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The Green's functions of a thin film superconductor are calculated to all orders in the ordering param
eter in the presence of very strong magnetic fields parallel to the surface, when expansion in powers of 
the field strength is not appropriate. From these Green's functions the magnitude of the order param
eter and the tunneling current are calculated near the critical field. 

THE parallel critical fields and tunneling currents for 
dirty thin superconducting alloy films have recently 
been shown by Guyon, Meunier, and the author[1 J to 
agree very well experimentally with the theory of 
Maki, [aJ as extended by us and Baratoff[3 J to include 
nonlocal electrodynamics. However, only one experi
ment was performed on a film of the pure metal be
cause of the lack of a complete theoretical treatment 
valid for cleaner samples. 

Using a quasiclassical method de Gennes and Tink
ham[4J and Shapoval[5J have calculated the value of the 
critical field expected in all limiting cases of mean 
free path length and temperature for thin films with 
diffuse boundary reflection. The present work extends 
their results by calculating the Green's functions to all 
orders in the order parameter, from which the magni
tude of the order parameter and the tunneling current 
near the critical field are obtained. In the case of an 
absolutely clean film at intermediate temperatures the 
value of the order parameter agrees with that obtained 
by Ovchennikov, [BJ which we write more exactly. 

1. CLEAN FILMS 

We consider first the case of clean films, those 
having no defects in the bulk, but with diffuse boundary 
scattering. The anomalous Green's function F w<r, r) 
of Gor'kov[7 J evaluated at one point was found previous
ly to first order in the order parameter d(r) using the 
Green's functions G~l(r, r') of the normal metal:[4• 5 J 

F~1) (r, r) = ~ G~) (r, r')G~~ (r, r')~(r')dr' 

= 2nN ( f dt e-2irolt+icp(t)~ (t)). (1) 
0 

The average ( ... ) is over all classical electron trajec
tories at the Fermi surface. The phase 

t 

cp(t)=cp(O,t)=2d Avdt, 
0 

is twice the line integral of the vector potential Av 
= Hzx along the trajectory with velocity v. N is the 
density of states. w = (2n + 1) rr T. 

The film thickness d is required to be much less 
than the bulk coherence length ~o. If in addition 
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d » (1 - tr) ~o, where tr is the reduced temperature 
T /T C• then the critical field will be small, eHcd2 

« wd/v. This case has been treated by expanding in 
powers of the field strengthYJ 

What interests us now is the case of strong critical 
fields, eHcd2 » wd/v, obtained when d « (1- tr)~o. 
For small w, c4l!v « eHd2 and 1, many collisions with 
the boundaries occur in the relevant time interval 
t ~ 1/w, so the contribution from the direct trajectory 
without collisions may be neglected. The portion of a 
trajectory from one boundary to the other gives no 
contribution to the phase cp. The important contribu
tions come from the two portions of a trajectory from 
an end point in the interior to a boundary. Due to the 
diffuse reflection v(t) and r(t) are uncorrelated with 
v(O) and r(O), and the averages may be taken separate
ly. The averaged contribution of a trajectory from the 
interior to a boundary is just. [4J 

(2) 

Since the average value of x(t) for large t is inde
pendent of time, the average over x(t) is carried out 
independently of the integration over t, and we obtain 
F<ll: 

F~10 (r, r)= ,:~ exp(- eH ( ~- z2 )] 

x ! ! ,exp [-en(~- s2)] ~{s)dS. 
It follows that the order parameter 

~{x)= J..T ~ Fco{r,r) .. 
has this same exponential dependence on xPl F< 1l 
and the critical field are expressed in terms of the 
function f introduced by Shapoval: [5 J 

21/2 [ d2 J f=d j exp -2eH( 4 -62) ds, 
0 . 

and the value of the order parameter at a boundary, 
which we write as d without an argument: 

(3) 

470 



SUPERCONDUCTING CHARACTERISTICS OF RATHER CLEAN THIN FILMS 471 

The next order term in A of F is F< 3 >: 

F~ (r, r)=- ~ G~Ol{r,r1}~(rt)G~~(r•, r1)~ •(r2) 

X G~0l {r2, r3) ~ (r3) G~<?. (r, r3) drt dr2 drs. 
(4) 

Using the reasoning of de Gennes and Tinkham l4 J we ar
rive at the result: 

00 CD t1+fs 

F~111 (r,r)=-2:n:N(S dt1 ~dt3 S dt.exp[-2iroi(tt+ts) 
0 0 0 

+ icp(O, t1) +icp(tt- t., t1- t2 + ts)]~{tt)~ •(tt- t2)~(tt- t2 + ta)). 

(5) 

The times concern four successive motions along the 
trajectory, forward and then backward, finally returning 
to the initial point. The limit tz < h + t,. arises from the 
requirement that t4 be positive. Again the values of v 
and r at large times are uncorrelated with their initial 
values and may be averaged independently of the time 
integrals. The phase contributions are divided between 
one for the initial point and one for each A (t). 

F~BJ (r,r) =- 2~1 • exp [- eH( ~ ~ x•) J {f~)•. (6) 

The generalization to all orders in A is thus evident: 

Fw(r,r)=[ro•+;:;~." exp[-en(: -x•)J. (7) 

The Green's function Gw(r, r) is obtained in the 
same manner. The normal state Green's function 
G~~r, r) is independent of the field in this approxima
tion. 

G~:l) (r,r)=- S G~l {r, rt)~(r,)G~~(r2, rt)~·(r•)G~l {r2, r)dr1dr2 

"' 0 

= 2i:n:N sign ro S dtt S dt2 exp [- 21 ro I {t1- t.) 
0 

. :n:N sign ro 
+ zcp(tt)- icp(t.)]~{tt)~·{t.)= i 2002 {/~)2. 

To all orders in A: 

Gw(r, r) = :n:Nro/i{ro2 + {f~)"}'". 

We note that the density of states N(w) 

(8) 

(9) 

=-sign w1T -tIm Giw is independent of the initial direc
tion of the electron's velocity, in contrast to the case of 
a clean film with specular boundary reflection investi
gated by Ovchennikov,l8 l and that there is an energy gap 
in the spectrum of 2fA. Further we observe that N(w) 
is independent of position, in contrast to the dirty 
case.l9 J Due to the independence of Gw(r, r) on position 
the screening current vanishes in this approximation. 
Therefore the phase transition to the normal state will 
be of second order. 

The magnitude of A is obtained from F w<r, r): 

~~ 
~='J..T ~ 2[ro2 +{!~) 2f1• 

(0 

The effective interaction strength i\ is determined from 
T c and may be eliminated: 

In t, = 2:n:T .~ ( [ro• +~/~)"]"•- ! ) . (10) 
w>O 

As stated earlier, the expression for F (7) apPlies only 

for small w. From the work of Shapoval l5 J to logarith-

mic accuracy f is replaced by 1 when w > eHdv. If eHd2 

> 1 then in the region v /d < w < eHdv f is replaced by 
0. The critical field He, as shown by Shapoval, l5 J fol
lows from the equation: 

/c-1 
lnt,=2:n:T Z--, /c=/(Hc)· (11) 

ro 
w>O 

To obtain the magnitude of A near the critical field 
we expand (10) in powers of A 2 and subtract (11): 

T ~. I- lc _ T ~. f~• :n: ~---lli LJ-· 
' ro 2ro3 

oo>O ~>0 

(12) 

The sum over won the left side of (12) is the same as 
on the right side of (11) if eHd2 < 1, so we obtain 

n{3) f~• I- lc [ 7 ] ----={f-/e){fc-1)-1lnt,=-- ln4:n:eHdso-- . 
8 (:n:T) 2 f 3 (13) 

When eHd2 « 1 the result of Ovchennikovl6 J (and addi
tionally the coefficient of the argument of the logarithm) 
is obtained by substituting f = 1 - % eHd2• When eHd2 

» 1 the second equality of (13) still holds to logarith
mic accuracy, and the limiting form f = 1/eHd2 may 
be substituted. 

The tunneling current from a superconducting film 
through a barrier into a normal metal is the same as 
from a bulk type one superconductor with gap fA. If 
fA« 1TT the density of states may be expanded in pow
ers of A/1TT and the differential conductivity ob
tained: [lDJ 

1 dl 1 ( 1~ )• ( 1 ieV ) D(V)=--= 1+- - Re'ljla ---- , 
C dV 8 . :n:T 2 2:n:T (14) 

where C is the normal state conductivity, V -the po
tential difference, and 1/Jn-the (n- 1)st derivative of 
the digamma function. Thus the slope S at the critical 
field, which is usually measured/1 lis 

2!' 
S = - Fln{1.22eHdso), (15) 

where f' = df/dH and the limiting forms of -f' ;e are 
ed2 /3 where eHd2 « 1 and ed2 when eHd2 » 1. 

2. FILMS WITH IMPURITIES OR DEFECTS 

Scattering from inhomogeneities in the film interior 
may be included using the techniques developed by 
Abrikosov and Gor'kov.l11 J As we noted earlierl3 J their 
original derivation also applies in the presence of fields 
and spatial variations of ~(r) if isotropic scattering is 
assumed. Their method replaces w and A in the 
Green's functions by wand X, where 

1 i 
10 = ro + 2't -;!VG .. (r,r), 

1 1 
~{x)= ~{x)+ 2T nNF.;(r,r); 

(16) 

and VT = l -the mean free path. 
The expansions in powers of the field strength used 

earlierl3 J apply when 

eHcd2< ~ ( ro +2~), 
Obtained When (1 - tr)~ 2 « d~o and ~D ~' Where C 1 

= ~~1 + z-1 • We consider thin films with thickness 
d<.J~o~· 



472 R. S. THOMPSON 

Now we are interested in the case of stronger criti
cal fields 

obtained for cleaner films at low temperatures, when 
(1 - tr)~ 2 » d~o. From (7) and (8) we obtain F and G. 

1 G) 
oo=oo+-· ,, 

2T [oo2+{!M"l''• · 

- 1 /A [· ( rP )] 1\(x)= 1\(x)+- exp -eH --x2 . 
2T[oo2+{!1\) 2]''• 4 

So X(x) has the same spatial dependence as ~(x). 
Writing u = w! iS we obtain from (17): 

(!) ( 1-/ ) 
A = u 1 - 2'1"1\ l'u2 + j2 · 

(17) 

(18) 

In the case eHd2 « 1 this relation for u has the same 
form found by Maki [21 to apply to dirty supe rconduc
tors: 

: = u (1-1; l'u•1+-~J (19) 

where t = 2TO!/~ and 0! is now %eHd2/(2T) 2 instead of 
Maki's value e 2H2(d2 /12)(v2 /3). 

The density of states is given by 

-sign w Im (Nu I l'f- u2), 

and thus the gap is 

ooo =II\ [1- ( 12 -1_!_\''']''• when 1 - 1 < 1, 
'I" /l I 2'1"1/l 

is less than 1 and vanishes when it is greater. 
The critical field and magnitude of ~ near He are 

determined from the analogy to (10): 

I I 1 ) Intr= 2nT ~ \ -=--- . 
ro>O Llfu2 + f C!J 

Using (18) the critical field follows from (20) when 
~-0. 

"1:'1 ( f ·W1 ), lntr = 2nT LJ 
.. ;. (J) + (1- /)/2'1" 

(20) 

(21) 

Expanding (20) in powers of ~2 near the critical field 
we find its magnitude. 

:tT .. ~.u-M { 2T(m+ ({-/)/2'1") 2 + w + (1 ~ f)/2'1"} 

- 1 ~ (I) fl\2 
-2~>0(oo+(1-/)/2T) 4 · • (22) 

Similarly expanding the density of states, the differen
tial conductivity is given by: 

1 ( fl\ \ 2 ( 1 1 -I ie V) 
D(V)= 1+- -' Re,Ps -+---- . 

8 nT I 2 4T:nT 2:nT 1 
(23) 

In the case of pure films (T- oo) these results coin
cide with (11), (12), and (14). On the other hand,in case 
~o » l » ..J ~od the results are closely analogous to 
those in the dirty limit. As shown by Shapoval [51 the 
critical field is given by 

(24) 

where Tu (tr) is the universal function of reduced tem
perature which occurs in many expressions evaluated 
in the dirty limit. 

In tr = ¢(1/2) -lj>(l/2 + p/2), 2nTp·= -r,.(tr)-1. 

Therefore ~ 2 and S may be expressed in terms of the 
same universal functions of temperature used in the 
dirty limit. In particular: 

1\2 = 4:n2T2p¢2//l, (2 5) 

S=p¢2 (-~l. (26) 
He 2/1 I 

where the arguments of the l/J functions are 112 + p/2 
and 

as introduced by Maki. [21 

Thus the value of HcS is predicted to be just one-half 
of the value obtained in the dirty limit. [11 (The factor 
of 1/2 arises because p is quadratic in H in the dirty 
limit and linear in H here.) The dependence of D(V) on 
V should be the same as in the dirty limit. 

For cleaner films ( l ~ ~o, eHcd2 ~ 1) the critical 
field is determined from Shapoval's equation (3.6)[51 

and has a smaller value than given by (24). To deter
mine ~ we again make use of the fact that the same 
logarithmic term occurs in the equation for He: 

fl\2 It { f 11'2 1 } 
2n2Tis = (f- !c) 2TnT 4 + 2Tin(t.22eHd£o) ' (27) 

f1Jls{f2 } S = 2JiTt. 4TnT11lz+In(1.22eBdSo) , (28) 

where the arguments of the l/J functions are 
1/ 2 + (1 -f) /4TJrT. (28) reduces to (15) for absolutely 
clean samples and to (25) for the dirtier ones. (~o » l 
» ..j ~od ). For temperatures low enough so that 
(1 - f)/4nrT » 1 we may insert the asymptotic forms 
of the l/J functions: 

S-+3 ;h~ 1+In(1,22eHdso)}. (29) 

For small fields eHcd2 « 1 S- 3/Hc, which decreases 
as the film becomes cleaner and He increases. How
ever, when eHcd2 becomes much larger than one 
S -3ed2 ln eHcd~o and increases logarithmically. 

3. EXPERIMENTAL DISCUSSION 

From an experimental point of view confirmation of 
the theory is difficult. This is because of the difficulty 
of producing thin films without defects in their interior. 
For example the bulk mean free path for the pure film 
No. 46 of our earlier work[11 as well as the width may 
be inferred from the values of the parallel and perpen
dicular critical fields measured near T c: d ~ 300 A, 
l ~ 700A. Since ~o ~ 2000 A., l ~..; ~od ~ 800 A, and 
this film is in between the range of applicability of the 
theory of the dirty limit and the present theory. Thus 
the dependence of He on [Tu (tr)r1 is intermediate be
tween a square root and a linear character (Figure 5 
of [11 ). Similarly the slope of the differential conduc
tivity has a character intermediate between the value 
applicable to the dirty limit and its half (26), although it 
is seen that S approaches the new limit faster than He 
does (Figure 6 of [11 ). 
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If we consider that l is always limited to approxi
mately 2.5d, the most favorable experimental situation 
should be d ~ 800A so that l ~ ~o ~ 1.6v' ~od. Then us
ing Shapoval's Eq. (3.6)l5 l eHcd2 would be 0.64, and 
(28) must be used to find S. If a thicker film is chosen, 
say d ~ 1600A, z~ 2~o, a higher value of eHcd2 is 
predicted ( ~ 1.07), but the condition d « ~o is not well 
satisfied. 

The author is grateful to A. I. Larkin for valuable 
discussions of this work and to I. M. Khalatnikov for 
the hospitality shown to him during his stay at the In
stitute for Theoretical Physics. 
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