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Fluctuations and scattering of electromagnetic waves in a partially ionized plasma located in an ex
ternal electric field are studied. It is shown that if the frequency of the collisions between charged and 
neutral particles is small, v << w (w is the fluctuation frequency), then the correlation functions pos
sess sharp maxima at the ion-sound oscillation frequencies. As a result, ion-sound satellites appear 
in the scattered radiation spectrum when an electromagnetic wave passes through the plasma. At not 
very large values of the external electric field strength, the intensity of these satellites increases 
linearly with the field strength. As the electric field approaches the critical value as defined by 
formula (23), the intensity of the satellites increases sharply, and tends to infinity (within the frame
work of the linear theory). Fluctuations and combination (Raman) scattering of electromagnetic waves 
in a weakly ionized plasma are also investigated and the problem of applicability of the results to 
other plasma media (semiconductors, electrolyte solutions) is discussed. 

1. INTRODUCTION 

As is well known, if weakly damped oscillations can 
propagate in some system, then the passage of an elec
tromagnetic wave through such a system gives rise to 
short maxima-called satellites-in the spectrum of the 
scattering radiation. The intensity of such Raman scat
tering is determined by the level of the fluctuations in 
the system; therefore in those cases when the level of 
the fluctuations greatly exceeds the thermal level, the 
satellites are characterized usually by high intensity. 

We investigate here the fluctuations and the scatter
ing of electromagnetic waves in a partially ionized 
plasma situated in an external electric field. In such a 
plasma, as is well known l 1 ' 2 l, there can propagate sev
eral modes of collective oscillations. We shall show 
that in the presence of an external electric field, the 
fluctuation level in a partially ionized plasma can 
greatly exceed the thermal level, and therefore the in
tensity of the Raman scattering of the electromagnetic 
waves by the plasma fluctuations may also turn out to 
be very high. 

A particularly high intensity is characteristic of the 
scattering of electromagnetic waves by ion-sound os
cillations. At not too large values of the external elec
tric field Eo, the cross section of this process increases 
linearly with increasing E 0 • When the electric field ap
proaches a certain critical value Ec, the differential 
scattering cross section increases rapidly, becoming 
infinite (within the framework of the linear theory) as 
Eo- Ec. 

The abrupt increase in the scattering cross section 
when the external field approaches its critical value is 
connected with the fact that instability of ion-sound os
cillations sets in when Eo = Ec. This phenomenon is 
analogous in its nature to critical opalescence in a fully 
ionized plasma, which was considered in [3 ' 4 l . To inves
tigate the fluctuations and the scattering of electromag
netic waves at Eo 2: Ec, it is necessary to take into ac-
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count the nonlinear effects that limit the growth of the 
amplitude of the growing ion-sound waves. In this paper 
we confine ourselves to the linear theory and do not deal 
with this question. 

Besides ion-sound fluctuations and scattering of 
electromagnetic waves by ion sound, we investigate also 
low-frequency fluctuations and scattering of electro
magnetic waves from them. The results obtained in this 
case are applicable both to a weakly ionized plasma and 
to other plasma media (semiconductors, solutions of 
electrolites). We shall show that passage of electro
magnetic waves through such media give rise, in the 
spectrum of the scattered radiation, to satellites that 
are located a distance ~w << v away from the main line 
(v is the collision frequency), and determine the intensi
ties of these satellites. 

The main difficulty that arises in the study of fluctua
tions in a plasma situated in an external electric field is 
connected with the fact that such a system is not closed 
or in complete equilibrium; therefore the general 
methods of fluctuation theory cannot be applied to it 
directly. Nonetheless, we shall show that an investiga
tion of fluctuations in the plasma in the presence of an 
external electric field can be carried out by generalizing 
somewhat the fluctuation-theory method based on the 
fluctuation-dissipation theorem. 

2. DETERMINATION OF THE CORRELATION FUNC
TIONS 

Let us determine first the correlators of the fluctua
tions of the quantities characterizing the plasma in the 
presence of an external electric field. We introduce for 
this purpose into the equation describing the system 
under consideration additional extraneous quantities-the 
so called "random forces". [5 ' 61 In the case of a par
tially ionized plasma consisting of electrons, ions, and 
the neutral particles, we thus start from the equations 
(see l7 l) 
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(!__ + v!__) f<'i + _t:_E_!_FCe) + J {f<'i- y<•i} = 0, at . ar m av 

(!_-l- v!_) f<ii- .:ti_E!_F(ii + J {f<'i- y{'i} = 0, 
at or M av 

(1) 

where F(a)_equilibrium distribution function of the par
ticles of sort a (a = e, i) in an external electric field 
Eo; f(a) and E-deviations of the distribution function of 
the particles and of the electric field from the equili
brium values; J{f(a) }-linearized integrals of the colli
sions of the electrons and ions with the neutral particles, 
and y(a)_random forces (m, e, and M, -ze-masses 
and charges of the electrons and ions). The terms con
taining the random forces are chosen in the form J{y} 
in order that the introduction of the random forces not 
violate the particle-number conservation laws. 

To find the correlation functions it is necessary to 
determine first the rate of change of the entropy of the 
system under the influence of the random forces. In the 
case of fluctuations with q f 0 (q-wave vector of the 
fluctuation), the time derivative of the entropy can be 
represented in the form 

(" ajla) 
S(t)= ~J drdv(FC"-i)-1 j("-i--, 

a at 

Using (1) and introducing the notation 

x<"-i = -J{f"-i _ yC"-i}, X<a) = (FC"-i)-1 j("-i,, (2) 

we get hence 

S (t) = ~ ~ dr dv x'"'i X'"'i. 
a 

(3) 

We see that (if we confine ourselves to fluctuations 
with q I 0) the quantity S turns out to be (in the absence 
of random forces) quadratic in the deviation of the dis
tribution functions from their equilibrium values. This 
makes it possible to construct the correlation function 
by the general method of fluctuation theory, based on 
the fluctuation-dissipation theorem. According to this 
method, we should represent the quantities x in the form 

;iC"-i(v) =- ~ "a)(v, v')XCai(v')dv' + yC<>i(v). ( 4) 

The "kinematic coefficients" y which enter into this 
relation determine directly the normalization of the 
random forces 

(yCa) (v, r, t) y(a') (v', r', t')) 

= llaa' {"ai(v, v') + y<a~ (v', v)} /l (r- r') ll (t- t'). 

The "kinetic coefficients" y have the simplest 

(5) 

form if one can disregard the influence of the collisions 
on the fluctuations (w >> 11, where w is the frequency of 
the fluctuations and 11 is the effective collision fre
quency). In this case the explicit form of the collision 
integrals is insignificant, since it is necessary to take 
in the final formulas the limit as 11/w -o. Making 
therefore in (2) the substitution J{f(a)} -vaf(a), we get 

(6) 
(yCa) (v, r, t) y<a) (v', r', t')> = 2va-1 1law F'<"i(v) ll (v- v') 0 (r- r') 0 (t- t'), 

We note that in this case the averaged distribution 
functions F can depend on the form of the collision 
integrals, and therefore the correlation functions can 
also depend on the form of the collision integrals. 

Establishment of the connection (4) between the 
"generalized thermodynamic velocities and the forces" 
x and X requires in the general case the use of the ex
plicit form of the collision integrals, and entails in 
general considerable difficulties. The problem simpli
fies somewhat if both the equilibrium distributions of 
the particle velocities and the nonequilibrium increments 
to these distributions are close to spherically- symme
trical. Expanding in this case F and f in spherical har
monics and retaining the first two terms, we have 

F(v) = F0 (u) + u-1 vF,(u), f(v) = fo(u) + u-l vf1(u), (7) 

with F1 « F 0 and f1 « fo. Introducing further the zeroth 
and first moments of the collision integral Jo and J 1 and 
of the random force Yo and y1, we rewrite (3) in the 
form 

S (t) = 1/ 3 ~ dr dv Fo-1 (3/olo {Yo- fo} - Fo-1lo {Yo- fo} F1f1 

(8) 
- Fo-11, {YI- f,} Fdo + f,J, {y1- f,}) 

(we confine ourselves for simplicity to the contribution 
made to the entropy by only one sort of particles). 

In the case of a sufficiently strong external field 
(eE 0 lM1/2m-112 >>To, where To is the temperature of 
the neutral particles and l is the electron mean free 
path) we can use for the electronic component of the 
plasma the Davydov collision integral [8J; with this 

1 a { m (To ato )} 
lo {fo} =-Zu2 au 2M u2v, -;;;a;+ ufo . , 

J1 {f1} = v,f1. 

Substituting (9) in (8) and using (5), we get 

(y!i ( u, r, t) Y•; ( u', r', t')) 

(9) 

3 (10) = -v,-11l;;u-2F 0 (u)/l(u- u')ll (r- r')ll(t- t'), 
2n 

where F0 is the zeroth harmonic of the equilibrium dis
tribution function of the electrons in an external elec
tric field [8 J, 

{ -3m3u4 } no ( 3m3 )'1• ( ) 
Fo(u) = C exp 4Me2E0'l2 ' C = nr(%) . 4Me2Eo2l2 1l 

and no is the equilibrium density of the electrons (we do 
not present the much more complicated expressions 
for the quantities (YoYo) and (YoYI), since it will be 
shown below that to determine the correlators of the 
macroscopic quantities it is sufficient to know the quan
tity (y1Y1 )). 

We note that according to[8 J the equilibrium electron 
velocity distribution in a strong electric field is always 
close to spherically-symmetrical, F1 << F 0 • However, 
the inequality f1 « f0, together with (10), holds true here 
only in the low-frequency region (w « ve). In the high
frequency region (w >> lie) all the spherical harmonics 
of the function f have generally speaking the same order 
of magnitude; in this region, to determine the correla
tion functions it is necessary to use relation (6). 

It is well known (2J that in the low frequency region 
(w « ve) the kinematic equation for the electronic com
ponent of the plasma leads to hydrodynamic equations 
with a self-consistent field. Starting from the kinetic 
equation with random force (1) we get 

(v0V)v<•i + v,v<•i = ; E + Y<•i, ( ~· + v0V) n, + nodivv<•i = 0, 

(12) 
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where Vo = eEo,(mllef1 is the average electron velocity 
and ne and v(eJ are the density and velocity fluctuations. 
The correlator of the random forces y(e) has in this 
case, according to (10), the form 

T' 
(Y.<•>(r, t) Y;<•>(r', t')) = 2v.ll;;-ll (r- r')ll(t- t'), 

m 

where T* is the average electron energy 

• = r(ifi), M'l• eEl. 
T 6r(3/.) (3m)'" 0 

(13) 

(14) 

We see that in the case of low-frequency fluctuations 
the averaging of the random forces is in analogy with 
the case of ordinary hydrodynamics (seel5 l), and the 
role of the temperature in the correlators of the quan
tities characterizing electrons is assumed by the aver
age energy T*. 

It is easy to show that if w « IIi> where IIi is the 
effective frequency for the collisions of ions with neu
tral particles, then we can start in the study of fluctua
tions of the quantities pertaining to the ions from 
hydrodynamic equations with random force y(i); 

V;y(i) = -.::. E + Y!i), ani + z-lno divv!i) = 0, (15) 
M at 

where v(i) is the velocity and ni is the fluctuation of the 
ion density. The averaged product of the random forces 
is proportional here to the ion temperature Ti: 

(Y;<i>(r, t) Y;!i>(r', t')) = 2v;ll;; ~ll(r- r')ll(t- t'), (16) 

on the other hand, the quantities (y(i)y(e)) = (y(e)y(i)) 
vanish. 

To determine the correlation functions, we should 
now, using (1) (or else (12) and (15)) and the equations 
of electrostatics, express the charge density, the elec
tron density, the electric field, and other quantities 
characterizing the plasma in terms of the random for
ces, and then average over the random forces with the 
aid of relations (5) and (6) (or (13) and (16)). 

3. HIGH-FREQUENCY FLUCTUATIONS AND CRITICAL 
OPALESCENCE IN A PLASMA SITUATED IN A 
STRONG ELECTRIC FIELD 

Let us consider fluctuations in the high frequency 
region w »lie, IIi· Using (6), we get for the charge
density correlator 

(p2)q,co = 2nle(q, ro) l-2 ~ (zc.e) 2 S F<"'lll(ro- qv)dv. (17) .. 
where e: = 1 + 47T (Ke + Ki) is the lon~itudinal dielectric 
constant of the plasma and Ke and K1 are the electric 
susceptibilities of the electrons and ions, 

~ aF<«> ( ) 
x"(q,ro) = (zc.e}'mc.-lq-2 (ro-qv+io)-•q--dv. 18 av 

By way of F(e), it is necessary to substitute into these 
equations the distribution functi9n, of the el.ectrons in a 
st;rQng electric field [aJ F(e) = F~e} + v-1v · F~e), where 
F~e} is determined by formula (11) and 

eEol dFo<•> 
Ft<•>(v)= --;;;;;--~· (19) 

As is well known, the poles of the correlation func
tions determine the complex frequencies of the natural 

oscillations of the system. Equating to zero the denom
inator of (17) and putting 

we obtain the frequency and the damping decrement of 
the ion-sound oscillations 

ro = V,q(1 + a2q2)-'", 

'V = lj2 CJl (naq) 2 (1 + a2q2)-l r-2(1/.) (COS l(c- COS X), (20) 

where V s is the speed of sound, a is the De bye elec
tronic radius 

T.r(•/,) 
2ne2nor(1/,) ' 

(21) 

x is the angle between the vectors q and Eo, 
Te = M112(3mr112eEol is the effective electron tempera
ture, and 

(the ion velocity distribution is assumed Maxwellian 
with a temperature Ti). It is easy to see that if 

(22) 

cos Xc > 1, then y > 0 and the oscillations of the plasma 
are damped. If cos Xc < 1, then oscillations propagating 
at an angle x to the direction of the field larger than Xc 
are attenuated. When x - Xc• the damping decrement 
of the oscillations vanishes: in the region x < Xc• the 
plasma oscillations start to grow. 

Let us trace the dependence of the character of the 
ion-sound oscillations on the external electric field Eo. 
At not too large values of the field, cos Xc > 1, and 
therefore all the oscillations are damped. With increas
ing Eo, the first to begin to grow are the long-wave os
cillations (aq « 1), propagating along the field; for the 
corresponding critical value of the field, using (22), we 
get 

Ec = (~)''• r(tj,) Ti (!!!_)''• {In M + 3ln ( z-t(nz)''• In M)} . (23) 
4 r(•/4) zel M m 2''•r''•(3/.) m 

with further increase of the field, the oscillations with 
large q and large values of the angle x between the vec
tors q and Eo start to increase. 

Returning to relation (17), we emphasize that this 
relation (as well as all further formulas for the corre
lation functions), is valid in the case of damped oscilla
tions (cos x < cos xc). If the plasma oscillations in
crease (cos x > cos xc), then the nonlinear effects must 
be taken into account in the determination of the corre
lation functions. 

Noting that the damping decrement of the ion-sound 
oscillations is small, y « w, we represent (17) in the 
form 

a•q5V,T .z''• ( V.'q2 ) 
(p•)q,co = II ro•---- · (24) 

2''•-.'3 ( 1 + a2q2) 2 (cos :xc- cos x) 1 + a2q2 

We present one more expression for the density fluc
tuation correlators of the electrons and ions, separ
ately: 

e2 (n.')q,., = (1+a2q2)-•(ze)• (n;•)q,co =- (1+a2q2)-lze2 (n.n;)q,., 

qV T a-•z''• ( V •q• ) (25) - .s e {) {i)2 ___ •_ 

- 2''•-.'3(1 + a2q2) 2 (cos:xc- cosx) ' 1 + a2q2 • 
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The correlator of the electric field is connected with 
the correlator of the charge density by the obvious re
lation 

(26) 

We now consider combination scattering of electro
magnetic waves in a plasma situated in an external 
electric field. We use for this purpose the well known 
expression for the differential cross section for scat
tering of electromagnetic waves (see[6 • 7l) 

where q = k- k'; t:.w = w- w'; w, w' and k, k' are the 
frequencies and wave vectors of the incident and scat
tered waves; J is the scattering angle (the angle be
tween the vectors k and k'), and do' is the solid-angle 
element of the vector k'. Substituting here (25) and 
confining ourselves to the case of long-wave incident 
radiation (ak « 1), we get 

( ijo)-1 
cosx = 2sinT (cos 8- cos8'), 

where 8 (8') is the angle between k(k') and Eo. We see 
that two satellites of equal intensity, with frequencies 
w' = w ± 2V sk sin (J/2), appear in the spectrum of the 
scattered radiation. 

Integrating in (28) with respect to the frequency w', 
we determine the intensity of scattering per unit solid
angle interval 

d"l:. f('l•)z'l•no ( e' )' (29) -= - (1+cos2 iJo)(cosx,-cosx)-1• 

do' 2''•1'3 r (3 I •l me' 

We see that the angular distribution of the scattered 
radiation depends in essential fashion on the magnitude 
of the external electric field. When Eo « Ec, this dis
tribution is almost isotropic (if we disregard the factor 
1 + cos2J). With increasing Eo, the intensity of the 
waves scattered at angles close to 8[, increases sharply; 
here 

80' =arccos {cose -2sin(iJol2)}. (30) 

As Eo- Ec, the intensity of scattering at angle 9[, 
becomes infinite (within the framework of the linear 
theory). The total cross section for the scattering of 
the electromagnetic waves by ion sound also increases 
with the increasing Eo and tends to infinity (logarith
mically) as Eo- Ec. The dependence of the scattering 
intensity on the angle x and on the external field Eo is 
shown in Figs. 1 and 2. 

The sharp increase of the electromagnetic wave 
scattering intensity at Eo- Ec is connected with the 
ion-sound instability which sets in when Eo:::: Ec. This 
phenomenon is similar in its nature to the well known 
phenomenon of critical opalescence.'> 

'>In the absence of an external electric field, the critical opalescence 
and the plasma was irivestig3ted in [ 3 •4 ]. 

c 
b 

a 
0.6' 0./J 

cos :X. 

FIG. I. Angular distribution of scattered radiation. The vertical axis 
represents the function 

t(cosx, Eo)=~{ f('l•)no (~ )'(1+cos'iJo) r', 
E, do' 2''•l'3r ("I •l me' 

and the horizontal axis the function 

cosx = (2sin (l')/12l))-'(cos8-cos8'). 

Curves a, b, c, and d pertain to the cases E0 /Ec = 0.5, 0.7, 0.8, and 0.9. 
In this case M/m = I 04 and z = I. 

4. LOW FREQUENCY FLUCTUATIONS AND THE 
SCATTERING OF ELECTROMAGNETIC WAVES IN A 
WEAKLY IONIZED PLASMA 

Let us consider in our fluctuations in the high-fre
quency region, w « ve, vi. Expressing with the aid of 
the hydrodynamic equations (12) and (15) and with the 
aid of the electrostatic equations the charge density in 
terms of the random forces, and averaging over the 
random forces with the aid of (13) and (16), we get 

(31) 

where T* is the average electron energy, determined by 
formula (14), E is the longitudinal dielectric constant of 
the system, 

(32) 

and Eo is the dielectric constant of the neutral compon
ent of the plasma. 

In order to determine the complex frequencies of the 
natural oscillations of the plasma, let us determine the 
poles of the correlator (31). Using (32), we obtain 
w = W±, where 

W± = 1/z(qvo- iwe- iw;) ± 
± 1lz { (qvo- iwe- iw;) 2 + 4iqvow;} 'I•. 

(33) 

We note that relations (31) and (33) are not applicable 
if the wave propagates almost perpendicular to the con
stant electric field 

f 

' 

FIG. 2. Scattering intensity vs. electric field. z 
The vertical axis represents the function f(cos x, 
Eo/Ec) at cos X = I (for M/m = I 04 z = I); the 
horizontal axis represents Eo/Ec. 

u.s 
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1 ~-x ~~~min {w,,w;}. 
2 c2q 

In this range of angles, as shown inl2 l, it is necessary 
to use in lieu of the electrostatic equations the complete 
system of Maxwell's equations and the oscillations with 
q · Vo « wa (vo/c)2 turn out to grow. It is essential, 
however, that both the growth increment and the volume 
in wave-vector space corresponding to the growing os
cillations are very small (~ c-2), so that the influence of 
the growing oscillations on the fluctuations in the sta
bility region can be disregarded. 

Using (33), we can represent (31) in the form 

(p2)q,"' =·(2n)-1 q2eol w- W+l-2 1 W- w-1-2 (34) 
X{T'w2w, + T; (w- qvo) 2 w1}. 

A similar formula is used to determine the electron 
density correlator: 

e2 (n,")q,"' = (2n) -! q2eol w- W+l-2 1 w- ffi-1-2 (35) 
xw, {T' ( w2 + w;2) + T;w,w;}. 

We see that if the imaginary part of any of the complex 
frequencies W± is small, then the correlation functions 
have sharp maxima at w = Re W±, corresponding to the 
possible propagation of weakly damped oscillations in 
the plasma. 

If q · v0 >> we, Wi, then w. = q · Vo- iwe and W- =- iwi; 
relations (34) and (35) then take the form 

( p2)q,"' = e2 (n,2)q,"' = 1/2 q2e0T'Il ( w- qvo). (36) 

If we>> max {q · Vo, wd, then the weakly damped os
cillations are those with frequency w-, near which we 
have 

1 ( W; ){ , ffi; } =-·q2eo6 w-qvo- T -+T; . 
2 ffie 'I.Ue 

(37) 

Let us consider, finally, the scattering of electro
magnetic waves by low-frequency fluctuations. Substi
tuting (35) in (27), we get 

(38) 

If k · Vo >>we, wi> then 

d"i:. = e2k2 eoT' (1 + cos2 1t) sin2 _! 6 (~w- (k- k')vo) dw' do'. 
2n(mc2 ) 2 2 

(39) 

We see that a single sharp maximum with frequency 
w' = w + (k- k') · v0 appears in the spectrum of the 
scattered radiation when k · Vo >> we,i· 

When we » max {k · v0, Wi}, formula (38) takes the 
form 

e2k 2 { w; } d"i:. = eo T'- + T, 
2n(mc2 ) 2 w, ' (40) 

( W; )' 1} ( ffi; k' ) d 1 d 1 X- (1+cos2 1t)sin2-6 ~w--(k- )vo w o. 
~w' 2 We 

In this case there appears in the spectrum of the scat
tered waves a satellite with frequency w' = w + wiwe1 

(k- k') · v0 • In both cases, both the frequency and the 
intensity of the scattered radiation depend strongly on 
the direction of propagation of the incident and scattered 
waves. 

We note in conclusion that the results obtained in this 
section are applicable not only to a weakly- ionized 
plasma, but also to other plasma media (semiconduc
tors, electrolyte solutions) placed in an external elec
tric field. In such media there should also occur com
bination scattering of electromagnetic waves, described 
by formulas (38)- ( 40). If the external electric field is 
in this case sufficiently strong, and the carrier mass 
ratio is also large, then the effective temperature T*, 
which determines the scattering intensity, is given by 
the same formula (14) as in the case of a plasma. Rela
tions (38)-(40) remain in force also when M/m ~ 1; in 
this case one must take the temperatures T* and Ti to 
be quantities on the order of the average carrier ener
gies. In the case of plasma media, an important factor 
may also turn out to be the deviation from unity of the 
quantity E 0, which represents in this case the dielectric 
constant of the medium in the absence of carriers. 

The authors are grateful to A. I. Akhiezer for useful 
discussions. 
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