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Cerenkov radiation of Alfven waves produced by a source moving uniformly along a straight line 
forming an arbitrary angle with the magnetic field is discussed. Use is made of the analogy of this 
phenomenon with the emission of transverse waves in a system of parallel elastic strings with a 
source of perturbations moving across. The simplest systems of electric currents which excite 
Alfven waves are listed and expressions for the fields are given. The forces of radiation reaction 
are determined. 

THEORETICAL investigations of electromagnetic 
Vavilov-Cerenkov radiation in anisotropic plasmas en
counter tremendous computational difficulties, owing to 
the complicated character of the dispersion of normal 
waves in the medium, and due to the complicated rela
tion between the phase velocities of these waves and 
their angle relative to the external magnetic field. 
Therefore one usually restricts one's attention to ob
taining and discussing the expressions for the energy 
and radiation reaction force in the form of integrals 
over the spectrum of emitted frequencies, or over the 
angle spectrum.£ 11 If one is interested in the emission 
of magnetosonic waves in magnetohydrodynamics, there 
is no dispersion, but the complicated character of the 
dependence of the phase velocities of these waves on 
their angle with the magnetic field remains.£ 21 Because 
of this, one usually considers only Cerenkov radiation 
produced by a source moving along the magnetic 
fieldY• 41 

A particularly simple example of Cerenkov radiation 
in an anisotropic medium is the emission of Alfven waves 
in a magnetoactive plasma. In this case it is easy and 
simple to determine the fields of magnetohydrodynamic 
excitations and simple expressions for the radiation re
action can be derived. This example is useful also from 
a methodological standpoint, since Alfven waves in a 
plasma have a simple analogy with transverse wave ex
citations in a mechanical system consisting of parallel 
elastic strings. This analogy was first pointed out by 
Alfven, and he made extensive use of it in analyzing var
ous aspects of magnetohydrodynamics. The essence of 
this analogy consists in the fact that each magnetic field 
line in a plasma is can be represented in a model by an 
elastic string of given density and tension. [SJ 

We shall show below that Cerenkov radiation of Alf
ven waves occurs for arbitrary velocities of the motion 
of the source of perturbations, if the velocity vector 
forms an angle with the direction of the external mag
netic field. The case when the source moves along the 
field lines is degenerate. In this case the perturbations 
have the character of entropy waves and move together 
with the source with the velocity of its motion. £2 1 

From the well known linearized system of equations 
of magnetohydrodynamics, £2 1 in the presence of external 
force sources f in the equation of motion, and of mass 
sources Q in the continuity equation, one can derive the 

following equation for perturbations v of the velocity 
vector: 

o'v 1 of c,2 ( 1)* -= c,'graddivv+cA2 [rotrot[ve.]e.] +--0 --gradQ, 
~ ~ t ~ 

where cs is the velocity of sound, CA = (Ho/41Tpo) 112 is 
the Alfven velocity, ez is the unit vector along the mag
netic field Ho, po is the unperturbed density of the plas
ma. If an external electric current density jo is given, 
then the density of the ponderomotive force of this cur
rent is 

f = c-1 (joHo]. (2) 

The dispersion rule for excitations of the form 
exp i( wt- k · r) can be derived from Eq. (1) and has the 
form 

( w2 - cA2kz'){ ro 4 - ( (cA2 + c82) ro 2 - CA2c.'kz']k'} = 0. (3) 

This equation is discussed in detail in £21 • It implies 
that the medium can propagate three types of normal 
waves: a fast and slow magnetosonic wave, and a mag
netohydrodynamic Alfven wave. The phase velocities of 
the magnetosonic waves are obtained from the condition 
that the expression in curly brackets in (3) vanish, and 
the phase velocity of the Alfven wave is determined by 
the condition w = ± CAkz. We recall that in the Alfven 
wave there are no perturbations of the density, pres
sure and of the projection of the velocity on the magnetic 
field. The only nonvanishing excitations are those of the 
vector v1 and of the magnetic field h1 , both perpendicu
lar to the external magnetic field Ho. 

It is easy to show that the mass sources Q excite 
only magnetosonic waves, and as can be seen from Eq. 
(1), they are equivalent to potential force sources. On 
the other hand if the following conditions are fulfilled 

fH0 =0, divf=O (4) 

the force sources f do not excite magnetoacoustic 
waves and generate only Alfven waves. If the conditions 
(4) are satisfied and Q = 0, then Eq. (2) becomes 

{)2y J. 2 {)2y J. 1 {)fJ. 
--=CA --+--. ot2 oz2 Po ot 

(5) 

*[vezl=vXez. 
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It is a well-known fact that the same equation de
scribes the small transverse oscillations of an elastic 
string under tension To, having a density p 0, under the 
action of a transverse force of density f 1 , with c A 
= (To/ p0 ) 11 2 • [sJ In this connection we are of the opinion 
that it is worthwhile to consider briefly the following 
mechanical problem of radiation of transverse waves in 
a system of parallel elastic strings. 

We assume that a perturbing force density f 1 moves 
with constant velocity Vo over a system of elastic 
strings which are all parallel to the z axis. For greater 
generality we assume that each of the strings exhibits a 
resistance to transverse motions proportional to its ve
locity, i.e., we assume that a friction force -2 av 1 is 
present. Then the equation describing the transverse 
displacements ~ 1 of each of the strings, related to the 
velocity by v1 = 3~1 /ot, has the form[6 l 

il261.. ilh ii26.L F .L 
-+2a·---"--cA2--=-Il(x- Voxf)ll(z- Vo,t). 
ilt2 ilt ilz2 Po (6) 

From the way the right hand side is written, it can be 
seen that the source acts only on those strings which 
are situated in the (x, z) plane and moves under an angle 
cp =arctan (V0x/V0z) to the z axis-the direction along 
which the strings are strung. By means of a Fourier 
transform, the solution of Eq. (6) can be written either 
in the form of an integral over wave numbers 

S.L = ~ { r exp {-ikx(x- Voxt)- ik,(z- V0,t)} dkxdk, (7) 
4rt2po ~;;., (kV0) 2 - 2iakVo- CA2k,Z 

or, making use of the convolution theorem, in the form 
of an integral over the source distributions: 

+oo 
S.L=F.L}} ll(x-V0xt')ll(z'-Vo,t')G(z,tiz',t')dz'dt'. (8) 

Po _ oo 

The Green's function for Eq. (6) occurring in the inte
grand of (8) is 
G( ti, t') H(t-t')H[cA(t-t')-lz-z'IJ e-a(t-t'l 

z, z' = 2cA 

X Io[ay(t- t')'- (z-z') 2/cA2], (9) 

where Io is the modified Bessel function and H(x) = 0 
for x < 0, H(x) = 1 for x =:: 0 is the Heaviside step func
tion. For a = 0 the Green's function (9) becomes the 
well known Green's function for the one-dimensional 
wave equation (5). 

A computation of either (7) or (8) yields 
F.LH(Voxf-x-IMxz-M,xl) { a(Voxf-x} 

S.L = exp - -'--oc:----
2pocA Vox Vox 

X 10 iva l'(V0xt-x) 2 - (Mxz-M,x)',], (10) 
L Ox 

where for convenience we have introduced the "Mach 
numbers" for the projections of the velocity of the 
source: Mx = V0xlcA, Mz = V0z/CA· 
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FIG. I. 

The case V0x = 0 is degenerate. In order to study it, 
it is convenient to start directly with the expression (7); 
setting f = Fo (z - V 0t) we obtain 

as 
\;=-= 

f}z (11) 

where ?; is the slope of the displacements of the strings 
with respect to the z axis. 

Figure 1 illustrates the transverse displacements 
~x in a system of strings situated in the (x, z) plane, 
when the perturbing force moves across the strings 
perpendicularly, with Mx = 0, and under an angle, with 
Mz > 1. 

By analyzing the poles in the integrand of (7), or di
rectly from Fig. 1 one can see that waves are radiated 
for any velocity of the motion of the source of perturba
tions. All perturbations are included inside a Mach an
gle, analogous to the Cerenkov cone for three dimen
sions. It is easy to see from (10) and Fig. 1 that the ve
locity of propagation of the energy (the group velocity) 
is cA and is always directed along the strings. The 
group velocity differs both in magnitude and direction 
from the phase velocity Vph = V0 /(1 + M~) 1 / 2 , which is 
directed along the normal to the line bounding the per
turbed region (we have in mind the case V0z = 0). In the 
degenerate case V0x = 0 it follows from (11) that the 
perturbations move along the string with the velocity of 
the source V0 , i.e., behave in the same manner as en
tropy perturbations.[zJ If V0 < CA, the region which is 
perturbed is in front of the source ("precursor") and 
for V0 > cA all perturbations are only behind the 
source, forming a wake. In what follows we do not dis
cuss this degenerate case. 

The displacements ~1 are finite on the Mach 
"cone," inside it, and even in the region where the 
source acts. This permits us to solve the inverse prob
lem: determine the force F 1 which it is necessary to 
apply at the point x = V0xt, z = V0zt, in order to pro
duce a given displacement ~ 10 at that pointY Thus we 
obtain from (10) 

(12) 

This force, taken with the opposite sign is essentially 
equal to the force of radiation reaction, since the work 
done by it is completely spent on radiation of waves. We 
remark the physically obvious fact that in an anisotro
pic medium the radiation reaction force can form an an
gle with the velocity of motion of the source of pertur
bations. This also follows from (12). 

We now go over to the case of magnetohydrodynam
ics. The majority of the results of the preceding prob
lem carries over to this case, if one bears in mind that 
each magnetic field line of the field H0 can be consid
ered as a string of density p0 , equal to the mass density 
of the plasma, and subject to a tension T 0 = H~/47T. 
However, several differences should not be forgotten. 

Osuch a formulation of the problem, when the perturbations are 
given near the source and one is required to determine the forces of 
hydrodynamical reaction acting on the source, is frequently encountered 
in ordinary hydrodynamics [7 ]. 
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Firstly, the sources which excite the Alfven waves must 
satisfy the condition (4), i.e., they must have no diver
gence and lie in a plane perpendicular to the magnetic 
field. If these conditions are not satisfied, the source 
will also excite the other two normal waves in the me
dium, which complicates matters considerably. Sec
ondly, one cannot take into consideration the absorption 
of Alfven waves in the same manner as for the case of 
the strings, since the character of dispersion in the 
plasma is more complex, owing to Joule and viscous 
losses. [ sJ In the presence of losses it was impossible 
to compute the Cerenkov radiation of Alfven waves ex
actly; therefore we consider below a lossless medium 
and make use of the Green's function (9) with a = 0 for 
the initial equation (5). Thus the solution of Eq. (5), 
written in terms of the displacement ~1 , and taking into 
account all these remarks, will have the form 

1 + 00 

S_L = -,- ~ \ f_1_(r, t')H(t- t')H{cA(t- t')- iz- z'i]dz' dt', (13) 
2poCA _ ;, 

Of special interest is the radiation of Alfven waves pro
duced by an external electric current with density j 0 , 

mechanically interacting with the plasma according to 
Eq. (2). The first of the conditions (4) is then automati
cally satisfied, and the second becomes 

rot, io = 0. (14) 

The simplest case is the two-dimensional problem when 
j 0 depends only on the coordinates (x, z). It is easy to 
check that one of the simplest plane currents satisfying 
condition (14) is a moving solenoid of rectangular cross 
section, with the axis oriented perpendicularly to the 
external magnetic field. The current density in this 
case can be expressed in terms of the following combi-· 
nations of the Heaviside and Dirac generalized func
tions: 

jx = IoH(lx2 -x'2 )[.S(z' + 1,)-1\(z' -I,)], jy = 0, 
(15) 

j, = loH (1,2 - z'2}[.S (x' -lx)- .S (x' + lx)],, 

where x' = x- V0xt, z' = z - V0zt, 2lx and 2lz are the 
lengths of the sides of the rectangular cross section of 
the solenoid, 10 is now the current per unit length in 
the y-direction. Another simple example of a system of 
currents bounded in space and satisfying the condition 
(14) is a solenoid of rGctangular cross section bent into 
a torus (i.e., a torus of rectangular cross section) with 
the torus axis along the z axis. In a cylindrical coordi-· 
nate system (r, z, cp) the current density in the torus is 
defined as follows: 

H(a-r)-H(b-r) 
j,=lo 2 [1\(z'+l)-1\(z'-1)], 

nr 

b(r-a)-1\(r-b) (16) 
j,=lo· H(l2 -z'2), j~=O, 

2nr 

where a and b are the external and internal radii of 
the torus, respectively. 2l its height (along the z axis), 
z' = z- V0zt, r = ((x- V0xt)2 + (y- V0 yt)2 )11 2 • 

However, the use of sources of the forms (15) or (16) 
leads to complicated expressions for the fields. There
fore we approximate (15) by a thin solenoid, with lx and 
ly vanishing 

jx = lolxi,.S (x- Vox t) I\' (z- Vo, t), jy = 0, 

j, = -lolxl,.S'(x- Voxt)ll(z- Vo,t), 
(17) 

where 10 lxlz = cmy, with my the magnetic moment per 
unit length of the solenoid. The corresponding force 
density is 

fu = myHoll (x- Voxt) {>' (z- Vo,t). (18) 

Substituting this expression into (13) and integrating we 
obtain 

su= myHo a H[Voxt-x-!Mxz-M,x!JH(Vaxt-x). (19) 
2poCA Vox {jz 

In order to analyze the radiation reaction it is neces
sary to know the perturbations of the magnetic field 
h = H0 (oVoz): 

Figure 2 gives an approximate representation of the 
perturbations of the magnetic field hy in the plane y = 0. 
The singular generalized function 6' has been regular
ized[sl graphically in this figure, i.e., it has been re
placed by a similarly shaped nonsingular function. 

We determine the force of radiation reaction R, act
ing on the unit length of the thin solenoid. We start from 
the expression of the force density 

(21) 

where ex and ez are unit vectors and, as before, j 0x 
and j 0z are defined by (17). The force R is given by the 
integrals 

+oo 
Rx=\ \ fcxdxdz=2nmy2Max[ll.,"(Voxt-x-1Mxz-M,x!Jx-+V t J J Ox ' 

z-+Voz t, 

+oo (22) 
R, = \ \ fn dx dz = 2nm.ZMox[l'>," (Voxt- X -!Mxz- M,x!]x-+Voxt' 

z-+Voz t. 

Thus the components of the force R are expressed in 
terms of the singular generalized functions o~z and 
Ozz, with the argument vanishing, and hence the func
tions themselves unbounded. Using integral represen
tations for these functions one can show that the spec
tral densities Rw ~ w2 and Rk ~ k2 • This means that 
the integrals over the spectrum of emttted frequencies 
or wave numbers diverge for large w (short wave
lengths). Consequently, in the thin solenoid approxima
tion, both the field perturbations hy and the radiation 
reactions are expressed in terms of singular general
ized functions, which yield a qualitative idea about the 
character of perturbations and spectral density of the 
forces. 

A completely similar calculation of the fields has 
been carried out for the more complicated case of a 

g 

FIG. 2 



CERENKOV RADIATION OF ALFVEN WAVES 455 

z' 

FIG. 3 

solenoid of finite dimensions (15). Omitting a series of 
lengthy intermediate calculations we give only the final 
result: 

hy = h/( H{lx2 - l x'- Mx(z' + l,) ] 2}H( -l,- z') 
l. 1+M, 

- n{ zxz- [x'- M~~ -;;,l,) nH(l,- z')) 

+h2 (nf lx2 - [x' + Mx(z' -l,) ] 2}H {~) 
\. 1 - M, ' cA- Vo, 

- n{zxz- [x' + Mx(z' + l,) ]z}nf z' + l, )) ' 
1 - M, \ CA- Voz 

(23) 

where h1 = 2JTI0 /c(1 + Mz), ~ = 2JTI0 /c 11- Mz 1. In de
riving (23), use has been made of known properties of 
generalized functions. lal Thus, the perturbations hy are 
expressed in terms of a combination of Heaviside func
tions and are everywhere finite, with the exception of 
the degenerate case Mx = 0, Mz = 1. Despite its com
plicated form, Eq. (23) expresses very simple results. 
We discuss several particular situations. 

For Mx = 0 it follows from (23) that hy is always 
inside the solenoid and has the expressions 

{ 

- 4nlo H(l 2 - xZ)H(l2- a'•) forM < 1 
c(1-M,Z) x z ' 

hy= 
4nlo 

-c....,(M:-:-,-,.-2 -_-1,--) H(lx2 - x2)H(l,2 - a'2 ) for M, > 1 
(24) 

As expected, for Mx = My = 0 we obtain from (24) that 
hy = -4JTI0 /c, i.e., hy goes over into the unperturbed 
field inside the solenoid. 

Cerenkov radiation of Alfven waves occurs for Mx 
> 0. In this case the character of the perturbations de
scribed by Eq. (23) becomes clear from Fig. 3. The 
shaded regions are those where according to Eq. (23) 
the magnetic field is perturbed by the motion of the sol
enoid. The lower part of each of the two situations in 
Fig. 3 represents hy = hy(z') for x' = canst, as repre
sented by the horizontal cross sections in the figures. 
The rectangles at the top of the figures represent the 
turns of the solenoid and the arrows indicate the direc
tion of flow of the current. These figures illustrate 
clearly the character and magnitude of the perturba
tions for different Mx and Mz. In conclusion of the 
analysis of Eq. (23) we indicate that by taking the limits 
lx - 0 and Zz- 0 one obtains the expression (20) for 
the field hy of the thin solenoid. 

We now compute the reaction force R, which acts on 
the solenoid. For this we substitute hv from (23) into 

(21) and (22). Due to the large number of independent 
parameters on which the solution depends, the final re
sults are tabulated. The form used in the table to ex
press the dependence of Rx and Rz on the parameters 
Mz, Mx, Zx, and Zz seems to be the most convenient 
one. 

As a simple example illustrating the general formu
las of the table we consider the case Mz = 0 

{ 
0 for Mx = 0 

Rx = -8nl02l,/c2 for 0 < Mx ~ lx/l,. 

-8nlo2lx/ Mxc2 for lx/l, ~ Mx 
(25) 

The increase of the absolute value of the force Rx 
(which brakes the motion of the solenoid) from zero to a 
finite value occurs suddenly. If one takes into account 
dissipative processes produced by viscosity or finite 
electrical conductivity of the medium at low velocities 
V0 , this singularity disappears. 

The intensity of Alfven wave emission by a moving 
source can be computed from the equation 

dft/dt = RV. (26) 

In the case Mz = 0 it follows from (25), (26) that the in
tensity increases linearly with the growth of the veloc
ity until the constant value 81r Ig Zx/c2cA. We note also 
that in addition to the radiation reaction forces, the sol
enoid is also subject to torques which are produced by 
the nonuniform distribution of these forces along the 
sides of the rectangular turns of the solenoid. We do 
not compute these torques here. 

The limits of applicability of the linear approximation 
used here can be obtained from the condition max I h I 
« H0 • Equation (23) for hy implies that the inequalify 
2JTI0 /c 11 - Mz I « H0 must hold in this case. For Mz = 0 
this means that the proper magnetic field inside the sol
enoid, H1 = 41Tla/c must be smaller than the field ffo. 

A last remark has to do with the circumstance that 
in addition to electromagnetic interactions between the 
solenoid and the medium there also exists a purely me
chanical interaction. Indeed, we have assumed through
out that the individual turns of the solenoid, which have 
in its cross section the form of rectangular frames, are 
spaced along the y axis by a certain interval a, with 
r 0 <a < min Ux, Zy), where r 0 is the radius of the cross 
section of the individual turn. This condition is neces
sary in order that the plasma and the magnetic field 
penetrate inside the solenoid without significant distor
tions. Nevertheless, even in this case the solid conduc
tors making up the turns of the solenoid will experience 
in their motion through the plasma a frontal resistive 
force, which for a wide range of velocities has the ex
pression F ~ V~r0 Z, where l is one of the dimensions 
Zx or lz· Obviously, the mechanical interaction of the 
solenoid with the medium is negligible compared to the 
electromagnetic interaction whenever this force is 
small compared to the radiation reaction force. In the 
case Mz = 0 we find from (25) that this condition be
comes p0V~ (r0 /a) < I~/c2 , i.e. if the energy of the mag
netic field of the solenoid is larger than the kinetic en
ergy of the medium multiplied by a coefficient r 0 /a 
smaller than unity. 

In conclusion I would like to thank B. Ya. Eidman 
for useful remarks. 
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