencies. To eliminate 
this quantity it is necessary to go over to integration 
over real frequencies, which is not always convenient, 
and furthermore increases greatly the number of dif
ferent terms. At the same time the spin S = Y2 is an 
exceptional case. It is therefore interesting to note that 
it is possible to get along without A also for S = 1. 

The point is as follows. All the possible states cor
responding to the operators a{3 actually correspond tq 
different total spins. For example, for spin Y2, the 
state (1, 1) and (0, 0) actually correspond to S = 0 and 
not S = %. In the case of a larger spin we obtain a 
larger number of such irreducible sets. For example, 
for S = % there are only 16 states, of which (0, 0, 0, 0) 
and (1, 1, 1, 1) correspond to S = 0, the states 
(0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0), and (0, O, 0, 1) cor
respond to S = %; out of the six states with two ones, 
five correspond to S = 2 and one to S = 0, and finally 
there are four states with three ones, which again cor
respond to S = %. It is very important that the opera
tors §i, first, always give zero when they act on states 

corresponding to S = 0, and second, they do not change 
the total number of pseudoparticles. 

Let us consider the state S = 1. The states (0, 0, 0) 
and (1, 1, 1) are ineffective. The states (1, 0, 0), 
(0, 1, 0), and (0, 0, 1), which correspond to S = 1, were 
assumed by us to be physical. But it is easy to see 
that the same properties possessed also by the states 
(1, 1, 0), (1, 0, 1), and (0, 1, 1). If we take the trace of 
some product of § i over all the states, then we obtain 
the sum of two traces, each over physical states, and 
they are therefore identical. It follows therefore that 
under suitable normalization we again obtain the cor
rect mean value. It is easy to see that the norm is 
4/3. 

As to the spin S > 1, we have already shown with 
S = % as an example that the complete set of states 
must include some which correspond to a spin larger 
than that which we are considering. Consequently, we 
cannot get along here without A. 

We now proceed to the second remark. We have al
ready seen in [121 that in the presence of a field it is 
necessary to change the normalization of the mean val
ues. The same pertains to all cases when the individual 
orientations are not equivalent. We can propose a slight 
modification, which automatically takes this fact into 
account. Namely, in lieu of the normalization 
eA/Tj(2S + 1) for each atom, which we used in l31 , we 
must introduce the factor 

where N is the total number of "particles," and the 
trace is taken over all the states. Indeed, acting on the 
states with N = 0, we get zero, when A » T the main 
contribution will be made by physical states, and in the 
case of equivalence of the orientations we get the previ
ous result. It is easy to see, however, that even in the 
absence of isotropy the proposed method will yield pre
cisely what is required. Thus, the receipe reduces to 
dividing any mean value by (N)n, where n is the num
ber of different atoms contained in the mean value. 

Naturally, this pertains only to the technique with A. 
If we assume a technique without A with S = Y2 or S = 1, 
then, in view of the small number of the states, it is 
easy to choose the appropriate normalization. 

We note finally that in the technique with A we can 
use Bose operators in absolutely the same manner as 
Fermi operators. Indeed, as already noted in [31 , Bose 
a13 give correct commutation relations for §i. On the 
other hand, in the presence of A we do not have tore
gard states with an occupation-number sum larger than 
unity. 
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